1 //===----------------------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 10 #include "mlir/Dialect/MemRef/IR/MemRef.h" 11 #include "mlir/Dialect/MemRef/Utils/MemRefUtils.h" 12 #include "mlir/Dialect/StandardOps/IR/Ops.h" 13 #include "mlir/Dialect/StandardOps/Utils/Utils.h" 14 #include "mlir/Dialect/Utils/StaticValueUtils.h" 15 #include "mlir/IR/AffineMap.h" 16 #include "mlir/IR/Builders.h" 17 #include "mlir/IR/BuiltinTypes.h" 18 #include "mlir/IR/Matchers.h" 19 #include "mlir/IR/PatternMatch.h" 20 #include "mlir/IR/TypeUtilities.h" 21 #include "mlir/Interfaces/InferTypeOpInterface.h" 22 #include "mlir/Interfaces/ViewLikeInterface.h" 23 #include "llvm/ADT/STLExtras.h" 24 25 using namespace mlir; 26 using namespace mlir::memref; 27 28 /// Materialize a single constant operation from a given attribute value with 29 /// the desired resultant type. 30 Operation *MemRefDialect::materializeConstant(OpBuilder &builder, 31 Attribute value, Type type, 32 Location loc) { 33 if (arith::ConstantOp::isBuildableWith(value, type)) 34 return builder.create<arith::ConstantOp>(loc, value, type); 35 if (ConstantOp::isBuildableWith(value, type)) 36 return builder.create<ConstantOp>(loc, value, type); 37 return nullptr; 38 } 39 40 //===----------------------------------------------------------------------===// 41 // Common canonicalization pattern support logic 42 //===----------------------------------------------------------------------===// 43 44 /// This is a common class used for patterns of the form 45 /// "someop(memrefcast) -> someop". It folds the source of any memref.cast 46 /// into the root operation directly. 47 LogicalResult mlir::memref::foldMemRefCast(Operation *op, Value inner) { 48 bool folded = false; 49 for (OpOperand &operand : op->getOpOperands()) { 50 auto cast = operand.get().getDefiningOp<CastOp>(); 51 if (cast && operand.get() != inner && 52 !cast.getOperand().getType().isa<UnrankedMemRefType>()) { 53 operand.set(cast.getOperand()); 54 folded = true; 55 } 56 } 57 return success(folded); 58 } 59 60 /// Return an unranked/ranked tensor type for the given unranked/ranked memref 61 /// type. 62 Type mlir::memref::getTensorTypeFromMemRefType(Type type) { 63 if (auto memref = type.dyn_cast<MemRefType>()) 64 return RankedTensorType::get(memref.getShape(), memref.getElementType()); 65 if (auto memref = type.dyn_cast<UnrankedMemRefType>()) 66 return UnrankedTensorType::get(memref.getElementType()); 67 return NoneType::get(type.getContext()); 68 } 69 70 //===----------------------------------------------------------------------===// 71 // AllocOp / AllocaOp 72 //===----------------------------------------------------------------------===// 73 74 template <typename AllocLikeOp> 75 static LogicalResult verifyAllocLikeOp(AllocLikeOp op) { 76 static_assert(llvm::is_one_of<AllocLikeOp, AllocOp, AllocaOp>::value, 77 "applies to only alloc or alloca"); 78 auto memRefType = op.getResult().getType().template dyn_cast<MemRefType>(); 79 if (!memRefType) 80 return op.emitOpError("result must be a memref"); 81 82 if (static_cast<int64_t>(op.dynamicSizes().size()) != 83 memRefType.getNumDynamicDims()) 84 return op.emitOpError("dimension operand count does not equal memref " 85 "dynamic dimension count"); 86 87 unsigned numSymbols = 0; 88 if (!memRefType.getLayout().isIdentity()) 89 numSymbols = memRefType.getLayout().getAffineMap().getNumSymbols(); 90 if (op.symbolOperands().size() != numSymbols) 91 return op.emitOpError("symbol operand count does not equal memref symbol " 92 "count: expected ") 93 << numSymbols << ", got " << op.symbolOperands().size(); 94 95 return success(); 96 } 97 98 static LogicalResult verify(AllocOp op) { return verifyAllocLikeOp(op); } 99 100 static LogicalResult verify(AllocaOp op) { 101 // An alloca op needs to have an ancestor with an allocation scope trait. 102 if (!op->getParentWithTrait<OpTrait::AutomaticAllocationScope>()) 103 return op.emitOpError( 104 "requires an ancestor op with AutomaticAllocationScope trait"); 105 106 return verifyAllocLikeOp(op); 107 } 108 109 namespace { 110 /// Fold constant dimensions into an alloc like operation. 111 template <typename AllocLikeOp> 112 struct SimplifyAllocConst : public OpRewritePattern<AllocLikeOp> { 113 using OpRewritePattern<AllocLikeOp>::OpRewritePattern; 114 115 LogicalResult matchAndRewrite(AllocLikeOp alloc, 116 PatternRewriter &rewriter) const override { 117 // Check to see if any dimensions operands are constants. If so, we can 118 // substitute and drop them. 119 if (llvm::none_of(alloc.dynamicSizes(), [](Value operand) { 120 return matchPattern(operand, matchConstantIndex()); 121 })) 122 return failure(); 123 124 auto memrefType = alloc.getType(); 125 126 // Ok, we have one or more constant operands. Collect the non-constant ones 127 // and keep track of the resultant memref type to build. 128 SmallVector<int64_t, 4> newShapeConstants; 129 newShapeConstants.reserve(memrefType.getRank()); 130 SmallVector<Value, 4> dynamicSizes; 131 132 unsigned dynamicDimPos = 0; 133 for (unsigned dim = 0, e = memrefType.getRank(); dim < e; ++dim) { 134 int64_t dimSize = memrefType.getDimSize(dim); 135 // If this is already static dimension, keep it. 136 if (dimSize != -1) { 137 newShapeConstants.push_back(dimSize); 138 continue; 139 } 140 auto dynamicSize = alloc.dynamicSizes()[dynamicDimPos]; 141 auto *defOp = dynamicSize.getDefiningOp(); 142 if (auto constantIndexOp = 143 dyn_cast_or_null<arith::ConstantIndexOp>(defOp)) { 144 // Dynamic shape dimension will be folded. 145 newShapeConstants.push_back(constantIndexOp.value()); 146 } else { 147 // Dynamic shape dimension not folded; copy dynamicSize from old memref. 148 newShapeConstants.push_back(-1); 149 dynamicSizes.push_back(dynamicSize); 150 } 151 dynamicDimPos++; 152 } 153 154 // Create new memref type (which will have fewer dynamic dimensions). 155 MemRefType newMemRefType = 156 MemRefType::Builder(memrefType).setShape(newShapeConstants); 157 assert(static_cast<int64_t>(dynamicSizes.size()) == 158 newMemRefType.getNumDynamicDims()); 159 160 // Create and insert the alloc op for the new memref. 161 auto newAlloc = rewriter.create<AllocLikeOp>( 162 alloc.getLoc(), newMemRefType, dynamicSizes, alloc.symbolOperands(), 163 alloc.alignmentAttr()); 164 // Insert a cast so we have the same type as the old alloc. 165 auto resultCast = 166 rewriter.create<CastOp>(alloc.getLoc(), newAlloc, alloc.getType()); 167 168 rewriter.replaceOp(alloc, {resultCast}); 169 return success(); 170 } 171 }; 172 173 /// Fold alloc operations with no users or only store and dealloc uses. 174 template <typename T> 175 struct SimplifyDeadAlloc : public OpRewritePattern<T> { 176 using OpRewritePattern<T>::OpRewritePattern; 177 178 LogicalResult matchAndRewrite(T alloc, 179 PatternRewriter &rewriter) const override { 180 if (llvm::any_of(alloc->getUsers(), [&](Operation *op) { 181 if (auto storeOp = dyn_cast<StoreOp>(op)) 182 return storeOp.value() == alloc; 183 return !isa<DeallocOp>(op); 184 })) 185 return failure(); 186 187 for (Operation *user : llvm::make_early_inc_range(alloc->getUsers())) 188 rewriter.eraseOp(user); 189 190 rewriter.eraseOp(alloc); 191 return success(); 192 } 193 }; 194 } // end anonymous namespace. 195 196 void AllocOp::getCanonicalizationPatterns(RewritePatternSet &results, 197 MLIRContext *context) { 198 results.add<SimplifyAllocConst<AllocOp>, SimplifyDeadAlloc<AllocOp>>(context); 199 } 200 201 void AllocaOp::getCanonicalizationPatterns(RewritePatternSet &results, 202 MLIRContext *context) { 203 results.add<SimplifyAllocConst<AllocaOp>, SimplifyDeadAlloc<AllocaOp>>( 204 context); 205 } 206 207 //===----------------------------------------------------------------------===// 208 // AllocaScopeOp 209 //===----------------------------------------------------------------------===// 210 211 static void print(OpAsmPrinter &p, AllocaScopeOp &op) { 212 bool printBlockTerminators = false; 213 214 p << " "; 215 if (!op.results().empty()) { 216 p << " -> (" << op.getResultTypes() << ")"; 217 printBlockTerminators = true; 218 } 219 p.printRegion(op.bodyRegion(), 220 /*printEntryBlockArgs=*/false, 221 /*printBlockTerminators=*/printBlockTerminators); 222 p.printOptionalAttrDict(op->getAttrs()); 223 } 224 225 static ParseResult parseAllocaScopeOp(OpAsmParser &parser, 226 OperationState &result) { 227 // Create a region for the body. 228 result.regions.reserve(1); 229 Region *bodyRegion = result.addRegion(); 230 231 // Parse optional results type list. 232 if (parser.parseOptionalArrowTypeList(result.types)) 233 return failure(); 234 235 // Parse the body region. 236 if (parser.parseRegion(*bodyRegion, /*arguments=*/{}, /*argTypes=*/{})) 237 return failure(); 238 AllocaScopeOp::ensureTerminator(*bodyRegion, parser.getBuilder(), 239 result.location); 240 241 // Parse the optional attribute list. 242 if (parser.parseOptionalAttrDict(result.attributes)) 243 return failure(); 244 245 return success(); 246 } 247 248 static LogicalResult verify(AllocaScopeOp op) { 249 if (failed(RegionBranchOpInterface::verifyTypes(op))) 250 return failure(); 251 252 return success(); 253 } 254 255 void AllocaScopeOp::getSuccessorRegions( 256 Optional<unsigned> index, ArrayRef<Attribute> operands, 257 SmallVectorImpl<RegionSuccessor> ®ions) { 258 if (index.hasValue()) { 259 regions.push_back(RegionSuccessor(getResults())); 260 return; 261 } 262 263 regions.push_back(RegionSuccessor(&bodyRegion())); 264 } 265 266 //===----------------------------------------------------------------------===// 267 // AssumeAlignmentOp 268 //===----------------------------------------------------------------------===// 269 270 static LogicalResult verify(AssumeAlignmentOp op) { 271 unsigned alignment = op.alignment(); 272 if (!llvm::isPowerOf2_32(alignment)) 273 return op.emitOpError("alignment must be power of 2"); 274 return success(); 275 } 276 277 //===----------------------------------------------------------------------===// 278 // CastOp 279 //===----------------------------------------------------------------------===// 280 281 /// Determines whether MemRef_CastOp casts to a more dynamic version of the 282 /// source memref. This is useful to to fold a memref.cast into a consuming op 283 /// and implement canonicalization patterns for ops in different dialects that 284 /// may consume the results of memref.cast operations. Such foldable memref.cast 285 /// operations are typically inserted as `view` and `subview` ops are 286 /// canonicalized, to preserve the type compatibility of their uses. 287 /// 288 /// Returns true when all conditions are met: 289 /// 1. source and result are ranked memrefs with strided semantics and same 290 /// element type and rank. 291 /// 2. each of the source's size, offset or stride has more static information 292 /// than the corresponding result's size, offset or stride. 293 /// 294 /// Example 1: 295 /// ```mlir 296 /// %1 = memref.cast %0 : memref<8x16xf32> to memref<?x?xf32> 297 /// %2 = consumer %1 ... : memref<?x?xf32> ... 298 /// ``` 299 /// 300 /// may fold into: 301 /// 302 /// ```mlir 303 /// %2 = consumer %0 ... : memref<8x16xf32> ... 304 /// ``` 305 /// 306 /// Example 2: 307 /// ``` 308 /// %1 = memref.cast %0 : memref<?x16xf32, affine_map<(i, j)->(16 * i + j)>> 309 /// to memref<?x?xf32> 310 /// consumer %1 : memref<?x?xf32> ... 311 /// ``` 312 /// 313 /// may fold into: 314 /// 315 /// ``` 316 /// consumer %0 ... : memref<?x16xf32, affine_map<(i, j)->(16 * i + j)>> 317 /// ``` 318 bool CastOp::canFoldIntoConsumerOp(CastOp castOp) { 319 MemRefType sourceType = castOp.source().getType().dyn_cast<MemRefType>(); 320 MemRefType resultType = castOp.getType().dyn_cast<MemRefType>(); 321 322 // Requires ranked MemRefType. 323 if (!sourceType || !resultType) 324 return false; 325 326 // Requires same elemental type. 327 if (sourceType.getElementType() != resultType.getElementType()) 328 return false; 329 330 // Requires same rank. 331 if (sourceType.getRank() != resultType.getRank()) 332 return false; 333 334 // Only fold casts between strided memref forms. 335 int64_t sourceOffset, resultOffset; 336 SmallVector<int64_t, 4> sourceStrides, resultStrides; 337 if (failed(getStridesAndOffset(sourceType, sourceStrides, sourceOffset)) || 338 failed(getStridesAndOffset(resultType, resultStrides, resultOffset))) 339 return false; 340 341 // If cast is towards more static sizes along any dimension, don't fold. 342 for (auto it : llvm::zip(sourceType.getShape(), resultType.getShape())) { 343 auto ss = std::get<0>(it), st = std::get<1>(it); 344 if (ss != st) 345 if (MemRefType::isDynamic(ss) && !MemRefType::isDynamic(st)) 346 return false; 347 } 348 349 // If cast is towards more static offset along any dimension, don't fold. 350 if (sourceOffset != resultOffset) 351 if (MemRefType::isDynamicStrideOrOffset(sourceOffset) && 352 !MemRefType::isDynamicStrideOrOffset(resultOffset)) 353 return false; 354 355 // If cast is towards more static strides along any dimension, don't fold. 356 for (auto it : llvm::zip(sourceStrides, resultStrides)) { 357 auto ss = std::get<0>(it), st = std::get<1>(it); 358 if (ss != st) 359 if (MemRefType::isDynamicStrideOrOffset(ss) && 360 !MemRefType::isDynamicStrideOrOffset(st)) 361 return false; 362 } 363 364 return true; 365 } 366 367 bool CastOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 368 if (inputs.size() != 1 || outputs.size() != 1) 369 return false; 370 Type a = inputs.front(), b = outputs.front(); 371 auto aT = a.dyn_cast<MemRefType>(); 372 auto bT = b.dyn_cast<MemRefType>(); 373 374 auto uaT = a.dyn_cast<UnrankedMemRefType>(); 375 auto ubT = b.dyn_cast<UnrankedMemRefType>(); 376 377 if (aT && bT) { 378 if (aT.getElementType() != bT.getElementType()) 379 return false; 380 if (aT.getLayout() != bT.getLayout()) { 381 int64_t aOffset, bOffset; 382 SmallVector<int64_t, 4> aStrides, bStrides; 383 if (failed(getStridesAndOffset(aT, aStrides, aOffset)) || 384 failed(getStridesAndOffset(bT, bStrides, bOffset)) || 385 aStrides.size() != bStrides.size()) 386 return false; 387 388 // Strides along a dimension/offset are compatible if the value in the 389 // source memref is static and the value in the target memref is the 390 // same. They are also compatible if either one is dynamic (see 391 // description of MemRefCastOp for details). 392 auto checkCompatible = [](int64_t a, int64_t b) { 393 return (a == MemRefType::getDynamicStrideOrOffset() || 394 b == MemRefType::getDynamicStrideOrOffset() || a == b); 395 }; 396 if (!checkCompatible(aOffset, bOffset)) 397 return false; 398 for (auto aStride : enumerate(aStrides)) 399 if (!checkCompatible(aStride.value(), bStrides[aStride.index()])) 400 return false; 401 } 402 if (aT.getMemorySpace() != bT.getMemorySpace()) 403 return false; 404 405 // They must have the same rank, and any specified dimensions must match. 406 if (aT.getRank() != bT.getRank()) 407 return false; 408 409 for (unsigned i = 0, e = aT.getRank(); i != e; ++i) { 410 int64_t aDim = aT.getDimSize(i), bDim = bT.getDimSize(i); 411 if (aDim != -1 && bDim != -1 && aDim != bDim) 412 return false; 413 } 414 return true; 415 } else { 416 if (!aT && !uaT) 417 return false; 418 if (!bT && !ubT) 419 return false; 420 // Unranked to unranked casting is unsupported 421 if (uaT && ubT) 422 return false; 423 424 auto aEltType = (aT) ? aT.getElementType() : uaT.getElementType(); 425 auto bEltType = (bT) ? bT.getElementType() : ubT.getElementType(); 426 if (aEltType != bEltType) 427 return false; 428 429 auto aMemSpace = (aT) ? aT.getMemorySpace() : uaT.getMemorySpace(); 430 auto bMemSpace = (bT) ? bT.getMemorySpace() : ubT.getMemorySpace(); 431 if (aMemSpace != bMemSpace) 432 return false; 433 434 return true; 435 } 436 437 return false; 438 } 439 440 OpFoldResult CastOp::fold(ArrayRef<Attribute> operands) { 441 return succeeded(foldMemRefCast(*this)) ? getResult() : Value(); 442 } 443 444 //===----------------------------------------------------------------------===// 445 // DeallocOp 446 //===----------------------------------------------------------------------===// 447 448 LogicalResult DeallocOp::fold(ArrayRef<Attribute> cstOperands, 449 SmallVectorImpl<OpFoldResult> &results) { 450 /// dealloc(memrefcast) -> dealloc 451 return foldMemRefCast(*this); 452 } 453 454 //===----------------------------------------------------------------------===// 455 // DimOp 456 //===----------------------------------------------------------------------===// 457 458 void DimOp::build(OpBuilder &builder, OperationState &result, Value source, 459 int64_t index) { 460 auto loc = result.location; 461 Value indexValue = builder.create<arith::ConstantIndexOp>(loc, index); 462 build(builder, result, source, indexValue); 463 } 464 465 void DimOp::build(OpBuilder &builder, OperationState &result, Value source, 466 Value index) { 467 auto indexTy = builder.getIndexType(); 468 build(builder, result, indexTy, source, index); 469 } 470 471 Optional<int64_t> DimOp::getConstantIndex() { 472 if (auto constantOp = index().getDefiningOp<arith::ConstantOp>()) 473 return constantOp.getValue().cast<IntegerAttr>().getInt(); 474 return {}; 475 } 476 477 static LogicalResult verify(DimOp op) { 478 // Assume unknown index to be in range. 479 Optional<int64_t> index = op.getConstantIndex(); 480 if (!index.hasValue()) 481 return success(); 482 483 // Check that constant index is not knowingly out of range. 484 auto type = op.source().getType(); 485 if (auto memrefType = type.dyn_cast<MemRefType>()) { 486 if (index.getValue() >= memrefType.getRank()) 487 return op.emitOpError("index is out of range"); 488 } else if (type.isa<UnrankedMemRefType>()) { 489 // Assume index to be in range. 490 } else { 491 llvm_unreachable("expected operand with memref type"); 492 } 493 return success(); 494 } 495 496 /// Return a map with key being elements in `vals` and data being number of 497 /// occurences of it. Use std::map, since the `vals` here are strides and the 498 /// dynamic stride value is the same as the tombstone value for 499 /// `DenseMap<int64_t>`. 500 static std::map<int64_t, unsigned> getNumOccurences(ArrayRef<int64_t> vals) { 501 std::map<int64_t, unsigned> numOccurences; 502 for (auto val : vals) 503 numOccurences[val]++; 504 return numOccurences; 505 } 506 507 /// Given the `originalType` and a `candidateReducedType` whose shape is assumed 508 /// to be a subset of `originalType` with some `1` entries erased, return the 509 /// set of indices that specifies which of the entries of `originalShape` are 510 /// dropped to obtain `reducedShape`. 511 /// This accounts for cases where there are multiple unit-dims, but only a 512 /// subset of those are dropped. For MemRefTypes these can be disambiguated 513 /// using the strides. If a dimension is dropped the stride must be dropped too. 514 static llvm::Optional<llvm::SmallDenseSet<unsigned>> 515 computeMemRefRankReductionMask(MemRefType originalType, MemRefType reducedType, 516 ArrayRef<OpFoldResult> sizes) { 517 llvm::SmallDenseSet<unsigned> unusedDims; 518 if (originalType.getRank() == reducedType.getRank()) 519 return unusedDims; 520 521 for (auto dim : llvm::enumerate(sizes)) 522 if (auto attr = dim.value().dyn_cast<Attribute>()) 523 if (attr.cast<IntegerAttr>().getInt() == 1) 524 unusedDims.insert(dim.index()); 525 526 SmallVector<int64_t> originalStrides, candidateStrides; 527 int64_t originalOffset, candidateOffset; 528 if (failed( 529 getStridesAndOffset(originalType, originalStrides, originalOffset)) || 530 failed( 531 getStridesAndOffset(reducedType, candidateStrides, candidateOffset))) 532 return llvm::None; 533 534 // For memrefs, a dimension is truly dropped if its corresponding stride is 535 // also dropped. This is particularly important when more than one of the dims 536 // is 1. Track the number of occurences of the strides in the original type 537 // and the candidate type. For each unused dim that stride should not be 538 // present in the candidate type. Note that there could be multiple dimensions 539 // that have the same size. We dont need to exactly figure out which dim 540 // corresponds to which stride, we just need to verify that the number of 541 // reptitions of a stride in the original + number of unused dims with that 542 // stride == number of repititions of a stride in the candidate. 543 std::map<int64_t, unsigned> currUnaccountedStrides = 544 getNumOccurences(originalStrides); 545 std::map<int64_t, unsigned> candidateStridesNumOccurences = 546 getNumOccurences(candidateStrides); 547 llvm::SmallDenseSet<unsigned> prunedUnusedDims; 548 for (unsigned dim : unusedDims) { 549 int64_t originalStride = originalStrides[dim]; 550 if (currUnaccountedStrides[originalStride] > 551 candidateStridesNumOccurences[originalStride]) { 552 // This dim can be treated as dropped. 553 currUnaccountedStrides[originalStride]--; 554 continue; 555 } 556 if (currUnaccountedStrides[originalStride] == 557 candidateStridesNumOccurences[originalStride]) { 558 // The stride for this is not dropped. Keep as is. 559 prunedUnusedDims.insert(dim); 560 continue; 561 } 562 if (currUnaccountedStrides[originalStride] < 563 candidateStridesNumOccurences[originalStride]) { 564 // This should never happen. Cant have a stride in the reduced rank type 565 // that wasnt in the original one. 566 return llvm::None; 567 } 568 } 569 570 for (auto prunedDim : prunedUnusedDims) 571 unusedDims.erase(prunedDim); 572 if (unusedDims.size() + reducedType.getRank() != originalType.getRank()) 573 return llvm::None; 574 return unusedDims; 575 } 576 577 llvm::SmallDenseSet<unsigned> SubViewOp::getDroppedDims() { 578 MemRefType sourceType = getSourceType(); 579 MemRefType resultType = getType(); 580 llvm::Optional<llvm::SmallDenseSet<unsigned>> unusedDims = 581 computeMemRefRankReductionMask(sourceType, resultType, getMixedSizes()); 582 assert(unusedDims && "unable to find unused dims of subview"); 583 return *unusedDims; 584 } 585 586 OpFoldResult DimOp::fold(ArrayRef<Attribute> operands) { 587 // All forms of folding require a known index. 588 auto index = operands[1].dyn_cast_or_null<IntegerAttr>(); 589 if (!index) 590 return {}; 591 592 // Folding for unranked types (UnrankedMemRefType) is not supported. 593 auto memrefType = source().getType().dyn_cast<MemRefType>(); 594 if (!memrefType) 595 return {}; 596 597 // Fold if the shape extent along the given index is known. 598 if (!memrefType.isDynamicDim(index.getInt())) { 599 Builder builder(getContext()); 600 return builder.getIndexAttr(memrefType.getShape()[index.getInt()]); 601 } 602 603 // The size at the given index is now known to be a dynamic size. 604 unsigned unsignedIndex = index.getValue().getZExtValue(); 605 606 // Fold dim to the size argument for an `AllocOp`, `ViewOp`, or `SubViewOp`. 607 Operation *definingOp = source().getDefiningOp(); 608 609 if (auto alloc = dyn_cast_or_null<AllocOp>(definingOp)) 610 return *(alloc.getDynamicSizes().begin() + 611 memrefType.getDynamicDimIndex(unsignedIndex)); 612 613 if (auto alloca = dyn_cast_or_null<AllocaOp>(definingOp)) 614 return *(alloca.getDynamicSizes().begin() + 615 memrefType.getDynamicDimIndex(unsignedIndex)); 616 617 if (auto view = dyn_cast_or_null<ViewOp>(definingOp)) 618 return *(view.getDynamicSizes().begin() + 619 memrefType.getDynamicDimIndex(unsignedIndex)); 620 621 if (auto subview = dyn_cast_or_null<SubViewOp>(definingOp)) { 622 llvm::SmallDenseSet<unsigned> unusedDims = subview.getDroppedDims(); 623 unsigned resultIndex = 0; 624 unsigned sourceRank = subview.getSourceType().getRank(); 625 unsigned sourceIndex = 0; 626 for (auto i : llvm::seq<unsigned>(0, sourceRank)) { 627 if (unusedDims.count(i)) 628 continue; 629 if (resultIndex == unsignedIndex) { 630 sourceIndex = i; 631 break; 632 } 633 resultIndex++; 634 } 635 assert(subview.isDynamicSize(sourceIndex) && 636 "expected dynamic subview size"); 637 return subview.getDynamicSize(sourceIndex); 638 } 639 640 if (auto sizeInterface = 641 dyn_cast_or_null<OffsetSizeAndStrideOpInterface>(definingOp)) { 642 assert(sizeInterface.isDynamicSize(unsignedIndex) && 643 "Expected dynamic subview size"); 644 return sizeInterface.getDynamicSize(unsignedIndex); 645 } 646 647 // dim(memrefcast) -> dim 648 if (succeeded(foldMemRefCast(*this))) 649 return getResult(); 650 651 return {}; 652 } 653 654 namespace { 655 /// Fold dim of a memref reshape operation to a load into the reshape's shape 656 /// operand. 657 struct DimOfMemRefReshape : public OpRewritePattern<DimOp> { 658 using OpRewritePattern<DimOp>::OpRewritePattern; 659 660 LogicalResult matchAndRewrite(DimOp dim, 661 PatternRewriter &rewriter) const override { 662 auto reshape = dim.source().getDefiningOp<ReshapeOp>(); 663 664 if (!reshape) 665 return failure(); 666 667 // Place the load directly after the reshape to ensure that the shape memref 668 // was not mutated. 669 rewriter.setInsertionPointAfter(reshape); 670 Location loc = dim.getLoc(); 671 Value load = rewriter.create<LoadOp>(loc, reshape.shape(), dim.index()); 672 if (load.getType() != dim.getType()) 673 load = rewriter.create<arith::IndexCastOp>(loc, dim.getType(), load); 674 rewriter.replaceOp(dim, load); 675 return success(); 676 } 677 }; 678 679 } // end anonymous namespace. 680 681 void DimOp::getCanonicalizationPatterns(RewritePatternSet &results, 682 MLIRContext *context) { 683 results.add<DimOfMemRefReshape>(context); 684 } 685 686 // --------------------------------------------------------------------------- 687 // DmaStartOp 688 // --------------------------------------------------------------------------- 689 690 void DmaStartOp::build(OpBuilder &builder, OperationState &result, 691 Value srcMemRef, ValueRange srcIndices, Value destMemRef, 692 ValueRange destIndices, Value numElements, 693 Value tagMemRef, ValueRange tagIndices, Value stride, 694 Value elementsPerStride) { 695 result.addOperands(srcMemRef); 696 result.addOperands(srcIndices); 697 result.addOperands(destMemRef); 698 result.addOperands(destIndices); 699 result.addOperands({numElements, tagMemRef}); 700 result.addOperands(tagIndices); 701 if (stride) 702 result.addOperands({stride, elementsPerStride}); 703 } 704 705 static void print(OpAsmPrinter &p, DmaStartOp op) { 706 p << " " << op.getSrcMemRef() << '[' << op.getSrcIndices() << "], " 707 << op.getDstMemRef() << '[' << op.getDstIndices() << "], " 708 << op.getNumElements() << ", " << op.getTagMemRef() << '[' 709 << op.getTagIndices() << ']'; 710 if (op.isStrided()) 711 p << ", " << op.getStride() << ", " << op.getNumElementsPerStride(); 712 713 p.printOptionalAttrDict(op->getAttrs()); 714 p << " : " << op.getSrcMemRef().getType() << ", " 715 << op.getDstMemRef().getType() << ", " << op.getTagMemRef().getType(); 716 } 717 718 // Parse DmaStartOp. 719 // Ex: 720 // %dma_id = dma_start %src[%i, %j], %dst[%k, %l], %size, 721 // %tag[%index], %stride, %num_elt_per_stride : 722 // : memref<3076 x f32, 0>, 723 // memref<1024 x f32, 2>, 724 // memref<1 x i32> 725 // 726 static ParseResult parseDmaStartOp(OpAsmParser &parser, 727 OperationState &result) { 728 OpAsmParser::OperandType srcMemRefInfo; 729 SmallVector<OpAsmParser::OperandType, 4> srcIndexInfos; 730 OpAsmParser::OperandType dstMemRefInfo; 731 SmallVector<OpAsmParser::OperandType, 4> dstIndexInfos; 732 OpAsmParser::OperandType numElementsInfo; 733 OpAsmParser::OperandType tagMemrefInfo; 734 SmallVector<OpAsmParser::OperandType, 4> tagIndexInfos; 735 SmallVector<OpAsmParser::OperandType, 2> strideInfo; 736 737 SmallVector<Type, 3> types; 738 auto indexType = parser.getBuilder().getIndexType(); 739 740 // Parse and resolve the following list of operands: 741 // *) source memref followed by its indices (in square brackets). 742 // *) destination memref followed by its indices (in square brackets). 743 // *) dma size in KiB. 744 if (parser.parseOperand(srcMemRefInfo) || 745 parser.parseOperandList(srcIndexInfos, OpAsmParser::Delimiter::Square) || 746 parser.parseComma() || parser.parseOperand(dstMemRefInfo) || 747 parser.parseOperandList(dstIndexInfos, OpAsmParser::Delimiter::Square) || 748 parser.parseComma() || parser.parseOperand(numElementsInfo) || 749 parser.parseComma() || parser.parseOperand(tagMemrefInfo) || 750 parser.parseOperandList(tagIndexInfos, OpAsmParser::Delimiter::Square)) 751 return failure(); 752 753 // Parse optional stride and elements per stride. 754 if (parser.parseTrailingOperandList(strideInfo)) 755 return failure(); 756 757 bool isStrided = strideInfo.size() == 2; 758 if (!strideInfo.empty() && !isStrided) { 759 return parser.emitError(parser.getNameLoc(), 760 "expected two stride related operands"); 761 } 762 763 if (parser.parseColonTypeList(types)) 764 return failure(); 765 if (types.size() != 3) 766 return parser.emitError(parser.getNameLoc(), "fewer/more types expected"); 767 768 if (parser.resolveOperand(srcMemRefInfo, types[0], result.operands) || 769 parser.resolveOperands(srcIndexInfos, indexType, result.operands) || 770 parser.resolveOperand(dstMemRefInfo, types[1], result.operands) || 771 parser.resolveOperands(dstIndexInfos, indexType, result.operands) || 772 // size should be an index. 773 parser.resolveOperand(numElementsInfo, indexType, result.operands) || 774 parser.resolveOperand(tagMemrefInfo, types[2], result.operands) || 775 // tag indices should be index. 776 parser.resolveOperands(tagIndexInfos, indexType, result.operands)) 777 return failure(); 778 779 if (isStrided) { 780 if (parser.resolveOperands(strideInfo, indexType, result.operands)) 781 return failure(); 782 } 783 784 return success(); 785 } 786 787 static LogicalResult verify(DmaStartOp op) { 788 unsigned numOperands = op.getNumOperands(); 789 790 // Mandatory non-variadic operands are: src memref, dst memref, tag memref and 791 // the number of elements. 792 if (numOperands < 4) 793 return op.emitOpError("expected at least 4 operands"); 794 795 // Check types of operands. The order of these calls is important: the later 796 // calls rely on some type properties to compute the operand position. 797 // 1. Source memref. 798 if (!op.getSrcMemRef().getType().isa<MemRefType>()) 799 return op.emitOpError("expected source to be of memref type"); 800 if (numOperands < op.getSrcMemRefRank() + 4) 801 return op.emitOpError() 802 << "expected at least " << op.getSrcMemRefRank() + 4 << " operands"; 803 if (!op.getSrcIndices().empty() && 804 !llvm::all_of(op.getSrcIndices().getTypes(), 805 [](Type t) { return t.isIndex(); })) 806 return op.emitOpError("expected source indices to be of index type"); 807 808 // 2. Destination memref. 809 if (!op.getDstMemRef().getType().isa<MemRefType>()) 810 return op.emitOpError("expected destination to be of memref type"); 811 unsigned numExpectedOperands = 812 op.getSrcMemRefRank() + op.getDstMemRefRank() + 4; 813 if (numOperands < numExpectedOperands) 814 return op.emitOpError() 815 << "expected at least " << numExpectedOperands << " operands"; 816 if (!op.getDstIndices().empty() && 817 !llvm::all_of(op.getDstIndices().getTypes(), 818 [](Type t) { return t.isIndex(); })) 819 return op.emitOpError("expected destination indices to be of index type"); 820 821 // 3. Number of elements. 822 if (!op.getNumElements().getType().isIndex()) 823 return op.emitOpError("expected num elements to be of index type"); 824 825 // 4. Tag memref. 826 if (!op.getTagMemRef().getType().isa<MemRefType>()) 827 return op.emitOpError("expected tag to be of memref type"); 828 numExpectedOperands += op.getTagMemRefRank(); 829 if (numOperands < numExpectedOperands) 830 return op.emitOpError() 831 << "expected at least " << numExpectedOperands << " operands"; 832 if (!op.getTagIndices().empty() && 833 !llvm::all_of(op.getTagIndices().getTypes(), 834 [](Type t) { return t.isIndex(); })) 835 return op.emitOpError("expected tag indices to be of index type"); 836 837 // Optional stride-related operands must be either both present or both 838 // absent. 839 if (numOperands != numExpectedOperands && 840 numOperands != numExpectedOperands + 2) 841 return op.emitOpError("incorrect number of operands"); 842 843 // 5. Strides. 844 if (op.isStrided()) { 845 if (!op.getStride().getType().isIndex() || 846 !op.getNumElementsPerStride().getType().isIndex()) 847 return op.emitOpError( 848 "expected stride and num elements per stride to be of type index"); 849 } 850 851 return success(); 852 } 853 854 LogicalResult DmaStartOp::fold(ArrayRef<Attribute> cstOperands, 855 SmallVectorImpl<OpFoldResult> &results) { 856 /// dma_start(memrefcast) -> dma_start 857 return foldMemRefCast(*this); 858 } 859 860 // --------------------------------------------------------------------------- 861 // DmaWaitOp 862 // --------------------------------------------------------------------------- 863 864 LogicalResult DmaWaitOp::fold(ArrayRef<Attribute> cstOperands, 865 SmallVectorImpl<OpFoldResult> &results) { 866 /// dma_wait(memrefcast) -> dma_wait 867 return foldMemRefCast(*this); 868 } 869 870 static LogicalResult verify(DmaWaitOp op) { 871 // Check that the number of tag indices matches the tagMemRef rank. 872 unsigned numTagIndices = op.tagIndices().size(); 873 unsigned tagMemRefRank = op.getTagMemRefRank(); 874 if (numTagIndices != tagMemRefRank) 875 return op.emitOpError() << "expected tagIndices to have the same number of " 876 "elements as the tagMemRef rank, expected " 877 << tagMemRefRank << ", but got " << numTagIndices; 878 return success(); 879 } 880 881 //===----------------------------------------------------------------------===// 882 // GlobalOp 883 //===----------------------------------------------------------------------===// 884 885 static void printGlobalMemrefOpTypeAndInitialValue(OpAsmPrinter &p, GlobalOp op, 886 TypeAttr type, 887 Attribute initialValue) { 888 p << type; 889 if (!op.isExternal()) { 890 p << " = "; 891 if (op.isUninitialized()) 892 p << "uninitialized"; 893 else 894 p.printAttributeWithoutType(initialValue); 895 } 896 } 897 898 static ParseResult 899 parseGlobalMemrefOpTypeAndInitialValue(OpAsmParser &parser, TypeAttr &typeAttr, 900 Attribute &initialValue) { 901 Type type; 902 if (parser.parseType(type)) 903 return failure(); 904 905 auto memrefType = type.dyn_cast<MemRefType>(); 906 if (!memrefType || !memrefType.hasStaticShape()) 907 return parser.emitError(parser.getNameLoc()) 908 << "type should be static shaped memref, but got " << type; 909 typeAttr = TypeAttr::get(type); 910 911 if (parser.parseOptionalEqual()) 912 return success(); 913 914 if (succeeded(parser.parseOptionalKeyword("uninitialized"))) { 915 initialValue = UnitAttr::get(parser.getContext()); 916 return success(); 917 } 918 919 Type tensorType = getTensorTypeFromMemRefType(memrefType); 920 if (parser.parseAttribute(initialValue, tensorType)) 921 return failure(); 922 if (!initialValue.isa<ElementsAttr>()) 923 return parser.emitError(parser.getNameLoc()) 924 << "initial value should be a unit or elements attribute"; 925 return success(); 926 } 927 928 static LogicalResult verify(GlobalOp op) { 929 auto memrefType = op.type().dyn_cast<MemRefType>(); 930 if (!memrefType || !memrefType.hasStaticShape()) 931 return op.emitOpError("type should be static shaped memref, but got ") 932 << op.type(); 933 934 // Verify that the initial value, if present, is either a unit attribute or 935 // an elements attribute. 936 if (op.initial_value().hasValue()) { 937 Attribute initValue = op.initial_value().getValue(); 938 if (!initValue.isa<UnitAttr>() && !initValue.isa<ElementsAttr>()) 939 return op.emitOpError("initial value should be a unit or elements " 940 "attribute, but got ") 941 << initValue; 942 943 // Check that the type of the initial value is compatible with the type of 944 // the global variable. 945 if (initValue.isa<ElementsAttr>()) { 946 Type initType = initValue.getType(); 947 Type tensorType = getTensorTypeFromMemRefType(memrefType); 948 if (initType != tensorType) 949 return op.emitOpError("initial value expected to be of type ") 950 << tensorType << ", but was of type " << initType; 951 } 952 } 953 954 if (Optional<uint64_t> alignAttr = op.alignment()) { 955 uint64_t alignment = alignAttr.getValue(); 956 957 if (!llvm::isPowerOf2_64(alignment)) 958 return op->emitError() << "alignment attribute value " << alignment 959 << " is not a power of 2"; 960 } 961 962 // TODO: verify visibility for declarations. 963 return success(); 964 } 965 966 //===----------------------------------------------------------------------===// 967 // GetGlobalOp 968 //===----------------------------------------------------------------------===// 969 970 LogicalResult 971 GetGlobalOp::verifySymbolUses(SymbolTableCollection &symbolTable) { 972 // Verify that the result type is same as the type of the referenced 973 // memref.global op. 974 auto global = 975 symbolTable.lookupNearestSymbolFrom<GlobalOp>(*this, nameAttr()); 976 if (!global) 977 return emitOpError("'") 978 << name() << "' does not reference a valid global memref"; 979 980 Type resultType = result().getType(); 981 if (global.type() != resultType) 982 return emitOpError("result type ") 983 << resultType << " does not match type " << global.type() 984 << " of the global memref @" << name(); 985 return success(); 986 } 987 988 //===----------------------------------------------------------------------===// 989 // LoadOp 990 //===----------------------------------------------------------------------===// 991 992 static LogicalResult verify(LoadOp op) { 993 if (op.getNumOperands() != 1 + op.getMemRefType().getRank()) 994 return op.emitOpError("incorrect number of indices for load"); 995 return success(); 996 } 997 998 OpFoldResult LoadOp::fold(ArrayRef<Attribute> cstOperands) { 999 /// load(memrefcast) -> load 1000 if (succeeded(foldMemRefCast(*this))) 1001 return getResult(); 1002 return OpFoldResult(); 1003 } 1004 1005 //===----------------------------------------------------------------------===// 1006 // PrefetchOp 1007 //===----------------------------------------------------------------------===// 1008 1009 static void print(OpAsmPrinter &p, PrefetchOp op) { 1010 p << " " << op.memref() << '['; 1011 p.printOperands(op.indices()); 1012 p << ']' << ", " << (op.isWrite() ? "write" : "read"); 1013 p << ", locality<" << op.localityHint(); 1014 p << ">, " << (op.isDataCache() ? "data" : "instr"); 1015 p.printOptionalAttrDict( 1016 op->getAttrs(), 1017 /*elidedAttrs=*/{"localityHint", "isWrite", "isDataCache"}); 1018 p << " : " << op.getMemRefType(); 1019 } 1020 1021 static ParseResult parsePrefetchOp(OpAsmParser &parser, 1022 OperationState &result) { 1023 OpAsmParser::OperandType memrefInfo; 1024 SmallVector<OpAsmParser::OperandType, 4> indexInfo; 1025 IntegerAttr localityHint; 1026 MemRefType type; 1027 StringRef readOrWrite, cacheType; 1028 1029 auto indexTy = parser.getBuilder().getIndexType(); 1030 auto i32Type = parser.getBuilder().getIntegerType(32); 1031 if (parser.parseOperand(memrefInfo) || 1032 parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) || 1033 parser.parseComma() || parser.parseKeyword(&readOrWrite) || 1034 parser.parseComma() || parser.parseKeyword("locality") || 1035 parser.parseLess() || 1036 parser.parseAttribute(localityHint, i32Type, "localityHint", 1037 result.attributes) || 1038 parser.parseGreater() || parser.parseComma() || 1039 parser.parseKeyword(&cacheType) || parser.parseColonType(type) || 1040 parser.resolveOperand(memrefInfo, type, result.operands) || 1041 parser.resolveOperands(indexInfo, indexTy, result.operands)) 1042 return failure(); 1043 1044 if (!readOrWrite.equals("read") && !readOrWrite.equals("write")) 1045 return parser.emitError(parser.getNameLoc(), 1046 "rw specifier has to be 'read' or 'write'"); 1047 result.addAttribute( 1048 PrefetchOp::getIsWriteAttrName(), 1049 parser.getBuilder().getBoolAttr(readOrWrite.equals("write"))); 1050 1051 if (!cacheType.equals("data") && !cacheType.equals("instr")) 1052 return parser.emitError(parser.getNameLoc(), 1053 "cache type has to be 'data' or 'instr'"); 1054 1055 result.addAttribute( 1056 PrefetchOp::getIsDataCacheAttrName(), 1057 parser.getBuilder().getBoolAttr(cacheType.equals("data"))); 1058 1059 return success(); 1060 } 1061 1062 static LogicalResult verify(PrefetchOp op) { 1063 if (op.getNumOperands() != 1 + op.getMemRefType().getRank()) 1064 return op.emitOpError("too few indices"); 1065 1066 return success(); 1067 } 1068 1069 LogicalResult PrefetchOp::fold(ArrayRef<Attribute> cstOperands, 1070 SmallVectorImpl<OpFoldResult> &results) { 1071 // prefetch(memrefcast) -> prefetch 1072 return foldMemRefCast(*this); 1073 } 1074 1075 //===----------------------------------------------------------------------===// 1076 // ReinterpretCastOp 1077 //===----------------------------------------------------------------------===// 1078 1079 /// Build a ReinterpretCastOp with all dynamic entries: `staticOffsets`, 1080 /// `staticSizes` and `staticStrides` are automatically filled with 1081 /// source-memref-rank sentinel values that encode dynamic entries. 1082 void ReinterpretCastOp::build(OpBuilder &b, OperationState &result, 1083 MemRefType resultType, Value source, 1084 OpFoldResult offset, ArrayRef<OpFoldResult> sizes, 1085 ArrayRef<OpFoldResult> strides, 1086 ArrayRef<NamedAttribute> attrs) { 1087 SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; 1088 SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; 1089 dispatchIndexOpFoldResults(offset, dynamicOffsets, staticOffsets, 1090 ShapedType::kDynamicStrideOrOffset); 1091 dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes, 1092 ShapedType::kDynamicSize); 1093 dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides, 1094 ShapedType::kDynamicStrideOrOffset); 1095 build(b, result, resultType, source, dynamicOffsets, dynamicSizes, 1096 dynamicStrides, b.getI64ArrayAttr(staticOffsets), 1097 b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides)); 1098 result.addAttributes(attrs); 1099 } 1100 1101 void ReinterpretCastOp::build(OpBuilder &b, OperationState &result, 1102 MemRefType resultType, Value source, 1103 int64_t offset, ArrayRef<int64_t> sizes, 1104 ArrayRef<int64_t> strides, 1105 ArrayRef<NamedAttribute> attrs) { 1106 SmallVector<OpFoldResult> sizeValues = 1107 llvm::to_vector<4>(llvm::map_range(sizes, [&](int64_t v) -> OpFoldResult { 1108 return b.getI64IntegerAttr(v); 1109 })); 1110 SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( 1111 llvm::map_range(strides, [&](int64_t v) -> OpFoldResult { 1112 return b.getI64IntegerAttr(v); 1113 })); 1114 build(b, result, resultType, source, b.getI64IntegerAttr(offset), sizeValues, 1115 strideValues, attrs); 1116 } 1117 1118 void ReinterpretCastOp::build(OpBuilder &b, OperationState &result, 1119 MemRefType resultType, Value source, Value offset, 1120 ValueRange sizes, ValueRange strides, 1121 ArrayRef<NamedAttribute> attrs) { 1122 SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>( 1123 llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; })); 1124 SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( 1125 llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; })); 1126 build(b, result, resultType, source, offset, sizeValues, strideValues, attrs); 1127 } 1128 1129 // TODO: ponder whether we want to allow missing trailing sizes/strides that are 1130 // completed automatically, like we have for subview and extract_slice. 1131 static LogicalResult verify(ReinterpretCastOp op) { 1132 // The source and result memrefs should be in the same memory space. 1133 auto srcType = op.source().getType().cast<BaseMemRefType>(); 1134 auto resultType = op.getType().cast<MemRefType>(); 1135 if (srcType.getMemorySpace() != resultType.getMemorySpace()) 1136 return op.emitError("different memory spaces specified for source type ") 1137 << srcType << " and result memref type " << resultType; 1138 if (srcType.getElementType() != resultType.getElementType()) 1139 return op.emitError("different element types specified for source type ") 1140 << srcType << " and result memref type " << resultType; 1141 1142 // Match sizes in result memref type and in static_sizes attribute. 1143 for (auto &en : 1144 llvm::enumerate(llvm::zip(resultType.getShape(), 1145 extractFromI64ArrayAttr(op.static_sizes())))) { 1146 int64_t resultSize = std::get<0>(en.value()); 1147 int64_t expectedSize = std::get<1>(en.value()); 1148 if (resultSize != expectedSize) 1149 return op.emitError("expected result type with size = ") 1150 << expectedSize << " instead of " << resultSize 1151 << " in dim = " << en.index(); 1152 } 1153 1154 // Match offset and strides in static_offset and static_strides attributes if 1155 // result memref type has an affine map specified. 1156 if (!resultType.getLayout().isIdentity()) { 1157 int64_t resultOffset; 1158 SmallVector<int64_t, 4> resultStrides; 1159 if (failed(getStridesAndOffset(resultType, resultStrides, resultOffset))) 1160 return failure(); 1161 1162 // Match offset in result memref type and in static_offsets attribute. 1163 int64_t expectedOffset = 1164 extractFromI64ArrayAttr(op.static_offsets()).front(); 1165 if (resultOffset != expectedOffset) 1166 return op.emitError("expected result type with offset = ") 1167 << resultOffset << " instead of " << expectedOffset; 1168 1169 // Match strides in result memref type and in static_strides attribute. 1170 for (auto &en : llvm::enumerate(llvm::zip( 1171 resultStrides, extractFromI64ArrayAttr(op.static_strides())))) { 1172 int64_t resultStride = std::get<0>(en.value()); 1173 int64_t expectedStride = std::get<1>(en.value()); 1174 if (resultStride != expectedStride) 1175 return op.emitError("expected result type with stride = ") 1176 << expectedStride << " instead of " << resultStride 1177 << " in dim = " << en.index(); 1178 } 1179 } 1180 return success(); 1181 } 1182 1183 //===----------------------------------------------------------------------===// 1184 // Reassociative reshape ops 1185 //===----------------------------------------------------------------------===// 1186 1187 SmallVector<AffineMap, 4> CollapseShapeOp::getReassociationMaps() { 1188 return getSymbolLessAffineMaps(getReassociationExprs()); 1189 } 1190 SmallVector<ReassociationExprs, 4> CollapseShapeOp::getReassociationExprs() { 1191 return convertReassociationIndicesToExprs(getContext(), 1192 getReassociationIndices()); 1193 } 1194 1195 SmallVector<AffineMap, 4> ExpandShapeOp::getReassociationMaps() { 1196 return getSymbolLessAffineMaps(getReassociationExprs()); 1197 } 1198 SmallVector<ReassociationExprs, 4> ExpandShapeOp::getReassociationExprs() { 1199 return convertReassociationIndicesToExprs(getContext(), 1200 getReassociationIndices()); 1201 } 1202 1203 static void print(OpAsmPrinter &p, ExpandShapeOp op) { 1204 ::mlir::printReshapeOp<ExpandShapeOp>(p, op); 1205 } 1206 1207 static void print(OpAsmPrinter &p, CollapseShapeOp op) { 1208 ::mlir::printReshapeOp<CollapseShapeOp>(p, op); 1209 } 1210 1211 /// Detect whether memref dims [dim, dim + extent) can be reshaped without 1212 /// copies. 1213 static bool isReshapableDimBand(unsigned dim, unsigned extent, 1214 ArrayRef<int64_t> sizes, 1215 ArrayRef<AffineExpr> strides) { 1216 // Bands of extent one can be reshaped, as they are not reshaped at all. 1217 if (extent == 1) 1218 return true; 1219 // Otherwise, the size of the first dimension needs to be known. 1220 if (ShapedType::isDynamic(sizes[dim])) 1221 return false; 1222 assert(sizes.size() == strides.size() && "mismatched ranks"); 1223 // off by 1 indexing to avoid out of bounds 1224 // V 1225 for (auto idx = dim, e = dim + extent; idx + 1 < e; ++idx) { 1226 // Only bands of static shapes are reshapable. This is due to the fact that 1227 // there is no relation between dynamic sizes and dynamic strides: we do not 1228 // have enough information to know whether a "-1" size corresponds to the 1229 // proper symbol in the AffineExpr of a stride. 1230 if (ShapedType::isDynamic(sizes[idx + 1])) 1231 return false; 1232 // TODO: Refine this by passing the proper nDims and nSymbols so we can 1233 // simplify on the fly and catch more reshapable cases. 1234 if (strides[idx] != strides[idx + 1] * sizes[idx + 1]) 1235 return false; 1236 } 1237 return true; 1238 } 1239 1240 /// Compute the MemRefType obtained by applying the `reassociation` (which is 1241 /// expected to be valid) to `type`. 1242 /// If `type` is Contiguous MemRefType, this always produce a contiguous 1243 /// MemRefType. 1244 static MemRefType 1245 computeReshapeCollapsedType(MemRefType type, 1246 ArrayRef<AffineMap> reassociation) { 1247 auto sizes = type.getShape(); 1248 AffineExpr offset; 1249 SmallVector<AffineExpr, 4> strides; 1250 auto status = getStridesAndOffset(type, strides, offset); 1251 (void)status; 1252 assert(succeeded(status) && "expected strided memref"); 1253 1254 SmallVector<int64_t, 4> newSizes; 1255 newSizes.reserve(reassociation.size()); 1256 SmallVector<AffineExpr, 4> newStrides; 1257 newStrides.reserve(reassociation.size()); 1258 1259 // Use the fact that reassociation is valid to simplify the logic: only use 1260 // each map's rank. 1261 assert(isReassociationValid(reassociation) && "invalid reassociation"); 1262 unsigned currentDim = 0; 1263 for (AffineMap m : reassociation) { 1264 unsigned dim = m.getNumResults(); 1265 int64_t size = 1; 1266 AffineExpr stride = strides[currentDim + dim - 1]; 1267 if (!isReshapableDimBand(currentDim, dim, sizes, strides)) { 1268 size = ShapedType::kDynamicSize; 1269 stride = AffineExpr(); 1270 } else { 1271 for (unsigned d = 0; d < dim; ++d) 1272 size *= sizes[currentDim + d]; 1273 } 1274 newSizes.push_back(size); 1275 newStrides.push_back(stride); 1276 currentDim += dim; 1277 } 1278 1279 // Early-exit: if `type` is contiguous, the result must be contiguous. 1280 if (canonicalizeStridedLayout(type).getLayout().isIdentity()) 1281 return MemRefType::Builder(type).setShape(newSizes).setLayout({}); 1282 1283 // Convert back to int64_t because we don't have enough information to create 1284 // new strided layouts from AffineExpr only. This corresponds to a case where 1285 // copies may be necessary. 1286 int64_t intOffset = ShapedType::kDynamicStrideOrOffset; 1287 if (auto o = offset.dyn_cast<AffineConstantExpr>()) 1288 intOffset = o.getValue(); 1289 SmallVector<int64_t, 4> intStrides; 1290 intStrides.reserve(strides.size()); 1291 for (auto stride : newStrides) { 1292 if (auto cst = stride.dyn_cast_or_null<AffineConstantExpr>()) 1293 intStrides.push_back(cst.getValue()); 1294 else 1295 intStrides.push_back(ShapedType::kDynamicStrideOrOffset); 1296 } 1297 auto layout = 1298 makeStridedLinearLayoutMap(intStrides, intOffset, type.getContext()); 1299 return canonicalizeStridedLayout( 1300 MemRefType::Builder(type).setShape(newSizes).setLayout( 1301 AffineMapAttr::get(layout))); 1302 } 1303 1304 void ExpandShapeOp::build(OpBuilder &b, OperationState &result, Value src, 1305 ArrayRef<ReassociationIndices> reassociation, 1306 ArrayRef<NamedAttribute> attrs) { 1307 auto memRefType = src.getType().cast<MemRefType>(); 1308 auto resultType = computeReshapeCollapsedType( 1309 memRefType, getSymbolLessAffineMaps(convertReassociationIndicesToExprs( 1310 b.getContext(), reassociation))); 1311 build(b, result, resultType, src, attrs); 1312 result.addAttribute(getReassociationAttrName(), 1313 getReassociationIndicesAttribute(b, reassociation)); 1314 } 1315 1316 void CollapseShapeOp::build(OpBuilder &b, OperationState &result, Value src, 1317 ArrayRef<ReassociationIndices> reassociation, 1318 ArrayRef<NamedAttribute> attrs) { 1319 auto memRefType = src.getType().cast<MemRefType>(); 1320 auto resultType = computeReshapeCollapsedType( 1321 memRefType, getSymbolLessAffineMaps(convertReassociationIndicesToExprs( 1322 b.getContext(), reassociation))); 1323 build(b, result, resultType, src, attrs); 1324 result.addAttribute(getReassociationAttrName(), 1325 getReassociationIndicesAttribute(b, reassociation)); 1326 } 1327 1328 template <typename ReshapeOp, 1329 bool isExpansion = std::is_same<ReshapeOp, ExpandShapeOp>::value> 1330 static LogicalResult verifyReshapeOp(ReshapeOp op, MemRefType expandedType, 1331 MemRefType collapsedType) { 1332 if (failed( 1333 verifyReshapeLikeTypes(op, expandedType, collapsedType, isExpansion))) 1334 return failure(); 1335 auto maps = op.getReassociationMaps(); 1336 MemRefType expectedType = computeReshapeCollapsedType(expandedType, maps); 1337 if (collapsedType != expectedType) 1338 return op.emitOpError("expected collapsed type to be ") 1339 << expectedType << ", but got " << collapsedType; 1340 return success(); 1341 } 1342 1343 static LogicalResult verify(ExpandShapeOp op) { 1344 return verifyReshapeOp(op, op.getResultType(), op.getSrcType()); 1345 } 1346 1347 void ExpandShapeOp::getCanonicalizationPatterns(RewritePatternSet &results, 1348 MLIRContext *context) { 1349 results.add<CollapseReshapeOps<ExpandShapeOp>, 1350 CollapseMixedReshapeOps<ExpandShapeOp, CollapseShapeOp>>(context); 1351 } 1352 1353 static LogicalResult verify(CollapseShapeOp op) { 1354 return verifyReshapeOp(op, op.getSrcType(), op.getResultType()); 1355 } 1356 1357 struct CollapseShapeOpMemRefCastFolder 1358 : public OpRewritePattern<CollapseShapeOp> { 1359 public: 1360 using OpRewritePattern<CollapseShapeOp>::OpRewritePattern; 1361 1362 LogicalResult matchAndRewrite(CollapseShapeOp op, 1363 PatternRewriter &rewriter) const override { 1364 auto cast = op.getOperand().getDefiningOp<CastOp>(); 1365 if (!cast) 1366 return failure(); 1367 1368 if (!CastOp::canFoldIntoConsumerOp(cast)) 1369 return failure(); 1370 1371 Type newResultType = computeReshapeCollapsedType( 1372 cast.getOperand().getType().cast<MemRefType>(), 1373 op.getReassociationMaps()); 1374 1375 if (newResultType == op.getResultType()) { 1376 rewriter.updateRootInPlace( 1377 op, [&]() { op.srcMutable().assign(cast.source()); }); 1378 } else { 1379 Value newOp = rewriter.create<CollapseShapeOp>( 1380 op->getLoc(), cast.source(), op.getReassociationIndices()); 1381 rewriter.replaceOpWithNewOp<CastOp>(op, op.getType(), newOp); 1382 } 1383 return success(); 1384 } 1385 }; 1386 1387 void CollapseShapeOp::getCanonicalizationPatterns(RewritePatternSet &results, 1388 MLIRContext *context) { 1389 results.add<CollapseReshapeOps<CollapseShapeOp>, 1390 CollapseMixedReshapeOps<CollapseShapeOp, ExpandShapeOp>, 1391 CollapseShapeOpMemRefCastFolder>(context); 1392 } 1393 OpFoldResult ExpandShapeOp::fold(ArrayRef<Attribute> operands) { 1394 return foldReshapeOp<ExpandShapeOp, CollapseShapeOp>(*this, operands); 1395 } 1396 OpFoldResult CollapseShapeOp::fold(ArrayRef<Attribute> operands) { 1397 return foldReshapeOp<CollapseShapeOp, ExpandShapeOp>(*this, operands); 1398 } 1399 1400 //===----------------------------------------------------------------------===// 1401 // ReshapeOp 1402 //===----------------------------------------------------------------------===// 1403 1404 static LogicalResult verify(ReshapeOp op) { 1405 Type operandType = op.source().getType(); 1406 Type resultType = op.result().getType(); 1407 1408 Type operandElementType = operandType.cast<ShapedType>().getElementType(); 1409 Type resultElementType = resultType.cast<ShapedType>().getElementType(); 1410 if (operandElementType != resultElementType) 1411 return op.emitOpError("element types of source and destination memref " 1412 "types should be the same"); 1413 1414 if (auto operandMemRefType = operandType.dyn_cast<MemRefType>()) 1415 if (!operandMemRefType.getLayout().isIdentity()) 1416 return op.emitOpError( 1417 "source memref type should have identity affine map"); 1418 1419 int64_t shapeSize = op.shape().getType().cast<MemRefType>().getDimSize(0); 1420 auto resultMemRefType = resultType.dyn_cast<MemRefType>(); 1421 if (resultMemRefType) { 1422 if (!resultMemRefType.getLayout().isIdentity()) 1423 return op.emitOpError( 1424 "result memref type should have identity affine map"); 1425 if (shapeSize == ShapedType::kDynamicSize) 1426 return op.emitOpError("cannot use shape operand with dynamic length to " 1427 "reshape to statically-ranked memref type"); 1428 if (shapeSize != resultMemRefType.getRank()) 1429 return op.emitOpError( 1430 "length of shape operand differs from the result's memref rank"); 1431 } 1432 return success(); 1433 } 1434 1435 //===----------------------------------------------------------------------===// 1436 // StoreOp 1437 //===----------------------------------------------------------------------===// 1438 1439 static LogicalResult verify(StoreOp op) { 1440 if (op.getNumOperands() != 2 + op.getMemRefType().getRank()) 1441 return op.emitOpError("store index operand count not equal to memref rank"); 1442 1443 return success(); 1444 } 1445 1446 LogicalResult StoreOp::fold(ArrayRef<Attribute> cstOperands, 1447 SmallVectorImpl<OpFoldResult> &results) { 1448 /// store(memrefcast) -> store 1449 return foldMemRefCast(*this, getValueToStore()); 1450 } 1451 1452 //===----------------------------------------------------------------------===// 1453 // SubViewOp 1454 //===----------------------------------------------------------------------===// 1455 1456 namespace { 1457 /// Helpers to write more idiomatic operations. 1458 namespace saturated_arith { 1459 struct Wrapper { 1460 explicit Wrapper(int64_t v) : v(v) {} 1461 operator int64_t() { return v; } 1462 int64_t v; 1463 }; 1464 Wrapper operator+(Wrapper a, int64_t b) { 1465 if (ShapedType::isDynamicStrideOrOffset(a) || 1466 ShapedType::isDynamicStrideOrOffset(b)) 1467 return Wrapper(ShapedType::kDynamicStrideOrOffset); 1468 return Wrapper(a.v + b); 1469 } 1470 Wrapper operator*(Wrapper a, int64_t b) { 1471 if (ShapedType::isDynamicStrideOrOffset(a) || 1472 ShapedType::isDynamicStrideOrOffset(b)) 1473 return Wrapper(ShapedType::kDynamicStrideOrOffset); 1474 return Wrapper(a.v * b); 1475 } 1476 } // end namespace saturated_arith 1477 } // end namespace 1478 1479 /// A subview result type can be fully inferred from the source type and the 1480 /// static representation of offsets, sizes and strides. Special sentinels 1481 /// encode the dynamic case. 1482 Type SubViewOp::inferResultType(MemRefType sourceMemRefType, 1483 ArrayRef<int64_t> leadingStaticOffsets, 1484 ArrayRef<int64_t> leadingStaticSizes, 1485 ArrayRef<int64_t> leadingStaticStrides) { 1486 // A subview may specify only a leading subset of offset/sizes/strides in 1487 // which case we complete with offset=0, sizes from memref type and strides=1. 1488 unsigned rank = sourceMemRefType.getRank(); 1489 assert(leadingStaticOffsets.size() <= rank && 1490 "unexpected leadingStaticOffsets overflow"); 1491 assert(leadingStaticSizes.size() <= rank && 1492 "unexpected leadingStaticSizes overflow"); 1493 assert(leadingStaticStrides.size() <= rank && 1494 "unexpected leadingStaticStrides overflow"); 1495 auto staticOffsets = llvm::to_vector<4>(leadingStaticOffsets); 1496 auto staticSizes = llvm::to_vector<4>(leadingStaticSizes); 1497 auto staticStrides = llvm::to_vector<4>(leadingStaticStrides); 1498 unsigned numTrailingOffsets = rank - staticOffsets.size(); 1499 unsigned numTrailingSizes = rank - staticSizes.size(); 1500 unsigned numTrailingStrides = rank - staticStrides.size(); 1501 staticOffsets.append(numTrailingOffsets, 0); 1502 llvm::append_range(staticSizes, 1503 sourceMemRefType.getShape().take_back(numTrailingSizes)); 1504 staticStrides.append(numTrailingStrides, 1); 1505 1506 // Extract source offset and strides. 1507 int64_t sourceOffset; 1508 SmallVector<int64_t, 4> sourceStrides; 1509 auto res = getStridesAndOffset(sourceMemRefType, sourceStrides, sourceOffset); 1510 assert(succeeded(res) && "SubViewOp expected strided memref type"); 1511 (void)res; 1512 1513 // Compute target offset whose value is: 1514 // `sourceOffset + sum_i(staticOffset_i * sourceStrides_i)`. 1515 int64_t targetOffset = sourceOffset; 1516 for (auto it : llvm::zip(staticOffsets, sourceStrides)) { 1517 auto staticOffset = std::get<0>(it), targetStride = std::get<1>(it); 1518 using namespace saturated_arith; 1519 targetOffset = Wrapper(targetOffset) + Wrapper(staticOffset) * targetStride; 1520 } 1521 1522 // Compute target stride whose value is: 1523 // `sourceStrides_i * staticStrides_i`. 1524 SmallVector<int64_t, 4> targetStrides; 1525 targetStrides.reserve(staticOffsets.size()); 1526 for (auto it : llvm::zip(sourceStrides, staticStrides)) { 1527 auto sourceStride = std::get<0>(it), staticStride = std::get<1>(it); 1528 using namespace saturated_arith; 1529 targetStrides.push_back(Wrapper(sourceStride) * staticStride); 1530 } 1531 1532 // The type is now known. 1533 return MemRefType::get( 1534 staticSizes, sourceMemRefType.getElementType(), 1535 makeStridedLinearLayoutMap(targetStrides, targetOffset, 1536 sourceMemRefType.getContext()), 1537 sourceMemRefType.getMemorySpace()); 1538 } 1539 1540 Type SubViewOp::inferResultType(MemRefType sourceMemRefType, 1541 ArrayRef<OpFoldResult> leadingStaticOffsets, 1542 ArrayRef<OpFoldResult> leadingStaticSizes, 1543 ArrayRef<OpFoldResult> leadingStaticStrides) { 1544 SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; 1545 SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; 1546 dispatchIndexOpFoldResults(leadingStaticOffsets, dynamicOffsets, 1547 staticOffsets, ShapedType::kDynamicStrideOrOffset); 1548 dispatchIndexOpFoldResults(leadingStaticSizes, dynamicSizes, staticSizes, 1549 ShapedType::kDynamicSize); 1550 dispatchIndexOpFoldResults(leadingStaticStrides, dynamicStrides, 1551 staticStrides, ShapedType::kDynamicStrideOrOffset); 1552 return SubViewOp::inferResultType(sourceMemRefType, staticOffsets, 1553 staticSizes, staticStrides); 1554 } 1555 1556 Type SubViewOp::inferRankReducedResultType( 1557 unsigned resultRank, MemRefType sourceRankedTensorType, 1558 ArrayRef<int64_t> leadingStaticOffsets, 1559 ArrayRef<int64_t> leadingStaticSizes, 1560 ArrayRef<int64_t> leadingStaticStrides) { 1561 auto inferredType = 1562 inferResultType(sourceRankedTensorType, leadingStaticOffsets, 1563 leadingStaticSizes, leadingStaticStrides) 1564 .cast<MemRefType>(); 1565 assert(inferredType.getRank() >= resultRank && "expected "); 1566 int rankDiff = inferredType.getRank() - resultRank; 1567 if (rankDiff > 0) { 1568 auto shape = inferredType.getShape(); 1569 llvm::SmallDenseSet<unsigned> dimsToProject; 1570 mlir::getPositionsOfShapeOne(rankDiff, shape, dimsToProject); 1571 SmallVector<int64_t> projectedShape; 1572 for (unsigned pos = 0, e = shape.size(); pos < e; ++pos) 1573 if (!dimsToProject.contains(pos)) 1574 projectedShape.push_back(shape[pos]); 1575 1576 AffineMap map = inferredType.getLayout().getAffineMap(); 1577 if (!map.isIdentity()) 1578 map = getProjectedMap(map, dimsToProject); 1579 inferredType = 1580 MemRefType::get(projectedShape, inferredType.getElementType(), map, 1581 inferredType.getMemorySpace()); 1582 } 1583 return inferredType; 1584 } 1585 1586 Type SubViewOp::inferRankReducedResultType( 1587 unsigned resultRank, MemRefType sourceRankedTensorType, 1588 ArrayRef<OpFoldResult> leadingStaticOffsets, 1589 ArrayRef<OpFoldResult> leadingStaticSizes, 1590 ArrayRef<OpFoldResult> leadingStaticStrides) { 1591 SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; 1592 SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; 1593 dispatchIndexOpFoldResults(leadingStaticOffsets, dynamicOffsets, 1594 staticOffsets, ShapedType::kDynamicStrideOrOffset); 1595 dispatchIndexOpFoldResults(leadingStaticSizes, dynamicSizes, staticSizes, 1596 ShapedType::kDynamicSize); 1597 dispatchIndexOpFoldResults(leadingStaticStrides, dynamicStrides, 1598 staticStrides, ShapedType::kDynamicStrideOrOffset); 1599 return SubViewOp::inferRankReducedResultType( 1600 resultRank, sourceRankedTensorType, staticOffsets, staticSizes, 1601 staticStrides); 1602 } 1603 // Build a SubViewOp with mixed static and dynamic entries and custom result 1604 // type. If the type passed is nullptr, it is inferred. 1605 void SubViewOp::build(OpBuilder &b, OperationState &result, 1606 MemRefType resultType, Value source, 1607 ArrayRef<OpFoldResult> offsets, 1608 ArrayRef<OpFoldResult> sizes, 1609 ArrayRef<OpFoldResult> strides, 1610 ArrayRef<NamedAttribute> attrs) { 1611 SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; 1612 SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; 1613 dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets, 1614 ShapedType::kDynamicStrideOrOffset); 1615 dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes, 1616 ShapedType::kDynamicSize); 1617 dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides, 1618 ShapedType::kDynamicStrideOrOffset); 1619 auto sourceMemRefType = source.getType().cast<MemRefType>(); 1620 // Structuring implementation this way avoids duplication between builders. 1621 if (!resultType) { 1622 resultType = SubViewOp::inferResultType(sourceMemRefType, staticOffsets, 1623 staticSizes, staticStrides) 1624 .cast<MemRefType>(); 1625 } 1626 build(b, result, resultType, source, dynamicOffsets, dynamicSizes, 1627 dynamicStrides, b.getI64ArrayAttr(staticOffsets), 1628 b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides)); 1629 result.addAttributes(attrs); 1630 } 1631 1632 // Build a SubViewOp with mixed static and dynamic entries and inferred result 1633 // type. 1634 void SubViewOp::build(OpBuilder &b, OperationState &result, Value source, 1635 ArrayRef<OpFoldResult> offsets, 1636 ArrayRef<OpFoldResult> sizes, 1637 ArrayRef<OpFoldResult> strides, 1638 ArrayRef<NamedAttribute> attrs) { 1639 build(b, result, MemRefType(), source, offsets, sizes, strides, attrs); 1640 } 1641 1642 // Build a SubViewOp with static entries and inferred result type. 1643 void SubViewOp::build(OpBuilder &b, OperationState &result, Value source, 1644 ArrayRef<int64_t> offsets, ArrayRef<int64_t> sizes, 1645 ArrayRef<int64_t> strides, 1646 ArrayRef<NamedAttribute> attrs) { 1647 SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>( 1648 llvm::map_range(offsets, [&](int64_t v) -> OpFoldResult { 1649 return b.getI64IntegerAttr(v); 1650 })); 1651 SmallVector<OpFoldResult> sizeValues = 1652 llvm::to_vector<4>(llvm::map_range(sizes, [&](int64_t v) -> OpFoldResult { 1653 return b.getI64IntegerAttr(v); 1654 })); 1655 SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( 1656 llvm::map_range(strides, [&](int64_t v) -> OpFoldResult { 1657 return b.getI64IntegerAttr(v); 1658 })); 1659 build(b, result, source, offsetValues, sizeValues, strideValues, attrs); 1660 } 1661 1662 // Build a SubViewOp with dynamic entries and custom result type. If the 1663 // type passed is nullptr, it is inferred. 1664 void SubViewOp::build(OpBuilder &b, OperationState &result, 1665 MemRefType resultType, Value source, 1666 ArrayRef<int64_t> offsets, ArrayRef<int64_t> sizes, 1667 ArrayRef<int64_t> strides, 1668 ArrayRef<NamedAttribute> attrs) { 1669 SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>( 1670 llvm::map_range(offsets, [&](int64_t v) -> OpFoldResult { 1671 return b.getI64IntegerAttr(v); 1672 })); 1673 SmallVector<OpFoldResult> sizeValues = 1674 llvm::to_vector<4>(llvm::map_range(sizes, [&](int64_t v) -> OpFoldResult { 1675 return b.getI64IntegerAttr(v); 1676 })); 1677 SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( 1678 llvm::map_range(strides, [&](int64_t v) -> OpFoldResult { 1679 return b.getI64IntegerAttr(v); 1680 })); 1681 build(b, result, resultType, source, offsetValues, sizeValues, strideValues, 1682 attrs); 1683 } 1684 1685 // Build a SubViewOp with dynamic entries and custom result type. If the type 1686 // passed is nullptr, it is inferred. 1687 void SubViewOp::build(OpBuilder &b, OperationState &result, 1688 MemRefType resultType, Value source, ValueRange offsets, 1689 ValueRange sizes, ValueRange strides, 1690 ArrayRef<NamedAttribute> attrs) { 1691 SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>( 1692 llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; })); 1693 SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>( 1694 llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; })); 1695 SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( 1696 llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; })); 1697 build(b, result, resultType, source, offsetValues, sizeValues, strideValues); 1698 } 1699 1700 // Build a SubViewOp with dynamic entries and inferred result type. 1701 void SubViewOp::build(OpBuilder &b, OperationState &result, Value source, 1702 ValueRange offsets, ValueRange sizes, ValueRange strides, 1703 ArrayRef<NamedAttribute> attrs) { 1704 build(b, result, MemRefType(), source, offsets, sizes, strides, attrs); 1705 } 1706 1707 /// For ViewLikeOpInterface. 1708 Value SubViewOp::getViewSource() { return source(); } 1709 1710 /// Checks if `original` Type type can be rank reduced to `reduced` type. 1711 /// This function is slight variant of `is subsequence` algorithm where 1712 /// not matching dimension must be 1. 1713 static SliceVerificationResult 1714 isRankReducedMemRefType(MemRefType originalType, 1715 MemRefType candidatecandidateReducedType, 1716 ArrayRef<OpFoldResult> sizes) { 1717 auto partialRes = 1718 isRankReducedType(originalType, candidatecandidateReducedType); 1719 if (partialRes != SliceVerificationResult::Success) 1720 return partialRes; 1721 1722 MemRefType original = originalType.cast<MemRefType>(); 1723 MemRefType candidateReduced = 1724 candidatecandidateReducedType.cast<MemRefType>(); 1725 1726 auto optionalUnusedDimsMask = 1727 computeMemRefRankReductionMask(original, candidateReduced, sizes); 1728 1729 // Sizes cannot be matched in case empty vector is returned. 1730 if (!optionalUnusedDimsMask.hasValue()) 1731 return SliceVerificationResult::LayoutMismatch; 1732 1733 if (original.getMemorySpace() != candidateReduced.getMemorySpace()) 1734 return SliceVerificationResult::MemSpaceMismatch; 1735 1736 return SliceVerificationResult::Success; 1737 } 1738 1739 template <typename OpTy> 1740 static LogicalResult produceSubViewErrorMsg(SliceVerificationResult result, 1741 OpTy op, Type expectedType) { 1742 auto memrefType = expectedType.cast<ShapedType>(); 1743 switch (result) { 1744 case SliceVerificationResult::Success: 1745 return success(); 1746 case SliceVerificationResult::RankTooLarge: 1747 return op.emitError("expected result rank to be smaller or equal to ") 1748 << "the source rank. "; 1749 case SliceVerificationResult::SizeMismatch: 1750 return op.emitError("expected result type to be ") 1751 << expectedType 1752 << " or a rank-reduced version. (mismatch of result sizes) "; 1753 case SliceVerificationResult::ElemTypeMismatch: 1754 return op.emitError("expected result element type to be ") 1755 << memrefType.getElementType(); 1756 case SliceVerificationResult::MemSpaceMismatch: 1757 return op.emitError("expected result and source memory spaces to match."); 1758 case SliceVerificationResult::LayoutMismatch: 1759 return op.emitError("expected result type to be ") 1760 << expectedType 1761 << " or a rank-reduced version. (mismatch of result layout) "; 1762 } 1763 llvm_unreachable("unexpected subview verification result"); 1764 } 1765 1766 /// Verifier for SubViewOp. 1767 static LogicalResult verify(SubViewOp op) { 1768 MemRefType baseType = op.getSourceType(); 1769 MemRefType subViewType = op.getType(); 1770 1771 // The base memref and the view memref should be in the same memory space. 1772 if (baseType.getMemorySpace() != subViewType.getMemorySpace()) 1773 return op.emitError("different memory spaces specified for base memref " 1774 "type ") 1775 << baseType << " and subview memref type " << subViewType; 1776 1777 // Verify that the base memref type has a strided layout map. 1778 if (!isStrided(baseType)) 1779 return op.emitError("base type ") << baseType << " is not strided"; 1780 1781 // Verify result type against inferred type. 1782 auto expectedType = SubViewOp::inferResultType( 1783 baseType, extractFromI64ArrayAttr(op.static_offsets()), 1784 extractFromI64ArrayAttr(op.static_sizes()), 1785 extractFromI64ArrayAttr(op.static_strides())); 1786 1787 auto result = isRankReducedMemRefType(expectedType.cast<MemRefType>(), 1788 subViewType, op.getMixedSizes()); 1789 return produceSubViewErrorMsg(result, op, expectedType); 1790 } 1791 1792 raw_ostream &mlir::operator<<(raw_ostream &os, const Range &range) { 1793 return os << "range " << range.offset << ":" << range.size << ":" 1794 << range.stride; 1795 } 1796 1797 /// Return the list of Range (i.e. offset, size, stride). Each Range 1798 /// entry contains either the dynamic value or a ConstantIndexOp constructed 1799 /// with `b` at location `loc`. 1800 SmallVector<Range, 8> mlir::getOrCreateRanges(OffsetSizeAndStrideOpInterface op, 1801 OpBuilder &b, Location loc) { 1802 std::array<unsigned, 3> ranks = op.getArrayAttrMaxRanks(); 1803 assert(ranks[0] == ranks[1] && "expected offset and sizes of equal ranks"); 1804 assert(ranks[1] == ranks[2] && "expected sizes and strides of equal ranks"); 1805 SmallVector<Range, 8> res; 1806 unsigned rank = ranks[0]; 1807 res.reserve(rank); 1808 for (unsigned idx = 0; idx < rank; ++idx) { 1809 Value offset = 1810 op.isDynamicOffset(idx) 1811 ? op.getDynamicOffset(idx) 1812 : b.create<arith::ConstantIndexOp>(loc, op.getStaticOffset(idx)); 1813 Value size = 1814 op.isDynamicSize(idx) 1815 ? op.getDynamicSize(idx) 1816 : b.create<arith::ConstantIndexOp>(loc, op.getStaticSize(idx)); 1817 Value stride = 1818 op.isDynamicStride(idx) 1819 ? op.getDynamicStride(idx) 1820 : b.create<arith::ConstantIndexOp>(loc, op.getStaticStride(idx)); 1821 res.emplace_back(Range{offset, size, stride}); 1822 } 1823 return res; 1824 } 1825 1826 /// Infer the canonical type of the result of a subview operation. Returns a 1827 /// type with rank `resultRank` that is either the rank of the rank-reduced 1828 /// type, or the non-rank-reduced type. 1829 static MemRefType getCanonicalSubViewResultType( 1830 MemRefType currentResultType, MemRefType sourceType, 1831 ArrayRef<OpFoldResult> mixedOffsets, ArrayRef<OpFoldResult> mixedSizes, 1832 ArrayRef<OpFoldResult> mixedStrides) { 1833 auto nonRankReducedType = SubViewOp::inferResultType(sourceType, mixedOffsets, 1834 mixedSizes, mixedStrides) 1835 .cast<MemRefType>(); 1836 llvm::Optional<llvm::SmallDenseSet<unsigned>> unusedDims = 1837 computeMemRefRankReductionMask(sourceType, currentResultType, mixedSizes); 1838 // Return nullptr as failure mode. 1839 if (!unusedDims) 1840 return nullptr; 1841 SmallVector<int64_t> shape; 1842 for (auto sizes : llvm::enumerate(nonRankReducedType.getShape())) { 1843 if (unusedDims->count(sizes.index())) 1844 continue; 1845 shape.push_back(sizes.value()); 1846 } 1847 AffineMap layoutMap = nonRankReducedType.getLayout().getAffineMap(); 1848 if (!layoutMap.isIdentity()) 1849 layoutMap = getProjectedMap(layoutMap, unusedDims.getValue()); 1850 return MemRefType::get(shape, nonRankReducedType.getElementType(), layoutMap, 1851 nonRankReducedType.getMemorySpace()); 1852 } 1853 1854 namespace { 1855 /// Pattern to rewrite a subview op with MemRefCast arguments. 1856 /// This essentially pushes memref.cast past its consuming subview when 1857 /// `canFoldIntoConsumerOp` is true. 1858 /// 1859 /// Example: 1860 /// ``` 1861 /// %0 = memref.cast %V : memref<16x16xf32> to memref<?x?xf32> 1862 /// %1 = memref.subview %0[0, 0][3, 4][1, 1] : 1863 /// memref<?x?xf32> to memref<3x4xf32, offset:?, strides:[?, 1]> 1864 /// ``` 1865 /// is rewritten into: 1866 /// ``` 1867 /// %0 = memref.subview %V: memref<16x16xf32> to memref<3x4xf32, #[[map0]]> 1868 /// %1 = memref.cast %0: memref<3x4xf32, offset:0, strides:[16, 1]> to 1869 /// memref<3x4xf32, offset:?, strides:[?, 1]> 1870 /// ``` 1871 class SubViewOpMemRefCastFolder final : public OpRewritePattern<SubViewOp> { 1872 public: 1873 using OpRewritePattern<SubViewOp>::OpRewritePattern; 1874 1875 LogicalResult matchAndRewrite(SubViewOp subViewOp, 1876 PatternRewriter &rewriter) const override { 1877 // Any constant operand, just return to let SubViewOpConstantFolder kick in. 1878 if (llvm::any_of(subViewOp.getOperands(), [](Value operand) { 1879 return matchPattern(operand, matchConstantIndex()); 1880 })) 1881 return failure(); 1882 1883 auto castOp = subViewOp.source().getDefiningOp<CastOp>(); 1884 if (!castOp) 1885 return failure(); 1886 1887 if (!CastOp::canFoldIntoConsumerOp(castOp)) 1888 return failure(); 1889 1890 /// Deduce the resultType of the SubViewOp using `inferSubViewResultType` on 1891 /// the cast source operand type and the SubViewOp static information. This 1892 /// is the resulting type if the MemRefCastOp were folded. 1893 auto resultType = getCanonicalSubViewResultType( 1894 subViewOp.getType(), castOp.source().getType().cast<MemRefType>(), 1895 subViewOp.getMixedOffsets(), subViewOp.getMixedSizes(), 1896 subViewOp.getMixedStrides()); 1897 Value newSubView = rewriter.create<SubViewOp>( 1898 subViewOp.getLoc(), resultType, castOp.source(), subViewOp.offsets(), 1899 subViewOp.sizes(), subViewOp.strides(), subViewOp.static_offsets(), 1900 subViewOp.static_sizes(), subViewOp.static_strides()); 1901 rewriter.replaceOpWithNewOp<CastOp>(subViewOp, subViewOp.getType(), 1902 newSubView); 1903 return success(); 1904 } 1905 }; 1906 } // namespace 1907 1908 /// Return the canonical type of the result of a subview. 1909 struct SubViewReturnTypeCanonicalizer { 1910 MemRefType operator()(SubViewOp op, ArrayRef<OpFoldResult> mixedOffsets, 1911 ArrayRef<OpFoldResult> mixedSizes, 1912 ArrayRef<OpFoldResult> mixedStrides) { 1913 return getCanonicalSubViewResultType(op.getType(), op.getSourceType(), 1914 mixedOffsets, mixedSizes, 1915 mixedStrides); 1916 } 1917 }; 1918 1919 /// A canonicalizer wrapper to replace SubViewOps. 1920 struct SubViewCanonicalizer { 1921 void operator()(PatternRewriter &rewriter, SubViewOp op, SubViewOp newOp) { 1922 rewriter.replaceOpWithNewOp<CastOp>(op, newOp, op.getType()); 1923 } 1924 }; 1925 1926 void SubViewOp::getCanonicalizationPatterns(RewritePatternSet &results, 1927 MLIRContext *context) { 1928 results 1929 .add<OpWithOffsetSizesAndStridesConstantArgumentFolder< 1930 SubViewOp, SubViewReturnTypeCanonicalizer, SubViewCanonicalizer>, 1931 SubViewOpMemRefCastFolder>(context); 1932 } 1933 1934 OpFoldResult SubViewOp::fold(ArrayRef<Attribute> operands) { 1935 auto resultShapedType = getResult().getType().cast<ShapedType>(); 1936 auto sourceShapedType = source().getType().cast<ShapedType>(); 1937 1938 if (resultShapedType.hasStaticShape() && 1939 resultShapedType == sourceShapedType) { 1940 return getViewSource(); 1941 } 1942 1943 return {}; 1944 } 1945 1946 //===----------------------------------------------------------------------===// 1947 // TransposeOp 1948 //===----------------------------------------------------------------------===// 1949 1950 /// Build a strided memref type by applying `permutationMap` tp `memRefType`. 1951 static MemRefType inferTransposeResultType(MemRefType memRefType, 1952 AffineMap permutationMap) { 1953 auto rank = memRefType.getRank(); 1954 auto originalSizes = memRefType.getShape(); 1955 // Compute permuted sizes. 1956 SmallVector<int64_t, 4> sizes(rank, 0); 1957 for (auto en : llvm::enumerate(permutationMap.getResults())) 1958 sizes[en.index()] = 1959 originalSizes[en.value().cast<AffineDimExpr>().getPosition()]; 1960 1961 // Compute permuted strides. 1962 int64_t offset; 1963 SmallVector<int64_t, 4> strides; 1964 auto res = getStridesAndOffset(memRefType, strides, offset); 1965 assert(succeeded(res) && strides.size() == static_cast<unsigned>(rank)); 1966 (void)res; 1967 auto map = 1968 makeStridedLinearLayoutMap(strides, offset, memRefType.getContext()); 1969 map = permutationMap ? map.compose(permutationMap) : map; 1970 return MemRefType::Builder(memRefType) 1971 .setShape(sizes) 1972 .setLayout(AffineMapAttr::get(map)); 1973 } 1974 1975 void TransposeOp::build(OpBuilder &b, OperationState &result, Value in, 1976 AffineMapAttr permutation, 1977 ArrayRef<NamedAttribute> attrs) { 1978 auto permutationMap = permutation.getValue(); 1979 assert(permutationMap); 1980 1981 auto memRefType = in.getType().cast<MemRefType>(); 1982 // Compute result type. 1983 MemRefType resultType = inferTransposeResultType(memRefType, permutationMap); 1984 1985 build(b, result, resultType, in, attrs); 1986 result.addAttribute(TransposeOp::getPermutationAttrName(), permutation); 1987 } 1988 1989 // transpose $in $permutation attr-dict : type($in) `to` type(results) 1990 static void print(OpAsmPrinter &p, TransposeOp op) { 1991 p << " " << op.in() << " " << op.permutation(); 1992 p.printOptionalAttrDict(op->getAttrs(), 1993 {TransposeOp::getPermutationAttrName()}); 1994 p << " : " << op.in().getType() << " to " << op.getType(); 1995 } 1996 1997 static ParseResult parseTransposeOp(OpAsmParser &parser, 1998 OperationState &result) { 1999 OpAsmParser::OperandType in; 2000 AffineMap permutation; 2001 MemRefType srcType, dstType; 2002 if (parser.parseOperand(in) || parser.parseAffineMap(permutation) || 2003 parser.parseOptionalAttrDict(result.attributes) || 2004 parser.parseColonType(srcType) || 2005 parser.resolveOperand(in, srcType, result.operands) || 2006 parser.parseKeywordType("to", dstType) || 2007 parser.addTypeToList(dstType, result.types)) 2008 return failure(); 2009 2010 result.addAttribute(TransposeOp::getPermutationAttrName(), 2011 AffineMapAttr::get(permutation)); 2012 return success(); 2013 } 2014 2015 static LogicalResult verify(TransposeOp op) { 2016 if (!op.permutation().isPermutation()) 2017 return op.emitOpError("expected a permutation map"); 2018 if (op.permutation().getNumDims() != op.getShapedType().getRank()) 2019 return op.emitOpError( 2020 "expected a permutation map of same rank as the input"); 2021 2022 auto srcType = op.in().getType().cast<MemRefType>(); 2023 auto dstType = op.getType().cast<MemRefType>(); 2024 auto transposedType = inferTransposeResultType(srcType, op.permutation()); 2025 if (dstType != transposedType) 2026 return op.emitOpError("output type ") 2027 << dstType << " does not match transposed input type " << srcType 2028 << ", " << transposedType; 2029 return success(); 2030 } 2031 2032 OpFoldResult TransposeOp::fold(ArrayRef<Attribute>) { 2033 if (succeeded(foldMemRefCast(*this))) 2034 return getResult(); 2035 return {}; 2036 } 2037 2038 //===----------------------------------------------------------------------===// 2039 // ViewOp 2040 //===----------------------------------------------------------------------===// 2041 2042 static ParseResult parseViewOp(OpAsmParser &parser, OperationState &result) { 2043 OpAsmParser::OperandType srcInfo; 2044 SmallVector<OpAsmParser::OperandType, 1> offsetInfo; 2045 SmallVector<OpAsmParser::OperandType, 4> sizesInfo; 2046 auto indexType = parser.getBuilder().getIndexType(); 2047 Type srcType, dstType; 2048 llvm::SMLoc offsetLoc; 2049 if (parser.parseOperand(srcInfo) || parser.getCurrentLocation(&offsetLoc) || 2050 parser.parseOperandList(offsetInfo, OpAsmParser::Delimiter::Square)) 2051 return failure(); 2052 2053 if (offsetInfo.size() != 1) 2054 return parser.emitError(offsetLoc) << "expects 1 offset operand"; 2055 2056 return failure( 2057 parser.parseOperandList(sizesInfo, OpAsmParser::Delimiter::Square) || 2058 parser.parseOptionalAttrDict(result.attributes) || 2059 parser.parseColonType(srcType) || 2060 parser.resolveOperand(srcInfo, srcType, result.operands) || 2061 parser.resolveOperands(offsetInfo, indexType, result.operands) || 2062 parser.resolveOperands(sizesInfo, indexType, result.operands) || 2063 parser.parseKeywordType("to", dstType) || 2064 parser.addTypeToList(dstType, result.types)); 2065 } 2066 2067 static void print(OpAsmPrinter &p, ViewOp op) { 2068 p << ' ' << op.getOperand(0) << '['; 2069 p.printOperand(op.byte_shift()); 2070 p << "][" << op.sizes() << ']'; 2071 p.printOptionalAttrDict(op->getAttrs()); 2072 p << " : " << op.getOperand(0).getType() << " to " << op.getType(); 2073 } 2074 2075 static LogicalResult verify(ViewOp op) { 2076 auto baseType = op.getOperand(0).getType().cast<MemRefType>(); 2077 auto viewType = op.getType(); 2078 2079 // The base memref should have identity layout map (or none). 2080 if (!baseType.getLayout().isIdentity()) 2081 return op.emitError("unsupported map for base memref type ") << baseType; 2082 2083 // The result memref should have identity layout map (or none). 2084 if (!viewType.getLayout().isIdentity()) 2085 return op.emitError("unsupported map for result memref type ") << viewType; 2086 2087 // The base memref and the view memref should be in the same memory space. 2088 if (baseType.getMemorySpace() != viewType.getMemorySpace()) 2089 return op.emitError("different memory spaces specified for base memref " 2090 "type ") 2091 << baseType << " and view memref type " << viewType; 2092 2093 // Verify that we have the correct number of sizes for the result type. 2094 unsigned numDynamicDims = viewType.getNumDynamicDims(); 2095 if (op.sizes().size() != numDynamicDims) 2096 return op.emitError("incorrect number of size operands for type ") 2097 << viewType; 2098 2099 return success(); 2100 } 2101 2102 Value ViewOp::getViewSource() { return source(); } 2103 2104 namespace { 2105 2106 struct ViewOpShapeFolder : public OpRewritePattern<ViewOp> { 2107 using OpRewritePattern<ViewOp>::OpRewritePattern; 2108 2109 LogicalResult matchAndRewrite(ViewOp viewOp, 2110 PatternRewriter &rewriter) const override { 2111 // Return if none of the operands are constants. 2112 if (llvm::none_of(viewOp.getOperands(), [](Value operand) { 2113 return matchPattern(operand, matchConstantIndex()); 2114 })) 2115 return failure(); 2116 2117 // Get result memref type. 2118 auto memrefType = viewOp.getType(); 2119 2120 // Get offset from old memref view type 'memRefType'. 2121 int64_t oldOffset; 2122 SmallVector<int64_t, 4> oldStrides; 2123 if (failed(getStridesAndOffset(memrefType, oldStrides, oldOffset))) 2124 return failure(); 2125 assert(oldOffset == 0 && "Expected 0 offset"); 2126 2127 SmallVector<Value, 4> newOperands; 2128 2129 // Offset cannot be folded into result type. 2130 2131 // Fold any dynamic dim operands which are produced by a constant. 2132 SmallVector<int64_t, 4> newShapeConstants; 2133 newShapeConstants.reserve(memrefType.getRank()); 2134 2135 unsigned dynamicDimPos = 0; 2136 unsigned rank = memrefType.getRank(); 2137 for (unsigned dim = 0, e = rank; dim < e; ++dim) { 2138 int64_t dimSize = memrefType.getDimSize(dim); 2139 // If this is already static dimension, keep it. 2140 if (!ShapedType::isDynamic(dimSize)) { 2141 newShapeConstants.push_back(dimSize); 2142 continue; 2143 } 2144 auto *defOp = viewOp.sizes()[dynamicDimPos].getDefiningOp(); 2145 if (auto constantIndexOp = 2146 dyn_cast_or_null<arith::ConstantIndexOp>(defOp)) { 2147 // Dynamic shape dimension will be folded. 2148 newShapeConstants.push_back(constantIndexOp.value()); 2149 } else { 2150 // Dynamic shape dimension not folded; copy operand from old memref. 2151 newShapeConstants.push_back(dimSize); 2152 newOperands.push_back(viewOp.sizes()[dynamicDimPos]); 2153 } 2154 dynamicDimPos++; 2155 } 2156 2157 // Create new memref type with constant folded dims. 2158 MemRefType newMemRefType = 2159 MemRefType::Builder(memrefType).setShape(newShapeConstants); 2160 // Nothing new, don't fold. 2161 if (newMemRefType == memrefType) 2162 return failure(); 2163 2164 // Create new ViewOp. 2165 auto newViewOp = rewriter.create<ViewOp>(viewOp.getLoc(), newMemRefType, 2166 viewOp.getOperand(0), 2167 viewOp.byte_shift(), newOperands); 2168 // Insert a cast so we have the same type as the old memref type. 2169 rewriter.replaceOpWithNewOp<CastOp>(viewOp, newViewOp, viewOp.getType()); 2170 return success(); 2171 } 2172 }; 2173 2174 struct ViewOpMemrefCastFolder : public OpRewritePattern<ViewOp> { 2175 using OpRewritePattern<ViewOp>::OpRewritePattern; 2176 2177 LogicalResult matchAndRewrite(ViewOp viewOp, 2178 PatternRewriter &rewriter) const override { 2179 Value memrefOperand = viewOp.getOperand(0); 2180 CastOp memrefCastOp = memrefOperand.getDefiningOp<CastOp>(); 2181 if (!memrefCastOp) 2182 return failure(); 2183 Value allocOperand = memrefCastOp.getOperand(); 2184 AllocOp allocOp = allocOperand.getDefiningOp<AllocOp>(); 2185 if (!allocOp) 2186 return failure(); 2187 rewriter.replaceOpWithNewOp<ViewOp>(viewOp, viewOp.getType(), allocOperand, 2188 viewOp.byte_shift(), viewOp.sizes()); 2189 return success(); 2190 } 2191 }; 2192 2193 } // end anonymous namespace 2194 2195 void ViewOp::getCanonicalizationPatterns(RewritePatternSet &results, 2196 MLIRContext *context) { 2197 results.add<ViewOpShapeFolder, ViewOpMemrefCastFolder>(context); 2198 } 2199 2200 //===----------------------------------------------------------------------===// 2201 // TableGen'd op method definitions 2202 //===----------------------------------------------------------------------===// 2203 2204 #define GET_OP_CLASSES 2205 #include "mlir/Dialect/MemRef/IR/MemRefOps.cpp.inc" 2206