1 //===- PolynomialApproximation.cpp - Approximate math operations ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements expansion of math operations to fast approximations
10 // that do not rely on any of the library functions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include <climits>
15 #include <cstddef>
16 
17 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
18 #include "mlir/Dialect/Math/IR/Math.h"
19 #include "mlir/Dialect/Math/Transforms/Approximation.h"
20 #include "mlir/Dialect/Math/Transforms/Passes.h"
21 #include "mlir/Dialect/Utils/IndexingUtils.h"
22 #include "mlir/Dialect/Vector/IR/VectorOps.h"
23 #include "mlir/Dialect/Vector/Utils/VectorUtils.h"
24 #include "mlir/Dialect/X86Vector/X86VectorDialect.h"
25 #include "mlir/IR/Builders.h"
26 #include "mlir/IR/BuiltinTypes.h"
27 #include "mlir/IR/ImplicitLocOpBuilder.h"
28 #include "mlir/IR/OpDefinition.h"
29 #include "mlir/IR/PatternMatch.h"
30 #include "mlir/IR/TypeUtilities.h"
31 #include "mlir/Transforms/DialectConversion.h"
32 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
33 #include "llvm/ADT/ArrayRef.h"
34 #include "llvm/ADT/STLExtras.h"
35 
36 using namespace mlir;
37 using namespace mlir::math;
38 using namespace mlir::vector;
39 
40 // Returns vector shape if the type is a vector. Returns an empty shape if it is
41 // not a vector.
42 static ArrayRef<int64_t> vectorShape(Type type) {
43   auto vectorType = type.dyn_cast<VectorType>();
44   return vectorType ? vectorType.getShape() : ArrayRef<int64_t>();
45 }
46 
47 static ArrayRef<int64_t> vectorShape(Value value) {
48   return vectorShape(value.getType());
49 }
50 
51 //----------------------------------------------------------------------------//
52 // Broadcast scalar types and values into vector types and values.
53 //----------------------------------------------------------------------------//
54 
55 // Broadcasts scalar type into vector type (iff shape is non-scalar).
56 static Type broadcast(Type type, ArrayRef<int64_t> shape) {
57   assert(!type.isa<VectorType>() && "must be scalar type");
58   return !shape.empty() ? VectorType::get(shape, type) : type;
59 }
60 
61 // Broadcasts scalar value into vector (iff shape is non-scalar).
62 static Value broadcast(ImplicitLocOpBuilder &builder, Value value,
63                        ArrayRef<int64_t> shape) {
64   assert(!value.getType().isa<VectorType>() && "must be scalar value");
65   auto type = broadcast(value.getType(), shape);
66   return !shape.empty() ? builder.create<BroadcastOp>(type, value) : value;
67 }
68 
69 //----------------------------------------------------------------------------//
70 // Helper function to handle n-D vectors with 1-D operations.
71 //----------------------------------------------------------------------------//
72 
73 // Expands and unrolls n-D vector operands into multiple fixed size 1-D vectors
74 // and calls the compute function with 1-D vector operands. Stitches back all
75 // results into the original n-D vector result.
76 //
77 // Examples: vectorWidth = 8
78 //   - vector<4x8xf32> unrolled 4 times
79 //   - vector<16xf32> expanded to vector<2x8xf32> and unrolled 2 times
80 //   - vector<4x16xf32> expanded to vector<4x2x8xf32> and unrolled 4*2 times
81 //
82 // Some math approximations rely on ISA-specific operations that only accept
83 // fixed size 1-D vectors (e.g. AVX expects vectors of width 8).
84 //
85 // It is the caller's responsibility to verify that the inner dimension is
86 // divisible by the vectorWidth, and that all operands have the same vector
87 // shape.
88 static Value
89 handleMultidimensionalVectors(ImplicitLocOpBuilder &builder,
90                               ValueRange operands, int64_t vectorWidth,
91                               llvm::function_ref<Value(ValueRange)> compute) {
92   assert(!operands.empty() && "operands must be not empty");
93   assert(vectorWidth > 0 && "vector width must be larger than 0");
94 
95   VectorType inputType = operands[0].getType().cast<VectorType>();
96   ArrayRef<int64_t> inputShape = inputType.getShape();
97 
98   // If input shape matches target vector width, we can just call the
99   // user-provided compute function with the operands.
100   if (inputShape == llvm::makeArrayRef(vectorWidth))
101     return compute(operands);
102 
103   // Check if the inner dimension has to be expanded, or we can directly iterate
104   // over the outer dimensions of the vector.
105   int64_t innerDim = inputShape.back();
106   int64_t expansionDim = innerDim / vectorWidth;
107   assert((innerDim % vectorWidth == 0) && "invalid inner dimension size");
108 
109   // Maybe expand operands to the higher rank vector shape that we'll use to
110   // iterate over and extract one dimensional vectors.
111   SmallVector<int64_t> expandedShape(inputShape.begin(), inputShape.end());
112   SmallVector<Value> expandedOperands(operands);
113 
114   if (expansionDim > 1) {
115     // Expand shape from [..., innerDim] to [..., expansionDim, vectorWidth].
116     expandedShape.insert(expandedShape.end() - 1, expansionDim);
117     expandedShape.back() = vectorWidth;
118 
119     for (unsigned i = 0; i < operands.size(); ++i) {
120       auto operand = operands[i];
121       auto eltType = operand.getType().cast<VectorType>().getElementType();
122       auto expandedType = VectorType::get(expandedShape, eltType);
123       expandedOperands[i] =
124           builder.create<vector::ShapeCastOp>(expandedType, operand);
125     }
126   }
127 
128   // Iterate over all outer dimensions of the compute shape vector type.
129   auto iterationDims = ArrayRef<int64_t>(expandedShape).drop_back();
130   int64_t maxLinearIndex = computeMaxLinearIndex(iterationDims);
131 
132   SmallVector<int64_t> ones(iterationDims.size(), 1);
133   auto strides = computeStrides(iterationDims, ones);
134 
135   // Compute results for each one dimensional vector.
136   SmallVector<Value> results(maxLinearIndex);
137 
138   for (int64_t i = 0; i < maxLinearIndex; ++i) {
139     auto offsets = delinearize(strides, i);
140 
141     SmallVector<Value> extracted(expandedOperands.size());
142     for (const auto &tuple : llvm::enumerate(expandedOperands))
143       extracted[tuple.index()] =
144           builder.create<vector::ExtractOp>(tuple.value(), offsets);
145 
146     results[i] = compute(extracted);
147   }
148 
149   // Stitch results together into one large vector.
150   Type resultEltType = results[0].getType().cast<VectorType>().getElementType();
151   Type resultExpandedType = VectorType::get(expandedShape, resultEltType);
152   Value result = builder.create<arith::ConstantOp>(
153       resultExpandedType, builder.getZeroAttr(resultExpandedType));
154 
155   for (int64_t i = 0; i < maxLinearIndex; ++i)
156     result = builder.create<vector::InsertOp>(results[i], result,
157                                               delinearize(strides, i));
158 
159   // Reshape back to the original vector shape.
160   return builder.create<vector::ShapeCastOp>(
161       VectorType::get(inputShape, resultEltType), result);
162 }
163 
164 //----------------------------------------------------------------------------//
165 // Helper functions to create constants.
166 //----------------------------------------------------------------------------//
167 
168 static Value f32Cst(ImplicitLocOpBuilder &builder, float value) {
169   return builder.create<arith::ConstantOp>(builder.getF32FloatAttr(value));
170 }
171 
172 static Value i32Cst(ImplicitLocOpBuilder &builder, int32_t value) {
173   return builder.create<arith::ConstantOp>(builder.getI32IntegerAttr(value));
174 }
175 
176 static Value f32FromBits(ImplicitLocOpBuilder &builder, uint32_t bits) {
177   Value i32Value = i32Cst(builder, static_cast<int32_t>(bits));
178   return builder.create<arith::BitcastOp>(builder.getF32Type(), i32Value);
179 }
180 
181 //----------------------------------------------------------------------------//
182 // Helper functions to build math functions approximations.
183 //----------------------------------------------------------------------------//
184 
185 static Value min(ImplicitLocOpBuilder &builder, Value a, Value b) {
186   return builder.create<arith::SelectOp>(
187       builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, a, b), a, b);
188 }
189 
190 static Value max(ImplicitLocOpBuilder &builder, Value a, Value b) {
191   return builder.create<arith::SelectOp>(
192       builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, a, b), a, b);
193 }
194 
195 static Value clamp(ImplicitLocOpBuilder &builder, Value value, Value lowerBound,
196                    Value upperBound) {
197   return max(builder, min(builder, value, upperBound), lowerBound);
198 }
199 
200 // Decomposes given floating point value `arg` into a normalized fraction and
201 // an integral power of two (see std::frexp). Returned values have float type.
202 static std::pair<Value, Value> frexp(ImplicitLocOpBuilder &builder, Value arg,
203                                      bool isPositive = false) {
204   assert(getElementTypeOrSelf(arg).isF32() && "arg must be f32 type");
205   ArrayRef<int64_t> shape = vectorShape(arg);
206 
207   auto bcast = [&](Value value) -> Value {
208     return broadcast(builder, value, shape);
209   };
210 
211   auto i32 = builder.getIntegerType(32);
212   auto i32Vec = broadcast(i32, shape);
213   auto f32Vec = broadcast(builder.getF32Type(), shape);
214 
215   Value cst126f = f32Cst(builder, 126.0f);
216   Value cstHalf = f32Cst(builder, 0.5f);
217   Value cstInvMantMask = f32FromBits(builder, ~0x7f800000u);
218 
219   // Bitcast to i32 for bitwise operations.
220   Value i32Half = builder.create<arith::BitcastOp>(i32, cstHalf);
221   Value i32InvMantMask = builder.create<arith::BitcastOp>(i32, cstInvMantMask);
222   Value i32Arg = builder.create<arith::BitcastOp>(i32Vec, arg);
223 
224   // Compute normalized fraction.
225   Value tmp0 = builder.create<arith::AndIOp>(i32Arg, bcast(i32InvMantMask));
226   Value tmp1 = builder.create<arith::OrIOp>(tmp0, bcast(i32Half));
227   Value normalizedFraction = builder.create<arith::BitcastOp>(f32Vec, tmp1);
228 
229   // Compute exponent.
230   Value arg0 = isPositive ? arg : builder.create<math::AbsOp>(arg);
231   Value biasedExponentBits = builder.create<arith::ShRUIOp>(
232       builder.create<arith::BitcastOp>(i32Vec, arg0),
233       bcast(i32Cst(builder, 23)));
234   Value biasedExponent =
235       builder.create<arith::SIToFPOp>(f32Vec, biasedExponentBits);
236   Value exponent =
237       builder.create<arith::SubFOp>(biasedExponent, bcast(cst126f));
238 
239   return {normalizedFraction, exponent};
240 }
241 
242 // Computes exp2 for an i32 argument.
243 static Value exp2I32(ImplicitLocOpBuilder &builder, Value arg) {
244   assert(getElementTypeOrSelf(arg).isInteger(32) && "arg must be i32 type");
245   ArrayRef<int64_t> shape = vectorShape(arg);
246 
247   auto bcast = [&](Value value) -> Value {
248     return broadcast(builder, value, shape);
249   };
250 
251   auto f32Vec = broadcast(builder.getF32Type(), shape);
252   // The exponent of f32 located at 23-bit.
253   auto exponetBitLocation = bcast(i32Cst(builder, 23));
254   // Set the exponent bias to zero.
255   auto bias = bcast(i32Cst(builder, 127));
256 
257   Value biasedArg = builder.create<arith::AddIOp>(arg, bias);
258   Value exp2ValueInt =
259       builder.create<arith::ShLIOp>(biasedArg, exponetBitLocation);
260   Value exp2ValueF32 = builder.create<arith::BitcastOp>(f32Vec, exp2ValueInt);
261 
262   return exp2ValueF32;
263 }
264 
265 namespace {
266 Value makePolynomialCalculation(ImplicitLocOpBuilder &builder,
267                                 llvm::ArrayRef<Value> coeffs, Value x) {
268   assert(getElementTypeOrSelf(x).isF32() && "x must be f32 type");
269   ArrayRef<int64_t> shape = vectorShape(x);
270 
271   if (coeffs.empty())
272     return broadcast(builder, f32Cst(builder, 0.0f), shape);
273 
274   if (coeffs.size() == 1)
275     return coeffs[0];
276 
277   Value res = builder.create<math::FmaOp>(x, coeffs[coeffs.size() - 1],
278                                           coeffs[coeffs.size() - 2]);
279   for (auto i = ptrdiff_t(coeffs.size()) - 3; i >= 0; --i) {
280     res = builder.create<math::FmaOp>(x, res, coeffs[i]);
281   }
282   return res;
283 }
284 } // namespace
285 
286 //----------------------------------------------------------------------------//
287 // Helper function/pattern to insert casts for reusing F32 bit expansion.
288 //----------------------------------------------------------------------------//
289 
290 template <typename T>
291 LogicalResult insertCasts(Operation *op, PatternRewriter &rewriter) {
292   // Conservatively only allow where the operand and result types are exactly 1.
293   Type origType = op->getResultTypes().front();
294   for (Type t : llvm::drop_begin(op->getResultTypes()))
295     if (origType != t)
296       return rewriter.notifyMatchFailure(op, "required all types to match");
297   for (Type t : op->getOperandTypes())
298     if (origType != t)
299       return rewriter.notifyMatchFailure(op, "required all types to match");
300 
301   // Skip if already F32  or larger than 32 bits.
302   if (getElementTypeOrSelf(origType).isF32() ||
303       getElementTypeOrSelf(origType).getIntOrFloatBitWidth() > 32)
304     return failure();
305 
306   // Create F32 equivalent type.
307   Type newType;
308   if (auto shaped = origType.dyn_cast<ShapedType>()) {
309     newType = shaped.clone(rewriter.getF32Type());
310   } else if (origType.isa<FloatType>()) {
311     newType = rewriter.getF32Type();
312   } else {
313     return rewriter.notifyMatchFailure(op,
314                                        "unable to find F32 equivalent type");
315   }
316 
317   Location loc = op->getLoc();
318   SmallVector<Value> operands;
319   for (auto operand : op->getOperands())
320     operands.push_back(rewriter.create<arith::ExtFOp>(loc, newType, operand));
321   auto result = rewriter.create<math::Atan2Op>(loc, newType, operands);
322   rewriter.replaceOpWithNewOp<arith::TruncFOp>(op, origType, result);
323   return success();
324 }
325 
326 namespace {
327 // Pattern to cast to F32 to reuse F32 expansion as fallback for single-result
328 // op.
329 // TODO: Consider revising to avoid adding multiple casts for a subgraph that is
330 // all in lower precision. Currently this is only fallback support and performs
331 // simplistic casting.
332 template <typename T>
333 struct ReuseF32Expansion : public OpRewritePattern<T> {
334 public:
335   using OpRewritePattern<T>::OpRewritePattern;
336   LogicalResult matchAndRewrite(T op, PatternRewriter &rewriter) const final {
337     static_assert(
338         T::template hasTrait<mlir::OpTrait::SameOperandsAndResultType>(),
339         "requires same operands and result types");
340     return insertCasts<T>(op, rewriter);
341   }
342 };
343 } // namespace
344 
345 //----------------------------------------------------------------------------//
346 // AtanOp approximation.
347 //----------------------------------------------------------------------------//
348 
349 namespace {
350 struct AtanApproximation : public OpRewritePattern<math::AtanOp> {
351 public:
352   using OpRewritePattern::OpRewritePattern;
353 
354   LogicalResult matchAndRewrite(math::AtanOp op,
355                                 PatternRewriter &rewriter) const final;
356 };
357 } // namespace
358 
359 LogicalResult
360 AtanApproximation::matchAndRewrite(math::AtanOp op,
361                                    PatternRewriter &rewriter) const {
362   auto operand = op.getOperand();
363   if (!getElementTypeOrSelf(operand).isF32())
364     return rewriter.notifyMatchFailure(op, "unsupported operand type");
365 
366   ArrayRef<int64_t> shape = vectorShape(op.getOperand());
367 
368   ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
369   auto one = broadcast(builder, f32Cst(builder, 1.0f), shape);
370 
371   // Remap the problem over [0.0, 1.0] by looking at the absolute value and the
372   // handling symmetry.
373   Value abs = builder.create<math::AbsOp>(operand);
374   Value reciprocal = builder.create<arith::DivFOp>(one, abs);
375   Value compare =
376       builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, abs, reciprocal);
377   Value x = builder.create<arith::SelectOp>(compare, abs, reciprocal);
378 
379   // Perform the Taylor series approximation for atan over the range
380   // [-1.0, 1.0].
381   auto n1 = broadcast(builder, f32Cst(builder, 0.14418283f), shape);
382   auto n2 = broadcast(builder, f32Cst(builder, -0.34999234f), shape);
383   auto n3 = broadcast(builder, f32Cst(builder, -0.01067831f), shape);
384   auto n4 = broadcast(builder, f32Cst(builder, 1.00209986f), shape);
385 
386   Value p = builder.create<math::FmaOp>(x, n1, n2);
387   p = builder.create<math::FmaOp>(x, p, n3);
388   p = builder.create<math::FmaOp>(x, p, n4);
389   p = builder.create<arith::MulFOp>(x, p);
390 
391   // Remap the solution for over [0.0, 1.0] to [0.0, inf]
392   auto halfPi = broadcast(builder, f32Cst(builder, 1.57079632679f), shape);
393   Value sub = builder.create<arith::SubFOp>(halfPi, p);
394   Value select = builder.create<arith::SelectOp>(compare, p, sub);
395 
396   // Correct for signing of the input.
397   rewriter.replaceOpWithNewOp<math::CopySignOp>(op, select, operand);
398   return success();
399 }
400 
401 //----------------------------------------------------------------------------//
402 // AtanOp approximation.
403 //----------------------------------------------------------------------------//
404 
405 namespace {
406 struct Atan2Approximation : public OpRewritePattern<math::Atan2Op> {
407 public:
408   using OpRewritePattern::OpRewritePattern;
409 
410   LogicalResult matchAndRewrite(math::Atan2Op op,
411                                 PatternRewriter &rewriter) const final;
412 };
413 } // namespace
414 
415 LogicalResult
416 Atan2Approximation::matchAndRewrite(math::Atan2Op op,
417                                     PatternRewriter &rewriter) const {
418   auto y = op.getOperand(0);
419   auto x = op.getOperand(1);
420   if (!getElementTypeOrSelf(x).isF32())
421     return rewriter.notifyMatchFailure(op, "unsupported operand type");
422 
423   ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
424   ArrayRef<int64_t> shape = vectorShape(op.getResult());
425 
426   // Compute atan in the valid range.
427   auto div = builder.create<arith::DivFOp>(y, x);
428   auto atan = builder.create<math::AtanOp>(div);
429 
430   // Determine what the atan would be for a 180 degree rotation.
431   auto zero = broadcast(builder, f32Cst(builder, 0.0f), shape);
432   auto pi = broadcast(builder, f32Cst(builder, 3.14159265359f), shape);
433   auto addPi = builder.create<arith::AddFOp>(atan, pi);
434   auto subPi = builder.create<arith::SubFOp>(atan, pi);
435   auto atanGt =
436       builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, atan, zero);
437   auto flippedAtan = builder.create<arith::SelectOp>(atanGt, subPi, addPi);
438 
439   // Determine whether to directly use atan or use the 180 degree flip
440   auto xGt = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, x, zero);
441   Value result = builder.create<arith::SelectOp>(xGt, atan, flippedAtan);
442 
443   // Handle x = 0, y > 0
444   Value xZero =
445       builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, x, zero);
446   Value yGt = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, y, zero);
447   Value isHalfPi = builder.create<arith::AndIOp>(xZero, yGt);
448   auto halfPi = broadcast(builder, f32Cst(builder, 1.57079632679f), shape);
449   result = builder.create<arith::SelectOp>(isHalfPi, halfPi, result);
450 
451   // Handle x = 0, y < 0
452   Value yLt = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, y, zero);
453   Value isNegativeHalfPiPi = builder.create<arith::AndIOp>(xZero, yLt);
454   auto negativeHalfPiPi =
455       broadcast(builder, f32Cst(builder, -1.57079632679f), shape);
456   result = builder.create<arith::SelectOp>(isNegativeHalfPiPi, negativeHalfPiPi,
457                                            result);
458 
459   // Handle x = 0, y = 0;
460   Value yZero =
461       builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, y, zero);
462   Value isNan = builder.create<arith::AndIOp>(xZero, yZero);
463   Value cstNan = broadcast(builder, f32FromBits(builder, 0x7fc00000), shape);
464   result = builder.create<arith::SelectOp>(isNan, cstNan, result);
465 
466   rewriter.replaceOp(op, result);
467   return success();
468 }
469 
470 //----------------------------------------------------------------------------//
471 // TanhOp approximation.
472 //----------------------------------------------------------------------------//
473 
474 namespace {
475 struct TanhApproximation : public OpRewritePattern<math::TanhOp> {
476 public:
477   using OpRewritePattern::OpRewritePattern;
478 
479   LogicalResult matchAndRewrite(math::TanhOp op,
480                                 PatternRewriter &rewriter) const final;
481 };
482 } // namespace
483 
484 LogicalResult
485 TanhApproximation::matchAndRewrite(math::TanhOp op,
486                                    PatternRewriter &rewriter) const {
487   if (!getElementTypeOrSelf(op.getOperand()).isF32())
488     return rewriter.notifyMatchFailure(op, "unsupported operand type");
489 
490   ArrayRef<int64_t> shape = vectorShape(op.getOperand());
491 
492   ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
493   auto bcast = [&](Value value) -> Value {
494     return broadcast(builder, value, shape);
495   };
496 
497   // Clamp operand into [plusClamp, minusClamp] range.
498   Value minusClamp = bcast(f32Cst(builder, -7.99881172180175781f));
499   Value plusClamp = bcast(f32Cst(builder, 7.99881172180175781f));
500   Value x = clamp(builder, op.getOperand(), minusClamp, plusClamp);
501 
502   // Mask for tiny values that are approximated with `operand`.
503   Value tiny = bcast(f32Cst(builder, 0.0004f));
504   Value tinyMask = builder.create<arith::CmpFOp>(
505       arith::CmpFPredicate::OLT, builder.create<math::AbsOp>(op.getOperand()),
506       tiny);
507 
508   // The monomial coefficients of the numerator polynomial (odd).
509   Value alpha1 = bcast(f32Cst(builder, 4.89352455891786e-03f));
510   Value alpha3 = bcast(f32Cst(builder, 6.37261928875436e-04f));
511   Value alpha5 = bcast(f32Cst(builder, 1.48572235717979e-05f));
512   Value alpha7 = bcast(f32Cst(builder, 5.12229709037114e-08f));
513   Value alpha9 = bcast(f32Cst(builder, -8.60467152213735e-11f));
514   Value alpha11 = bcast(f32Cst(builder, 2.00018790482477e-13f));
515   Value alpha13 = bcast(f32Cst(builder, -2.76076847742355e-16f));
516 
517   // The monomial coefficients of the denominator polynomial (even).
518   Value beta0 = bcast(f32Cst(builder, 4.89352518554385e-03f));
519   Value beta2 = bcast(f32Cst(builder, 2.26843463243900e-03f));
520   Value beta4 = bcast(f32Cst(builder, 1.18534705686654e-04f));
521   Value beta6 = bcast(f32Cst(builder, 1.19825839466702e-06f));
522 
523   // Since the polynomials are odd/even, we need x^2.
524   Value x2 = builder.create<arith::MulFOp>(x, x);
525 
526   // Evaluate the numerator polynomial p.
527   Value p = builder.create<math::FmaOp>(x2, alpha13, alpha11);
528   p = builder.create<math::FmaOp>(x2, p, alpha9);
529   p = builder.create<math::FmaOp>(x2, p, alpha7);
530   p = builder.create<math::FmaOp>(x2, p, alpha5);
531   p = builder.create<math::FmaOp>(x2, p, alpha3);
532   p = builder.create<math::FmaOp>(x2, p, alpha1);
533   p = builder.create<arith::MulFOp>(x, p);
534 
535   // Evaluate the denominator polynomial q.
536   Value q = builder.create<math::FmaOp>(x2, beta6, beta4);
537   q = builder.create<math::FmaOp>(x2, q, beta2);
538   q = builder.create<math::FmaOp>(x2, q, beta0);
539 
540   // Divide the numerator by the denominator.
541   Value res = builder.create<arith::SelectOp>(
542       tinyMask, x, builder.create<arith::DivFOp>(p, q));
543 
544   rewriter.replaceOp(op, res);
545 
546   return success();
547 }
548 
549 #define LN2_VALUE                                                              \
550   0.693147180559945309417232121458176568075500134360255254120680009493393621L
551 #define LOG2E_VALUE                                                            \
552   1.442695040888963407359924681001892137426645954152985934135449406931109219L
553 
554 //----------------------------------------------------------------------------//
555 // LogOp and Log2Op approximation.
556 //----------------------------------------------------------------------------//
557 
558 namespace {
559 template <typename Op>
560 struct LogApproximationBase : public OpRewritePattern<Op> {
561   using OpRewritePattern<Op>::OpRewritePattern;
562 
563   /// Base 2 if 'base2' is set; natural logarithm (base e) otherwise.
564   LogicalResult logMatchAndRewrite(Op op, PatternRewriter &rewriter,
565                                    bool base2) const;
566 };
567 } // namespace
568 
569 // This approximation comes from Julien Pommier's SSE math library.
570 // Link: http://gruntthepeon.free.fr/ssemath
571 template <typename Op>
572 LogicalResult
573 LogApproximationBase<Op>::logMatchAndRewrite(Op op, PatternRewriter &rewriter,
574                                              bool base2) const {
575   if (!getElementTypeOrSelf(op.getOperand()).isF32())
576     return rewriter.notifyMatchFailure(op, "unsupported operand type");
577 
578   ArrayRef<int64_t> shape = vectorShape(op.getOperand());
579 
580   ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
581   auto bcast = [&](Value value) -> Value {
582     return broadcast(builder, value, shape);
583   };
584 
585   Value cstZero = bcast(f32Cst(builder, 0.0f));
586   Value cstOne = bcast(f32Cst(builder, 1.0f));
587   Value cstNegHalf = bcast(f32Cst(builder, -0.5f));
588 
589   // The smallest non denormalized float number.
590   Value cstMinNormPos = bcast(f32FromBits(builder, 0x00800000u));
591   Value cstMinusInf = bcast(f32FromBits(builder, 0xff800000u));
592   Value cstPosInf = bcast(f32FromBits(builder, 0x7f800000u));
593   Value cstNan = bcast(f32FromBits(builder, 0x7fc00000));
594 
595   // Polynomial coefficients.
596   Value cstCephesSQRTHF = bcast(f32Cst(builder, 0.707106781186547524f));
597   Value cstCephesLogP0 = bcast(f32Cst(builder, 7.0376836292E-2f));
598   Value cstCephesLogP1 = bcast(f32Cst(builder, -1.1514610310E-1f));
599   Value cstCephesLogP2 = bcast(f32Cst(builder, 1.1676998740E-1f));
600   Value cstCephesLogP3 = bcast(f32Cst(builder, -1.2420140846E-1f));
601   Value cstCephesLogP4 = bcast(f32Cst(builder, +1.4249322787E-1f));
602   Value cstCephesLogP5 = bcast(f32Cst(builder, -1.6668057665E-1f));
603   Value cstCephesLogP6 = bcast(f32Cst(builder, +2.0000714765E-1f));
604   Value cstCephesLogP7 = bcast(f32Cst(builder, -2.4999993993E-1f));
605   Value cstCephesLogP8 = bcast(f32Cst(builder, +3.3333331174E-1f));
606 
607   Value x = op.getOperand();
608 
609   // Truncate input values to the minimum positive normal.
610   x = max(builder, x, cstMinNormPos);
611 
612   // Extract significant in the range [0.5,1) and exponent.
613   std::pair<Value, Value> pair = frexp(builder, x, /*isPositive=*/true);
614   x = pair.first;
615   Value e = pair.second;
616 
617   // Shift the inputs from the range [0.5,1) to [sqrt(1/2), sqrt(2)) and shift
618   // by -1.0. The values are then centered around 0, which improves the
619   // stability of the polynomial evaluation:
620   //
621   //   if( x < SQRTHF ) {
622   //     e -= 1;
623   //     x = x + x - 1.0;
624   //   } else { x = x - 1.0; }
625   Value mask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, x,
626                                              cstCephesSQRTHF);
627   Value tmp = builder.create<arith::SelectOp>(mask, x, cstZero);
628 
629   x = builder.create<arith::SubFOp>(x, cstOne);
630   e = builder.create<arith::SubFOp>(
631       e, builder.create<arith::SelectOp>(mask, cstOne, cstZero));
632   x = builder.create<arith::AddFOp>(x, tmp);
633 
634   Value x2 = builder.create<arith::MulFOp>(x, x);
635   Value x3 = builder.create<arith::MulFOp>(x2, x);
636 
637   // Evaluate the polynomial approximant of degree 8 in three parts.
638   Value y0, y1, y2;
639   y0 = builder.create<math::FmaOp>(cstCephesLogP0, x, cstCephesLogP1);
640   y1 = builder.create<math::FmaOp>(cstCephesLogP3, x, cstCephesLogP4);
641   y2 = builder.create<math::FmaOp>(cstCephesLogP6, x, cstCephesLogP7);
642   y0 = builder.create<math::FmaOp>(y0, x, cstCephesLogP2);
643   y1 = builder.create<math::FmaOp>(y1, x, cstCephesLogP5);
644   y2 = builder.create<math::FmaOp>(y2, x, cstCephesLogP8);
645   y0 = builder.create<math::FmaOp>(y0, x3, y1);
646   y0 = builder.create<math::FmaOp>(y0, x3, y2);
647   y0 = builder.create<arith::MulFOp>(y0, x3);
648 
649   y0 = builder.create<math::FmaOp>(cstNegHalf, x2, y0);
650   x = builder.create<arith::AddFOp>(x, y0);
651 
652   if (base2) {
653     Value cstLog2e = bcast(f32Cst(builder, static_cast<float>(LOG2E_VALUE)));
654     x = builder.create<math::FmaOp>(x, cstLog2e, e);
655   } else {
656     Value cstLn2 = bcast(f32Cst(builder, static_cast<float>(LN2_VALUE)));
657     x = builder.create<math::FmaOp>(e, cstLn2, x);
658   }
659 
660   Value invalidMask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::ULT,
661                                                     op.getOperand(), cstZero);
662   Value zeroMask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ,
663                                                  op.getOperand(), cstZero);
664   Value posInfMask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ,
665                                                    op.getOperand(), cstPosInf);
666 
667   // Filter out invalid values:
668   //  • x == 0     -> -INF
669   //  • x < 0      ->  NAN
670   //  • x == +INF  -> +INF
671   Value aproximation = builder.create<arith::SelectOp>(
672       zeroMask, cstMinusInf,
673       builder.create<arith::SelectOp>(
674           invalidMask, cstNan,
675           builder.create<arith::SelectOp>(posInfMask, cstPosInf, x)));
676 
677   rewriter.replaceOp(op, aproximation);
678 
679   return success();
680 }
681 
682 namespace {
683 struct LogApproximation : public LogApproximationBase<math::LogOp> {
684   using LogApproximationBase::LogApproximationBase;
685 
686   LogicalResult matchAndRewrite(math::LogOp op,
687                                 PatternRewriter &rewriter) const final {
688     return logMatchAndRewrite(op, rewriter, /*base2=*/false);
689   }
690 };
691 } // namespace
692 
693 namespace {
694 struct Log2Approximation : public LogApproximationBase<math::Log2Op> {
695   using LogApproximationBase::LogApproximationBase;
696 
697   LogicalResult matchAndRewrite(math::Log2Op op,
698                                 PatternRewriter &rewriter) const final {
699     return logMatchAndRewrite(op, rewriter, /*base2=*/true);
700   }
701 };
702 } // namespace
703 
704 //----------------------------------------------------------------------------//
705 // Log1p approximation.
706 //----------------------------------------------------------------------------//
707 
708 namespace {
709 struct Log1pApproximation : public OpRewritePattern<math::Log1pOp> {
710 public:
711   using OpRewritePattern::OpRewritePattern;
712 
713   LogicalResult matchAndRewrite(math::Log1pOp op,
714                                 PatternRewriter &rewriter) const final;
715 };
716 } // namespace
717 
718 // Approximate log(1+x).
719 LogicalResult
720 Log1pApproximation::matchAndRewrite(math::Log1pOp op,
721                                     PatternRewriter &rewriter) const {
722   if (!getElementTypeOrSelf(op.getOperand()).isF32())
723     return rewriter.notifyMatchFailure(op, "unsupported operand type");
724 
725   ArrayRef<int64_t> shape = vectorShape(op.getOperand());
726 
727   ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
728   auto bcast = [&](Value value) -> Value {
729     return broadcast(builder, value, shape);
730   };
731 
732   // Approximate log(1+x) using the following, due to W. Kahan:
733   //   u = x + 1.0;
734   //   if (u == 1.0 || u == inf) return x;
735   //   return x * log(u) / (u - 1.0);
736   //          ^^^^^^^^^^^^^^^^^^^^^^
737   //             "logLarge" below.
738   Value cstOne = bcast(f32Cst(builder, 1.0f));
739   Value x = op.getOperand();
740   Value u = builder.create<arith::AddFOp>(x, cstOne);
741   Value uSmall =
742       builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, u, cstOne);
743   Value logU = builder.create<math::LogOp>(u);
744   Value uInf =
745       builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, u, logU);
746   Value logLarge = builder.create<arith::MulFOp>(
747       x, builder.create<arith::DivFOp>(
748              logU, builder.create<arith::SubFOp>(u, cstOne)));
749   Value approximation = builder.create<arith::SelectOp>(
750       builder.create<arith::OrIOp>(uSmall, uInf), x, logLarge);
751   rewriter.replaceOp(op, approximation);
752   return success();
753 }
754 
755 //----------------------------------------------------------------------------//
756 // Erf approximation.
757 //----------------------------------------------------------------------------//
758 
759 // Approximates erf(x) with
760 // a - P(x)/Q(x)
761 // where P and Q are polynomials of degree 4.
762 // Different coefficients are chosen based on the value of x.
763 // The approximation error is ~2.5e-07.
764 // Boost's minimax tool that utilizes the Remez method was used to find the
765 // coefficients.
766 LogicalResult
767 ErfPolynomialApproximation::matchAndRewrite(math::ErfOp op,
768                                             PatternRewriter &rewriter) const {
769   if (!getElementTypeOrSelf(op.getOperand()).isF32())
770     return rewriter.notifyMatchFailure(op, "unsupported operand type");
771 
772   ArrayRef<int64_t> shape = vectorShape(op.getOperand());
773 
774   ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
775   auto bcast = [&](Value value) -> Value {
776     return broadcast(builder, value, shape);
777   };
778 
779   const int intervalsCount = 3;
780   const int polyDegree = 4;
781 
782   Value zero = bcast(f32Cst(builder, 0));
783   Value one = bcast(f32Cst(builder, 1));
784   Value pp[intervalsCount][polyDegree + 1];
785   pp[0][0] = bcast(f32Cst(builder, +0.00000000000000000e+00f));
786   pp[0][1] = bcast(f32Cst(builder, +1.12837916222975858e+00f));
787   pp[0][2] = bcast(f32Cst(builder, -5.23018562988006470e-01f));
788   pp[0][3] = bcast(f32Cst(builder, +2.09741709609267072e-01f));
789   pp[0][4] = bcast(f32Cst(builder, +2.58146801602987875e-02f));
790   pp[1][0] = bcast(f32Cst(builder, +0.00000000000000000e+00f));
791   pp[1][1] = bcast(f32Cst(builder, +1.12750687816789140e+00f));
792   pp[1][2] = bcast(f32Cst(builder, -3.64721408487825775e-01f));
793   pp[1][3] = bcast(f32Cst(builder, +1.18407396425136952e-01f));
794   pp[1][4] = bcast(f32Cst(builder, +3.70645533056476558e-02f));
795   pp[2][0] = bcast(f32Cst(builder, -3.30093071049483172e-03f));
796   pp[2][1] = bcast(f32Cst(builder, +3.51961938357697011e-03f));
797   pp[2][2] = bcast(f32Cst(builder, -1.41373622814988039e-03f));
798   pp[2][3] = bcast(f32Cst(builder, +2.53447094961941348e-04f));
799   pp[2][4] = bcast(f32Cst(builder, -1.71048029455037401e-05f));
800 
801   Value qq[intervalsCount][polyDegree + 1];
802   qq[0][0] = bcast(f32Cst(builder, +1.000000000000000000e+00f));
803   qq[0][1] = bcast(f32Cst(builder, -4.635138185962547255e-01f));
804   qq[0][2] = bcast(f32Cst(builder, +5.192301327279782447e-01f));
805   qq[0][3] = bcast(f32Cst(builder, -1.318089722204810087e-01f));
806   qq[0][4] = bcast(f32Cst(builder, +7.397964654672315005e-02f));
807   qq[1][0] = bcast(f32Cst(builder, +1.00000000000000000e+00f));
808   qq[1][1] = bcast(f32Cst(builder, -3.27607011824493086e-01f));
809   qq[1][2] = bcast(f32Cst(builder, +4.48369090658821977e-01f));
810   qq[1][3] = bcast(f32Cst(builder, -8.83462621207857930e-02f));
811   qq[1][4] = bcast(f32Cst(builder, +5.72442770283176093e-02f));
812   qq[2][0] = bcast(f32Cst(builder, +1.00000000000000000e+00f));
813   qq[2][1] = bcast(f32Cst(builder, -2.06069165953913769e+00f));
814   qq[2][2] = bcast(f32Cst(builder, +1.62705939945477759e+00f));
815   qq[2][3] = bcast(f32Cst(builder, -5.83389859211130017e-01f));
816   qq[2][4] = bcast(f32Cst(builder, +8.21908939856640930e-02f));
817 
818   Value offsets[intervalsCount];
819   offsets[0] = bcast(f32Cst(builder, 0.0f));
820   offsets[1] = bcast(f32Cst(builder, 0.0f));
821   offsets[2] = bcast(f32Cst(builder, 1.0f));
822 
823   Value bounds[intervalsCount];
824   bounds[0] = bcast(f32Cst(builder, 0.8f));
825   bounds[1] = bcast(f32Cst(builder, 2.0f));
826   bounds[2] = bcast(f32Cst(builder, 3.75f));
827 
828   Value isNegativeArg = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT,
829                                                       op.getOperand(), zero);
830   Value negArg = builder.create<arith::NegFOp>(op.getOperand());
831   Value x =
832       builder.create<arith::SelectOp>(isNegativeArg, negArg, op.getOperand());
833 
834   Value offset = offsets[0];
835   Value p[polyDegree + 1];
836   Value q[polyDegree + 1];
837   for (int i = 0; i <= polyDegree; ++i) {
838     p[i] = pp[0][i];
839     q[i] = qq[0][i];
840   }
841 
842   // TODO: maybe use vector stacking to reduce the number of selects.
843   Value isLessThanBound[intervalsCount];
844   for (int j = 0; j < intervalsCount - 1; ++j) {
845     isLessThanBound[j] =
846         builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, x, bounds[j]);
847     for (int i = 0; i <= polyDegree; ++i) {
848       p[i] = builder.create<arith::SelectOp>(isLessThanBound[j], p[i],
849                                              pp[j + 1][i]);
850       q[i] = builder.create<arith::SelectOp>(isLessThanBound[j], q[i],
851                                              qq[j + 1][i]);
852     }
853     offset = builder.create<arith::SelectOp>(isLessThanBound[j], offset,
854                                              offsets[j + 1]);
855   }
856   isLessThanBound[intervalsCount - 1] = builder.create<arith::CmpFOp>(
857       arith::CmpFPredicate::ULT, x, bounds[intervalsCount - 1]);
858 
859   Value pPoly = makePolynomialCalculation(builder, p, x);
860   Value qPoly = makePolynomialCalculation(builder, q, x);
861   Value rationalPoly = builder.create<arith::DivFOp>(pPoly, qPoly);
862   Value formula = builder.create<arith::AddFOp>(offset, rationalPoly);
863   formula = builder.create<arith::SelectOp>(isLessThanBound[intervalsCount - 1],
864                                             formula, one);
865 
866   // erf is odd function: erf(x) = -erf(-x).
867   Value negFormula = builder.create<arith::NegFOp>(formula);
868   Value res =
869       builder.create<arith::SelectOp>(isNegativeArg, negFormula, formula);
870 
871   rewriter.replaceOp(op, res);
872 
873   return success();
874 }
875 
876 //----------------------------------------------------------------------------//
877 // Exp approximation.
878 //----------------------------------------------------------------------------//
879 
880 namespace {
881 
882 struct ExpApproximation : public OpRewritePattern<math::ExpOp> {
883 public:
884   using OpRewritePattern::OpRewritePattern;
885 
886   LogicalResult matchAndRewrite(math::ExpOp op,
887                                 PatternRewriter &rewriter) const final;
888 };
889 } // namespace
890 
891 // Approximate exp(x) using its reduced range exp(y) where y is in the range
892 // [0, ln(2)], let y = x - floor(x / ln(2)) * ln(2) = x - k * ln(2), exp(x)
893 // = exp(y) * 2^k. exp(y).
894 LogicalResult
895 ExpApproximation::matchAndRewrite(math::ExpOp op,
896                                   PatternRewriter &rewriter) const {
897   if (!getElementTypeOrSelf(op.getOperand()).isF32())
898     return rewriter.notifyMatchFailure(op, "unsupported operand type");
899 
900   ArrayRef<int64_t> shape = vectorShape(op.getOperand());
901 
902   ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
903 
904   // TODO: Consider a common pattern rewriter with all methods below to
905   // write the approximations.
906   auto bcast = [&](Value value) -> Value {
907     return broadcast(builder, value, shape);
908   };
909   auto fmla = [&](Value a, Value b, Value c) {
910     return builder.create<math::FmaOp>(a, b, c);
911   };
912   auto mul = [&](Value a, Value b) -> Value {
913     return builder.create<arith::MulFOp>(a, b);
914   };
915   auto sub = [&](Value a, Value b) -> Value {
916     return builder.create<arith::SubFOp>(a, b);
917   };
918   auto floor = [&](Value a) { return builder.create<math::FloorOp>(a); };
919 
920   Value cstLn2 = bcast(f32Cst(builder, static_cast<float>(LN2_VALUE)));
921   Value cstLog2E = bcast(f32Cst(builder, static_cast<float>(LOG2E_VALUE)));
922 
923   // Polynomial coefficients.
924   Value cstCephesExpP0 = bcast(f32Cst(builder, 1.0));
925   Value cstCephesExpP1 = bcast(f32Cst(builder, 1.0));
926   Value cstCephesExpP2 = bcast(f32Cst(builder, 0.49970514590562437052f));
927   Value cstCephesExpP3 = bcast(f32Cst(builder, 0.16873890085469545053f));
928   Value cstCephesExpP4 = bcast(f32Cst(builder, 0.03668965196652099192f));
929   Value cstCephesExpP5 = bcast(f32Cst(builder, 0.01314350012789660196f));
930 
931   Value x = op.getOperand();
932 
933   // Reduced y = x - floor(x / ln(2)) * ln(2) = x - k * ln(2)
934   Value xL2Inv = mul(x, cstLog2E);
935   Value kF32 = floor(xL2Inv);
936   Value kLn2 = mul(kF32, cstLn2);
937   Value y = sub(x, kLn2);
938 
939   // Use Estrin's evaluation scheme with 3 independent parts:
940   // P(y)^y : (c0 + c1 y) + (c2 + c3 y) y^2 + (c4 + c5 y) y^4
941   Value y2 = mul(y, y);
942   Value y4 = mul(y2, y2);
943 
944   Value q0 = fmla(cstCephesExpP1, y, cstCephesExpP0);
945   Value q1 = fmla(cstCephesExpP3, y, cstCephesExpP2);
946   Value q2 = fmla(cstCephesExpP5, y, cstCephesExpP4);
947   Value expY = fmla(q1, y2, q0);
948   expY = fmla(q2, y4, expY);
949 
950   auto i32Vec = broadcast(builder.getI32Type(), shape);
951 
952   // exp2(k)
953   Value k = builder.create<arith::FPToSIOp>(i32Vec, kF32);
954   Value exp2KValue = exp2I32(builder, k);
955 
956   // exp(x) = exp(y) * exp2(k)
957   expY = mul(expY, exp2KValue);
958 
959   // Handle overflow, inf and underflow of exp(x). exp(x) range is [0, inf], its
960   // partitioned as the following:
961   // exp(x) = 0, x <= -inf
962   // exp(x) = underflow (min_float), x <= -88
963   // exp(x) = inf (min_float), x >= 88
964   // Note: |k| = 127 is the value where the 8-bits exponent saturates.
965   Value zerof32Const = bcast(f32Cst(builder, 0));
966   auto constPosInfinity =
967       bcast(f32Cst(builder, std::numeric_limits<float>::infinity()));
968   auto constNegIfinity =
969       bcast(f32Cst(builder, -std::numeric_limits<float>::infinity()));
970   auto underflow = bcast(f32Cst(builder, std::numeric_limits<float>::min()));
971 
972   Value kMaxConst = bcast(i32Cst(builder, 127));
973   Value kMaxNegConst = bcast(i32Cst(builder, -127));
974   Value rightBound =
975       builder.create<arith::CmpIOp>(arith::CmpIPredicate::sle, k, kMaxConst);
976   Value leftBound =
977       builder.create<arith::CmpIOp>(arith::CmpIPredicate::sge, k, kMaxNegConst);
978 
979   Value isNegInfinityX = builder.create<arith::CmpFOp>(
980       arith::CmpFPredicate::OEQ, x, constNegIfinity);
981   Value isPosInfinityX = builder.create<arith::CmpFOp>(
982       arith::CmpFPredicate::OEQ, x, constPosInfinity);
983   Value isPostiveX =
984       builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, x, zerof32Const);
985   Value isComputable = builder.create<arith::AndIOp>(rightBound, leftBound);
986 
987   expY = builder.create<arith::SelectOp>(
988       isNegInfinityX, zerof32Const,
989       builder.create<arith::SelectOp>(
990           isPosInfinityX, constPosInfinity,
991           builder.create<arith::SelectOp>(
992               isComputable, expY,
993               builder.create<arith::SelectOp>(isPostiveX, constPosInfinity,
994                                               underflow))));
995 
996   rewriter.replaceOp(op, expY);
997 
998   return success();
999 }
1000 
1001 //----------------------------------------------------------------------------//
1002 // ExpM1 approximation.
1003 //----------------------------------------------------------------------------//
1004 
1005 namespace {
1006 
1007 struct ExpM1Approximation : public OpRewritePattern<math::ExpM1Op> {
1008 public:
1009   using OpRewritePattern::OpRewritePattern;
1010 
1011   LogicalResult matchAndRewrite(math::ExpM1Op op,
1012                                 PatternRewriter &rewriter) const final;
1013 };
1014 } // namespace
1015 
1016 LogicalResult
1017 ExpM1Approximation::matchAndRewrite(math::ExpM1Op op,
1018                                     PatternRewriter &rewriter) const {
1019   if (!getElementTypeOrSelf(op.getOperand()).isF32())
1020     return rewriter.notifyMatchFailure(op, "unsupported operand type");
1021 
1022   ArrayRef<int64_t> shape = vectorShape(op.getOperand());
1023 
1024   ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
1025   auto bcast = [&](Value value) -> Value {
1026     return broadcast(builder, value, shape);
1027   };
1028 
1029   // expm1(x) = exp(x) - 1 = u - 1.
1030   // We have to handle it carefully when x is near 0, i.e. u ~= 1,
1031   // and when the input is ~= -inf, i.e. u - 1 ~= -1.
1032   Value cstOne = bcast(f32Cst(builder, 1.0f));
1033   Value cstNegOne = bcast(f32Cst(builder, -1.0f));
1034   Value x = op.getOperand();
1035   Value u = builder.create<math::ExpOp>(x);
1036   Value uEqOne =
1037       builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, u, cstOne);
1038   Value uMinusOne = builder.create<arith::SubFOp>(u, cstOne);
1039   Value uMinusOneEqNegOne = builder.create<arith::CmpFOp>(
1040       arith::CmpFPredicate::OEQ, uMinusOne, cstNegOne);
1041   // logU = log(u) ~= x
1042   Value logU = builder.create<math::LogOp>(u);
1043 
1044   // Detect exp(x) = +inf; written this way to avoid having to form +inf.
1045   Value isInf =
1046       builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, logU, u);
1047 
1048   // (u - 1) * (x / ~x)
1049   Value expm1 = builder.create<arith::MulFOp>(
1050       uMinusOne, builder.create<arith::DivFOp>(x, logU));
1051   expm1 = builder.create<arith::SelectOp>(isInf, u, expm1);
1052   Value approximation = builder.create<arith::SelectOp>(
1053       uEqOne, x,
1054       builder.create<arith::SelectOp>(uMinusOneEqNegOne, cstNegOne, expm1));
1055   rewriter.replaceOp(op, approximation);
1056   return success();
1057 }
1058 
1059 //----------------------------------------------------------------------------//
1060 // Sin and Cos approximation.
1061 //----------------------------------------------------------------------------//
1062 
1063 namespace {
1064 
1065 template <bool isSine, typename OpTy>
1066 struct SinAndCosApproximation : public OpRewritePattern<OpTy> {
1067 public:
1068   using OpRewritePattern<OpTy>::OpRewritePattern;
1069 
1070   LogicalResult matchAndRewrite(OpTy op, PatternRewriter &rewriter) const final;
1071 };
1072 } // namespace
1073 
1074 #define TWO_OVER_PI                                                            \
1075   0.6366197723675813430755350534900574481378385829618257949906693762L
1076 #define PI_OVER_2                                                              \
1077   1.5707963267948966192313216916397514420985846996875529104874722961L
1078 
1079 // Approximates sin(x) or cos(x) by finding the best approximation polynomial in
1080 // the reduced range [0, pi/2] for both sin(x) and cos(x). Then given y in the
1081 // reduced range sin(x) will be computed as sin(y), -sin(y), cos(y) or -cos(y).
1082 template <bool isSine, typename OpTy>
1083 LogicalResult SinAndCosApproximation<isSine, OpTy>::matchAndRewrite(
1084     OpTy op, PatternRewriter &rewriter) const {
1085   static_assert(
1086       llvm::is_one_of<OpTy, math::SinOp, math::CosOp>::value,
1087       "SinAndCosApproximation pattern expects math::SinOp or math::CosOp");
1088 
1089   if (!getElementTypeOrSelf(op.getOperand()).isF32())
1090     return rewriter.notifyMatchFailure(op, "unsupported operand type");
1091 
1092   ArrayRef<int64_t> shape = vectorShape(op.getOperand());
1093 
1094   ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
1095   auto bcast = [&](Value value) -> Value {
1096     return broadcast(builder, value, shape);
1097   };
1098   auto mul = [&](Value a, Value b) -> Value {
1099     return builder.create<arith::MulFOp>(a, b);
1100   };
1101   auto sub = [&](Value a, Value b) -> Value {
1102     return builder.create<arith::SubFOp>(a, b);
1103   };
1104   auto floor = [&](Value a) { return builder.create<math::FloorOp>(a); };
1105 
1106   auto i32Vec = broadcast(builder.getI32Type(), shape);
1107   auto fPToSingedInteger = [&](Value a) -> Value {
1108     return builder.create<arith::FPToSIOp>(i32Vec, a);
1109   };
1110 
1111   auto modulo4 = [&](Value a) -> Value {
1112     return builder.create<arith::AndIOp>(a, bcast(i32Cst(builder, 3)));
1113   };
1114 
1115   auto isEqualTo = [&](Value a, Value b) -> Value {
1116     return builder.create<arith::CmpIOp>(arith::CmpIPredicate::eq, a, b);
1117   };
1118 
1119   auto isGreaterThan = [&](Value a, Value b) -> Value {
1120     return builder.create<arith::CmpIOp>(arith::CmpIPredicate::sgt, a, b);
1121   };
1122 
1123   auto select = [&](Value cond, Value t, Value f) -> Value {
1124     return builder.create<arith::SelectOp>(cond, t, f);
1125   };
1126 
1127   auto fmla = [&](Value a, Value b, Value c) {
1128     return builder.create<math::FmaOp>(a, b, c);
1129   };
1130 
1131   auto bitwiseOr = [&](Value a, Value b) {
1132     return builder.create<arith::OrIOp>(a, b);
1133   };
1134 
1135   Value twoOverPi = bcast(f32Cst(builder, (float)TWO_OVER_PI));
1136   Value piOverTwo = bcast(f32Cst(builder, (float)PI_OVER_2));
1137 
1138   Value x = op.getOperand();
1139 
1140   Value k = floor(mul(x, twoOverPi));
1141 
1142   Value y = sub(x, mul(k, piOverTwo));
1143 
1144   Value cstOne = bcast(f32Cst(builder, 1.0));
1145   Value cstNegativeOne = bcast(f32Cst(builder, -1.0));
1146 
1147   Value cstSC2 = bcast(f32Cst(builder, -0.16666667163372039794921875f));
1148   Value cstSC4 = bcast(f32Cst(builder, 8.333347737789154052734375e-3f));
1149   Value cstSC6 = bcast(f32Cst(builder, -1.9842604524455964565277099609375e-4f));
1150   Value cstSC8 =
1151       bcast(f32Cst(builder, 2.760012648650445044040679931640625e-6f));
1152   Value cstSC10 =
1153       bcast(f32Cst(builder, -2.50293279435709337121807038784027099609375e-8f));
1154 
1155   Value cstCC2 = bcast(f32Cst(builder, -0.5f));
1156   Value cstCC4 = bcast(f32Cst(builder, 4.166664183139801025390625e-2f));
1157   Value cstCC6 = bcast(f32Cst(builder, -1.388833043165504932403564453125e-3f));
1158   Value cstCC8 = bcast(f32Cst(builder, 2.47562347794882953166961669921875e-5f));
1159   Value cstCC10 =
1160       bcast(f32Cst(builder, -2.59630184018533327616751194000244140625e-7f));
1161 
1162   Value kMod4 = modulo4(fPToSingedInteger(k));
1163 
1164   Value kR0 = isEqualTo(kMod4, bcast(i32Cst(builder, 0)));
1165   Value kR1 = isEqualTo(kMod4, bcast(i32Cst(builder, 1)));
1166   Value kR2 = isEqualTo(kMod4, bcast(i32Cst(builder, 2)));
1167   Value kR3 = isEqualTo(kMod4, bcast(i32Cst(builder, 3)));
1168 
1169   Value sinuseCos = isSine ? bitwiseOr(kR1, kR3) : bitwiseOr(kR0, kR2);
1170   Value negativeRange = isSine ? isGreaterThan(kMod4, bcast(i32Cst(builder, 1)))
1171                                : bitwiseOr(kR1, kR2);
1172 
1173   Value y2 = mul(y, y);
1174 
1175   Value base = select(sinuseCos, cstOne, y);
1176   Value cstC2 = select(sinuseCos, cstCC2, cstSC2);
1177   Value cstC4 = select(sinuseCos, cstCC4, cstSC4);
1178   Value cstC6 = select(sinuseCos, cstCC6, cstSC6);
1179   Value cstC8 = select(sinuseCos, cstCC8, cstSC8);
1180   Value cstC10 = select(sinuseCos, cstCC10, cstSC10);
1181 
1182   Value v1 = fmla(y2, cstC10, cstC8);
1183   Value v2 = fmla(y2, v1, cstC6);
1184   Value v3 = fmla(y2, v2, cstC4);
1185   Value v4 = fmla(y2, v3, cstC2);
1186   Value v5 = fmla(y2, v4, cstOne);
1187   Value v6 = mul(base, v5);
1188 
1189   Value approximation = select(negativeRange, mul(cstNegativeOne, v6), v6);
1190 
1191   rewriter.replaceOp(op, approximation);
1192 
1193   return success();
1194 }
1195 
1196 //----------------------------------------------------------------------------//
1197 // Rsqrt approximation.
1198 //----------------------------------------------------------------------------//
1199 
1200 namespace {
1201 struct RsqrtApproximation : public OpRewritePattern<math::RsqrtOp> {
1202   using OpRewritePattern::OpRewritePattern;
1203 
1204   LogicalResult matchAndRewrite(math::RsqrtOp op,
1205                                 PatternRewriter &rewriter) const final;
1206 };
1207 } // namespace
1208 
1209 LogicalResult
1210 RsqrtApproximation::matchAndRewrite(math::RsqrtOp op,
1211                                     PatternRewriter &rewriter) const {
1212   if (!getElementTypeOrSelf(op.getOperand()).isF32())
1213     return rewriter.notifyMatchFailure(op, "unsupported operand type");
1214 
1215   ArrayRef<int64_t> shape = vectorShape(op.getOperand());
1216 
1217   // Only support already-vectorized rsqrt's.
1218   if (shape.empty() || shape.back() % 8 != 0)
1219     return rewriter.notifyMatchFailure(op, "unsupported operand type");
1220 
1221   ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
1222   auto bcast = [&](Value value) -> Value {
1223     return broadcast(builder, value, shape);
1224   };
1225 
1226   Value cstPosInf = bcast(f32FromBits(builder, 0x7f800000u));
1227   Value cstOnePointFive = bcast(f32Cst(builder, 1.5f));
1228   Value cstNegHalf = bcast(f32Cst(builder, -0.5f));
1229   Value cstMinNormPos = bcast(f32FromBits(builder, 0x00800000u));
1230 
1231   Value negHalf = builder.create<arith::MulFOp>(op.getOperand(), cstNegHalf);
1232 
1233   // Select only the inverse sqrt of positive normals (denormals are
1234   // flushed to zero).
1235   Value ltMinMask = builder.create<arith::CmpFOp>(
1236       arith::CmpFPredicate::OLT, op.getOperand(), cstMinNormPos);
1237   Value infMask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ,
1238                                                 op.getOperand(), cstPosInf);
1239   Value notNormalFiniteMask = builder.create<arith::OrIOp>(ltMinMask, infMask);
1240 
1241   // Compute an approximate result.
1242   Value yApprox = handleMultidimensionalVectors(
1243       builder, op->getOperands(), 8, [&builder](ValueRange operands) -> Value {
1244         return builder.create<x86vector::RsqrtOp>(operands);
1245       });
1246 
1247   // Do a single step of Newton-Raphson iteration to improve the approximation.
1248   // This uses the formula y_{n+1} = y_n * (1.5 - y_n * (0.5 * x) * y_n).
1249   // It is essential to evaluate the inner term like this because forming
1250   // y_n^2 may over- or underflow.
1251   Value inner = builder.create<arith::MulFOp>(negHalf, yApprox);
1252   Value fma = builder.create<math::FmaOp>(yApprox, inner, cstOnePointFive);
1253   Value yNewton = builder.create<arith::MulFOp>(yApprox, fma);
1254 
1255   // Select the result of the Newton-Raphson step for positive normal arguments.
1256   // For other arguments, choose the output of the intrinsic. This will
1257   // return rsqrt(+inf) = 0, rsqrt(x) = NaN if x < 0, and rsqrt(x) = +inf if
1258   // x is zero or a positive denormalized float (equivalent to flushing positive
1259   // denormalized inputs to zero).
1260   Value res =
1261       builder.create<arith::SelectOp>(notNormalFiniteMask, yApprox, yNewton);
1262   rewriter.replaceOp(op, res);
1263 
1264   return success();
1265 }
1266 
1267 //----------------------------------------------------------------------------//
1268 
1269 void mlir::populateMathPolynomialApproximationPatterns(
1270     RewritePatternSet &patterns,
1271     const MathPolynomialApproximationOptions &options) {
1272   patterns.add<AtanApproximation, Atan2Approximation, TanhApproximation,
1273                LogApproximation, Log2Approximation, Log1pApproximation,
1274                ErfPolynomialApproximation, ExpApproximation, ExpM1Approximation,
1275                ReuseF32Expansion<math::Atan2Op>,
1276                SinAndCosApproximation<true, math::SinOp>,
1277                SinAndCosApproximation<false, math::CosOp>>(
1278       patterns.getContext());
1279   if (options.enableAvx2)
1280     patterns.add<RsqrtApproximation>(patterns.getContext());
1281 }
1282