1 //===- PolynomialApproximation.cpp - Approximate math operations ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements expansion of math operations to fast approximations 10 // that do not rely on any of the library functions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 15 #include "mlir/Dialect/LLVMIR/LLVMTypes.h" 16 #include "mlir/Dialect/Math/IR/Math.h" 17 #include "mlir/Dialect/Math/Transforms/Passes.h" 18 #include "mlir/Dialect/Vector/VectorOps.h" 19 #include "mlir/IR/Builders.h" 20 #include "mlir/IR/ImplicitLocOpBuilder.h" 21 #include "mlir/Transforms/Bufferize.h" 22 #include "mlir/Transforms/DialectConversion.h" 23 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 24 #include <climits> 25 26 using namespace mlir; 27 using namespace mlir::vector; 28 29 using TypePredicate = llvm::function_ref<bool(Type)>; 30 31 // Returns vector width if the element type is matching the predicate (scalars 32 // that do match the predicate have width equal to `1`). 33 static Optional<int> vectorWidth(Type type, TypePredicate pred) { 34 // If the type matches the predicate then its width is `1`. 35 if (pred(type)) 36 return 1; 37 38 // Otherwise check if the type is a vector type. 39 auto vectorType = type.dyn_cast<VectorType>(); 40 if (vectorType && pred(vectorType.getElementType())) { 41 assert(vectorType.getRank() == 1 && "only 1d vectors are supported"); 42 return vectorType.getDimSize(0); 43 } 44 45 return llvm::None; 46 } 47 48 // Returns vector width of the type. If the type is a scalar returns `1`. 49 static int vectorWidth(Type type) { 50 auto vectorType = type.dyn_cast<VectorType>(); 51 return vectorType ? vectorType.getDimSize(0) : 1; 52 } 53 54 // Returns vector element type. If the type is a scalar returns the argument. 55 LLVM_ATTRIBUTE_UNUSED static Type elementType(Type type) { 56 auto vectorType = type.dyn_cast<VectorType>(); 57 return vectorType ? vectorType.getElementType() : type; 58 } 59 60 LLVM_ATTRIBUTE_UNUSED static bool isF32(Type type) { return type.isF32(); } 61 62 LLVM_ATTRIBUTE_UNUSED static bool isI32(Type type) { 63 return type.isInteger(32); 64 } 65 66 //----------------------------------------------------------------------------// 67 // Broadcast scalar types and values into vector types and values. 68 //----------------------------------------------------------------------------// 69 70 // Broadcasts scalar type into vector type (iff width is greater then 1). 71 static Type broadcast(Type type, int width) { 72 assert(!type.isa<VectorType>() && "must be scalar type"); 73 return width > 1 ? VectorType::get({width}, type) : type; 74 } 75 76 // Broadcasts scalar value into vector (iff width is greater then 1). 77 static Value broadcast(ImplicitLocOpBuilder &builder, Value value, int width) { 78 assert(!value.getType().isa<VectorType>() && "must be scalar value"); 79 auto type = broadcast(value.getType(), width); 80 return width > 1 ? builder.create<BroadcastOp>(type, value) : value; 81 } 82 83 //----------------------------------------------------------------------------// 84 // Helper functions to create constants. 85 //----------------------------------------------------------------------------// 86 87 static Value f32Cst(ImplicitLocOpBuilder &builder, float value) { 88 return builder.create<ConstantOp>(builder.getF32Type(), 89 builder.getF32FloatAttr(value)); 90 } 91 92 static Value i32Cst(ImplicitLocOpBuilder &builder, int32_t value) { 93 return builder.create<ConstantOp>(builder.getI32Type(), 94 builder.getI32IntegerAttr(value)); 95 } 96 97 static Value f32FromBits(ImplicitLocOpBuilder &builder, uint32_t bits) { 98 Value i32Value = i32Cst(builder, static_cast<int32_t>(bits)); 99 return builder.create<LLVM::BitcastOp>(builder.getF32Type(), i32Value); 100 } 101 102 //----------------------------------------------------------------------------// 103 // Helper functions to build math functions approximations. 104 //----------------------------------------------------------------------------// 105 106 static Value min(ImplicitLocOpBuilder &builder, Value a, Value b) { 107 return builder.create<SelectOp>( 108 builder.create<CmpFOp>(CmpFPredicate::OLT, a, b), a, b); 109 } 110 111 static Value max(ImplicitLocOpBuilder &builder, Value a, Value b) { 112 return builder.create<SelectOp>( 113 builder.create<CmpFOp>(CmpFPredicate::OGT, a, b), a, b); 114 } 115 116 static Value clamp(ImplicitLocOpBuilder &builder, Value value, Value lowerBound, 117 Value upperBound) { 118 return max(builder, min(builder, value, upperBound), lowerBound); 119 } 120 121 // Decomposes given floating point value `arg` into a normalized fraction and 122 // an integral power of two (see std::frexp). Returned values have float type. 123 static std::pair<Value, Value> frexp(ImplicitLocOpBuilder &builder, Value arg, 124 bool is_positive = false) { 125 assert(isF32(elementType(arg.getType())) && "argument must be f32 type"); 126 127 int width = vectorWidth(arg.getType()); 128 129 auto bcast = [&](Value value) -> Value { 130 return broadcast(builder, value, width); 131 }; 132 133 auto i32 = builder.getIntegerType(32); 134 auto i32Vec = broadcast(i32, width); 135 auto f32Vec = broadcast(builder.getF32Type(), width); 136 137 Value cst126f = f32Cst(builder, 126.0f); 138 Value cstHalf = f32Cst(builder, 0.5f); 139 Value cstInvMantMask = f32FromBits(builder, ~0x7f800000u); 140 141 // Bitcast to i32 for bitwise operations. 142 Value i32Half = builder.create<LLVM::BitcastOp>(i32, cstHalf); 143 Value i32InvMantMask = builder.create<LLVM::BitcastOp>(i32, cstInvMantMask); 144 Value i32Arg = builder.create<LLVM::BitcastOp>(i32Vec, arg); 145 146 // Compute normalized fraction. 147 Value tmp0 = builder.create<LLVM::AndOp>(i32Arg, bcast(i32InvMantMask)); 148 Value tmp1 = builder.create<LLVM::OrOp>(tmp0, bcast(i32Half)); 149 Value normalizedFraction = builder.create<LLVM::BitcastOp>(f32Vec, tmp1); 150 151 // Compute exponent. 152 Value arg0 = is_positive ? arg : builder.create<AbsFOp>(arg); 153 Value biasedExponentBits = builder.create<UnsignedShiftRightOp>( 154 builder.create<LLVM::BitcastOp>(i32Vec, arg0), 155 bcast(i32Cst(builder, 23))); 156 Value biasedExponent = builder.create<SIToFPOp>(f32Vec, biasedExponentBits); 157 Value exponent = builder.create<SubFOp>(biasedExponent, bcast(cst126f)); 158 159 return {normalizedFraction, exponent}; 160 } 161 162 // Computes exp2 for an i32 argument. 163 static Value exp2I32(ImplicitLocOpBuilder &builder, Value arg) { 164 assert(isI32(elementType(arg.getType())) && "argument must be i32 type"); 165 166 int width = vectorWidth(arg.getType()); 167 168 auto bcast = [&](Value value) -> Value { 169 return broadcast(builder, value, width); 170 }; 171 172 auto f32Vec = broadcast(builder.getF32Type(), width); 173 // The exponent of f32 located at 23-bit. 174 auto exponetBitLocation = bcast(i32Cst(builder, 23)); 175 // Set the exponent bias to zero. 176 auto bias = bcast(i32Cst(builder, 127)); 177 178 Value biasedArg = builder.create<AddIOp>(arg, bias); 179 Value exp2ValueInt = 180 builder.create<ShiftLeftOp>(biasedArg, exponetBitLocation); 181 Value exp2ValueF32 = builder.create<LLVM::BitcastOp>(f32Vec, exp2ValueInt); 182 183 return exp2ValueF32; 184 } 185 186 //----------------------------------------------------------------------------// 187 // TanhOp approximation. 188 //----------------------------------------------------------------------------// 189 190 namespace { 191 struct TanhApproximation : public OpRewritePattern<math::TanhOp> { 192 public: 193 using OpRewritePattern::OpRewritePattern; 194 195 LogicalResult matchAndRewrite(math::TanhOp op, 196 PatternRewriter &rewriter) const final; 197 }; 198 } // namespace 199 200 LogicalResult 201 TanhApproximation::matchAndRewrite(math::TanhOp op, 202 PatternRewriter &rewriter) const { 203 auto width = vectorWidth(op.operand().getType(), isF32); 204 if (!width.hasValue()) 205 return rewriter.notifyMatchFailure(op, "unsupported operand type"); 206 207 ImplicitLocOpBuilder builder(op->getLoc(), rewriter); 208 auto bcast = [&](Value value) -> Value { 209 return broadcast(builder, value, *width); 210 }; 211 212 // Clamp operand into [plusClamp, minusClamp] range. 213 Value minusClamp = bcast(f32Cst(builder, -7.9053111076354980f)); 214 Value plusClamp = bcast(f32Cst(builder, 7.90531110763549805f)); 215 Value x = clamp(builder, op.operand(), minusClamp, plusClamp); 216 217 // Mask for tiny values that are approximated with `operand`. 218 Value tiny = bcast(f32Cst(builder, 0.0004f)); 219 Value tinyMask = builder.create<CmpFOp>( 220 CmpFPredicate::OLT, builder.create<AbsFOp>(op.operand()), tiny); 221 222 // The monomial coefficients of the numerator polynomial (odd). 223 Value alpha1 = bcast(f32Cst(builder, 4.89352455891786e-03f)); 224 Value alpha3 = bcast(f32Cst(builder, 6.37261928875436e-04f)); 225 Value alpha5 = bcast(f32Cst(builder, 1.48572235717979e-05f)); 226 Value alpha7 = bcast(f32Cst(builder, 5.12229709037114e-08f)); 227 Value alpha9 = bcast(f32Cst(builder, -8.60467152213735e-11f)); 228 Value alpha11 = bcast(f32Cst(builder, 2.00018790482477e-13f)); 229 Value alpha13 = bcast(f32Cst(builder, -2.76076847742355e-16f)); 230 231 // The monomial coefficients of the denominator polynomial (even). 232 Value beta0 = bcast(f32Cst(builder, 4.89352518554385e-03f)); 233 Value beta2 = bcast(f32Cst(builder, 2.26843463243900e-03f)); 234 Value beta4 = bcast(f32Cst(builder, 1.18534705686654e-04f)); 235 Value beta6 = bcast(f32Cst(builder, 1.19825839466702e-06f)); 236 237 // Since the polynomials are odd/even, we need x^2. 238 Value x2 = builder.create<MulFOp>(x, x); 239 240 // Evaluate the numerator polynomial p. 241 Value p = builder.create<FmaFOp>(x2, alpha13, alpha11); 242 p = builder.create<FmaFOp>(x2, p, alpha9); 243 p = builder.create<FmaFOp>(x2, p, alpha7); 244 p = builder.create<FmaFOp>(x2, p, alpha5); 245 p = builder.create<FmaFOp>(x2, p, alpha3); 246 p = builder.create<FmaFOp>(x2, p, alpha1); 247 p = builder.create<MulFOp>(x, p); 248 249 // Evaluate the denominator polynomial q. 250 Value q = builder.create<FmaFOp>(x2, beta6, beta4); 251 q = builder.create<FmaFOp>(x2, q, beta2); 252 q = builder.create<FmaFOp>(x2, q, beta0); 253 254 // Divide the numerator by the denominator. 255 Value res = 256 builder.create<SelectOp>(tinyMask, x, builder.create<DivFOp>(p, q)); 257 258 rewriter.replaceOp(op, res); 259 260 return success(); 261 } 262 263 #define LN2_VALUE \ 264 0.693147180559945309417232121458176568075500134360255254120680009493393621L 265 #define LOG2E_VALUE \ 266 1.442695040888963407359924681001892137426645954152985934135449406931109219L 267 268 //----------------------------------------------------------------------------// 269 // LogOp and Log2Op approximation. 270 //----------------------------------------------------------------------------// 271 272 namespace { 273 template <typename Op> 274 struct LogApproximationBase : public OpRewritePattern<Op> { 275 using OpRewritePattern<Op>::OpRewritePattern; 276 277 /// Base 2 if 'base2' is set; natural logarithm (base e) otherwise. 278 LogicalResult logMatchAndRewrite(Op op, PatternRewriter &rewriter, 279 bool base2) const; 280 }; 281 } // namespace 282 283 // This approximation comes from Julien Pommier's SSE math library. 284 // Link: http://gruntthepeon.free.fr/ssemath 285 template <typename Op> 286 LogicalResult 287 LogApproximationBase<Op>::logMatchAndRewrite(Op op, PatternRewriter &rewriter, 288 bool base2) const { 289 auto width = vectorWidth(op.operand().getType(), isF32); 290 if (!width.hasValue()) 291 return rewriter.notifyMatchFailure(op, "unsupported operand type"); 292 293 ImplicitLocOpBuilder builder(op->getLoc(), rewriter); 294 auto bcast = [&](Value value) -> Value { 295 return broadcast(builder, value, *width); 296 }; 297 298 Value cstZero = bcast(f32Cst(builder, 0.0f)); 299 Value cstOne = bcast(f32Cst(builder, 1.0f)); 300 Value cstNegHalf = bcast(f32Cst(builder, -0.5f)); 301 302 // The smallest non denormalized float number. 303 Value cstMinNormPos = bcast(f32FromBits(builder, 0x00800000u)); 304 Value cstMinusInf = bcast(f32FromBits(builder, 0xff800000u)); 305 Value cstPosInf = bcast(f32FromBits(builder, 0x7f800000u)); 306 Value cstNan = bcast(f32FromBits(builder, 0x7fc00000)); 307 308 // Polynomial coefficients. 309 Value cstCephesSQRTHF = bcast(f32Cst(builder, 0.707106781186547524f)); 310 Value cstCephesLogP0 = bcast(f32Cst(builder, 7.0376836292E-2f)); 311 Value cstCephesLogP1 = bcast(f32Cst(builder, -1.1514610310E-1f)); 312 Value cstCephesLogP2 = bcast(f32Cst(builder, 1.1676998740E-1f)); 313 Value cstCephesLogP3 = bcast(f32Cst(builder, -1.2420140846E-1f)); 314 Value cstCephesLogP4 = bcast(f32Cst(builder, +1.4249322787E-1f)); 315 Value cstCephesLogP5 = bcast(f32Cst(builder, -1.6668057665E-1f)); 316 Value cstCephesLogP6 = bcast(f32Cst(builder, +2.0000714765E-1f)); 317 Value cstCephesLogP7 = bcast(f32Cst(builder, -2.4999993993E-1f)); 318 Value cstCephesLogP8 = bcast(f32Cst(builder, +3.3333331174E-1f)); 319 320 Value x = op.operand(); 321 322 // Truncate input values to the minimum positive normal. 323 x = max(builder, x, cstMinNormPos); 324 325 // Extract significant in the range [0.5,1) and exponent. 326 std::pair<Value, Value> pair = frexp(builder, x, /*is_positive=*/true); 327 x = pair.first; 328 Value e = pair.second; 329 330 // Shift the inputs from the range [0.5,1) to [sqrt(1/2), sqrt(2)) and shift 331 // by -1.0. The values are then centered around 0, which improves the 332 // stability of the polynomial evaluation: 333 // 334 // if( x < SQRTHF ) { 335 // e -= 1; 336 // x = x + x - 1.0; 337 // } else { x = x - 1.0; } 338 Value mask = builder.create<CmpFOp>(CmpFPredicate::OLT, x, cstCephesSQRTHF); 339 Value tmp = builder.create<SelectOp>(mask, x, cstZero); 340 341 x = builder.create<SubFOp>(x, cstOne); 342 e = builder.create<SubFOp>(e, 343 builder.create<SelectOp>(mask, cstOne, cstZero)); 344 x = builder.create<AddFOp>(x, tmp); 345 346 Value x2 = builder.create<MulFOp>(x, x); 347 Value x3 = builder.create<MulFOp>(x2, x); 348 349 // Evaluate the polynomial approximant of degree 8 in three parts. 350 Value y0, y1, y2; 351 y0 = builder.create<FmaFOp>(cstCephesLogP0, x, cstCephesLogP1); 352 y1 = builder.create<FmaFOp>(cstCephesLogP3, x, cstCephesLogP4); 353 y2 = builder.create<FmaFOp>(cstCephesLogP6, x, cstCephesLogP7); 354 y0 = builder.create<FmaFOp>(y0, x, cstCephesLogP2); 355 y1 = builder.create<FmaFOp>(y1, x, cstCephesLogP5); 356 y2 = builder.create<FmaFOp>(y2, x, cstCephesLogP8); 357 y0 = builder.create<FmaFOp>(y0, x3, y1); 358 y0 = builder.create<FmaFOp>(y0, x3, y2); 359 y0 = builder.create<MulFOp>(y0, x3); 360 361 y0 = builder.create<FmaFOp>(cstNegHalf, x2, y0); 362 x = builder.create<AddFOp>(x, y0); 363 364 if (base2) { 365 Value cstLog2e = bcast(f32Cst(builder, static_cast<float>(LOG2E_VALUE))); 366 x = builder.create<FmaFOp>(x, cstLog2e, e); 367 } else { 368 Value cstLn2 = bcast(f32Cst(builder, static_cast<float>(LN2_VALUE))); 369 x = builder.create<FmaFOp>(e, cstLn2, x); 370 } 371 372 Value invalidMask = 373 builder.create<CmpFOp>(CmpFPredicate::ULT, op.operand(), cstZero); 374 Value zeroMask = 375 builder.create<CmpFOp>(CmpFPredicate::OEQ, op.operand(), cstZero); 376 Value posInfMask = 377 builder.create<CmpFOp>(CmpFPredicate::OEQ, op.operand(), cstPosInf); 378 379 // Filter out invalid values: 380 // • x == 0 -> -INF 381 // • x < 0 -> NAN 382 // • x == +INF -> +INF 383 Value aproximation = builder.create<SelectOp>( 384 zeroMask, cstMinusInf, 385 builder.create<SelectOp>( 386 invalidMask, cstNan, 387 builder.create<SelectOp>(posInfMask, cstPosInf, x))); 388 389 rewriter.replaceOp(op, aproximation); 390 391 return success(); 392 } 393 394 namespace { 395 struct LogApproximation : public LogApproximationBase<math::LogOp> { 396 using LogApproximationBase::LogApproximationBase; 397 398 LogicalResult matchAndRewrite(math::LogOp op, 399 PatternRewriter &rewriter) const final { 400 return logMatchAndRewrite(op, rewriter, /*base2=*/false); 401 } 402 }; 403 } // namespace 404 405 namespace { 406 struct Log2Approximation : public LogApproximationBase<math::Log2Op> { 407 using LogApproximationBase::LogApproximationBase; 408 409 LogicalResult matchAndRewrite(math::Log2Op op, 410 PatternRewriter &rewriter) const final { 411 return logMatchAndRewrite(op, rewriter, /*base2=*/true); 412 } 413 }; 414 } // namespace 415 416 //----------------------------------------------------------------------------// 417 // Exp approximation. 418 //----------------------------------------------------------------------------// 419 420 namespace { 421 422 struct ExpApproximation : public OpRewritePattern<math::ExpOp> { 423 public: 424 using OpRewritePattern::OpRewritePattern; 425 426 LogicalResult matchAndRewrite(math::ExpOp op, 427 PatternRewriter &rewriter) const final; 428 }; 429 } // namespace 430 431 // Approximate exp(x) using its reduced range exp(y) where y is in the range 432 // [0, ln(2)], let y = x - floor(x / ln(2)) * ln(2) = x - k * ln(2), exp(x) 433 // = exp(y) * 2^k. exp(y). 434 LogicalResult 435 ExpApproximation::matchAndRewrite(math::ExpOp op, 436 PatternRewriter &rewriter) const { 437 auto width = vectorWidth(op.operand().getType(), isF32); 438 if (!width.hasValue()) 439 return rewriter.notifyMatchFailure(op, "unsupported operand type"); 440 ImplicitLocOpBuilder builder(op->getLoc(), rewriter); 441 442 // TODO: Consider a common pattern rewriter with all methods below to 443 // write the approximations. 444 auto bcast = [&](Value value) -> Value { 445 return broadcast(builder, value, *width); 446 }; 447 auto fmla = [&](Value a, Value b, Value c) { 448 return builder.create<FmaFOp>(a, b, c); 449 }; 450 auto mul = [&](Value a, Value b) -> Value { 451 return builder.create<MulFOp>(a, b); 452 }; 453 auto sub = [&](Value a, Value b) -> Value { 454 return builder.create<SubFOp>(a, b); 455 }; 456 auto floor = [&](Value a) { return builder.create<FloorFOp>(a); }; 457 458 Value cstLn2 = bcast(f32Cst(builder, static_cast<float>(LN2_VALUE))); 459 Value cstLog2E = bcast(f32Cst(builder, static_cast<float>(LOG2E_VALUE))); 460 461 // Polynomial coefficients. 462 Value cstCephesExpP0 = bcast(f32Cst(builder, 1.0)); 463 Value cstCephesExpP1 = bcast(f32Cst(builder, 1.0)); 464 Value cstCephesExpP2 = bcast(f32Cst(builder, 0.49970514590562437052f)); 465 Value cstCephesExpP3 = bcast(f32Cst(builder, 0.16873890085469545053f)); 466 Value cstCephesExpP4 = bcast(f32Cst(builder, 0.03668965196652099192f)); 467 Value cstCephesExpP5 = bcast(f32Cst(builder, 0.01314350012789660196f)); 468 469 Value x = op.operand(); 470 471 // Reduced y = x - floor(x / ln(2)) * ln(2) = x - k * ln(2) 472 Value xL2Inv = mul(x, cstLog2E); 473 Value kF32 = floor(xL2Inv); 474 Value kLn2 = mul(kF32, cstLn2); 475 Value y = sub(x, kLn2); 476 477 // Use Estrin's evaluation scheme with 3 independent parts: 478 // P(y)^y : (c0 + c1 y) + (c2 + c3 y) y^2 + (c4 + c5 y) y^4 479 Value y2 = mul(y, y); 480 Value y4 = mul(y2, y2); 481 482 Value q0 = fmla(cstCephesExpP1, y, cstCephesExpP0); 483 Value q1 = fmla(cstCephesExpP3, y, cstCephesExpP2); 484 Value q2 = fmla(cstCephesExpP5, y, cstCephesExpP4); 485 Value expY = fmla(q1, y2, q0); 486 expY = fmla(q2, y4, expY); 487 488 auto i32Vec = broadcast(builder.getI32Type(), *width); 489 490 // exp2(k) 491 Value k = builder.create<FPToSIOp>(kF32, i32Vec); 492 Value exp2KValue = exp2I32(builder, k); 493 494 // exp(x) = exp(y) * exp2(k) 495 expY = mul(expY, exp2KValue); 496 497 // Handle overflow, inf and underflow of exp(x). exp(x) range is [0, inf], its 498 // partitioned as the following: 499 // exp(x) = 0, x <= -inf 500 // exp(x) = underflow (min_float), x <= -88 501 // exp(x) = inf (min_float), x >= 88 502 // Note: |k| = 127 is the value where the 8-bits exponent saturates. 503 Value zerof32Const = bcast(f32Cst(builder, 0)); 504 auto constPosInfinity = 505 bcast(f32Cst(builder, std::numeric_limits<float>::infinity())); 506 auto constNegIfinity = 507 bcast(f32Cst(builder, -std::numeric_limits<float>::infinity())); 508 auto underflow = bcast(f32Cst(builder, std::numeric_limits<float>::min())); 509 510 Value kMaxConst = bcast(i32Cst(builder, 127)); 511 Value kMaxNegConst = bcast(i32Cst(builder, -127)); 512 Value rightBound = builder.create<CmpIOp>(CmpIPredicate::sle, k, kMaxConst); 513 Value leftBound = builder.create<CmpIOp>(CmpIPredicate::sge, k, kMaxNegConst); 514 515 Value isNegInfinityX = 516 builder.create<CmpFOp>(CmpFPredicate::OEQ, x, constNegIfinity); 517 Value isPostiveX = 518 builder.create<CmpFOp>(CmpFPredicate::OGT, x, zerof32Const); 519 Value isComputable = builder.create<AndOp>(rightBound, leftBound); 520 521 expY = builder.create<SelectOp>( 522 isComputable, expY, 523 builder.create<SelectOp>( 524 isPostiveX, constPosInfinity, 525 builder.create<SelectOp>(isNegInfinityX, zerof32Const, underflow))); 526 527 rewriter.replaceOp(op, expY); 528 529 return success(); 530 } 531 532 //----------------------------------------------------------------------------// 533 534 void mlir::populateMathPolynomialApproximationPatterns( 535 RewritePatternSet &patterns) { 536 patterns.add<TanhApproximation, LogApproximation, Log2Approximation, 537 ExpApproximation>(patterns.getContext()); 538 } 539