1 //===- PolynomialApproximation.cpp - Approximate math operations ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements expansion of math operations to fast approximations 10 // that do not rely on any of the library functions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Dialect/Math/IR/Math.h" 15 #include "mlir/Dialect/Math/Transforms/Passes.h" 16 #include "mlir/Dialect/Vector/VectorOps.h" 17 #include "mlir/IR/Builders.h" 18 #include "mlir/IR/ImplicitLocOpBuilder.h" 19 #include "mlir/Transforms/Bufferize.h" 20 #include "mlir/Transforms/DialectConversion.h" 21 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 22 #include <climits> 23 24 using namespace mlir; 25 using namespace mlir::vector; 26 27 using TypePredicate = llvm::function_ref<bool(Type)>; 28 29 // Returns vector width if the element type is matching the predicate (scalars 30 // that do match the predicate have width equal to `1`). 31 static Optional<int> vectorWidth(Type type, TypePredicate pred) { 32 // If the type matches the predicate then its width is `1`. 33 if (pred(type)) 34 return 1; 35 36 // Otherwise check if the type is a vector type. 37 auto vectorType = type.dyn_cast<VectorType>(); 38 if (vectorType && pred(vectorType.getElementType())) { 39 assert(vectorType.getRank() == 1 && "only 1d vectors are supported"); 40 return vectorType.getDimSize(0); 41 } 42 43 return llvm::None; 44 } 45 46 // Returns vector width of the type. If the type is a scalar returns `1`. 47 static int vectorWidth(Type type) { 48 auto vectorType = type.dyn_cast<VectorType>(); 49 return vectorType ? vectorType.getDimSize(0) : 1; 50 } 51 52 // Returns vector element type. If the type is a scalar returns the argument. 53 LLVM_ATTRIBUTE_UNUSED static Type elementType(Type type) { 54 auto vectorType = type.dyn_cast<VectorType>(); 55 return vectorType ? vectorType.getElementType() : type; 56 } 57 58 LLVM_ATTRIBUTE_UNUSED static bool isF32(Type type) { return type.isF32(); } 59 60 LLVM_ATTRIBUTE_UNUSED static bool isI32(Type type) { 61 return type.isInteger(32); 62 } 63 64 //----------------------------------------------------------------------------// 65 // Broadcast scalar types and values into vector types and values. 66 //----------------------------------------------------------------------------// 67 68 // Broadcasts scalar type into vector type (iff width is greater then 1). 69 static Type broadcast(Type type, int width) { 70 assert(!type.isa<VectorType>() && "must be scalar type"); 71 return width > 1 ? VectorType::get({width}, type) : type; 72 } 73 74 // Broadcasts scalar value into vector (iff width is greater then 1). 75 static Value broadcast(ImplicitLocOpBuilder &builder, Value value, int width) { 76 assert(!value.getType().isa<VectorType>() && "must be scalar value"); 77 auto type = broadcast(value.getType(), width); 78 return width > 1 ? builder.create<BroadcastOp>(type, value) : value; 79 } 80 81 //----------------------------------------------------------------------------// 82 // Helper functions to create constants. 83 //----------------------------------------------------------------------------// 84 85 static Value f32Cst(ImplicitLocOpBuilder &builder, float value) { 86 return builder.create<ConstantOp>(builder.getF32Type(), 87 builder.getF32FloatAttr(value)); 88 } 89 90 static Value i32Cst(ImplicitLocOpBuilder &builder, int32_t value) { 91 return builder.create<ConstantOp>(builder.getI32Type(), 92 builder.getI32IntegerAttr(value)); 93 } 94 95 static Value f32FromBits(ImplicitLocOpBuilder &builder, uint32_t bits) { 96 Value i32Value = i32Cst(builder, static_cast<int32_t>(bits)); 97 return builder.create<BitcastOp>(builder.getF32Type(), i32Value); 98 } 99 100 //----------------------------------------------------------------------------// 101 // Helper functions to build math functions approximations. 102 //----------------------------------------------------------------------------// 103 104 static Value min(ImplicitLocOpBuilder &builder, Value a, Value b) { 105 return builder.create<SelectOp>( 106 builder.create<CmpFOp>(CmpFPredicate::OLT, a, b), a, b); 107 } 108 109 static Value max(ImplicitLocOpBuilder &builder, Value a, Value b) { 110 return builder.create<SelectOp>( 111 builder.create<CmpFOp>(CmpFPredicate::OGT, a, b), a, b); 112 } 113 114 static Value clamp(ImplicitLocOpBuilder &builder, Value value, Value lowerBound, 115 Value upperBound) { 116 return max(builder, min(builder, value, upperBound), lowerBound); 117 } 118 119 // Decomposes given floating point value `arg` into a normalized fraction and 120 // an integral power of two (see std::frexp). Returned values have float type. 121 static std::pair<Value, Value> frexp(ImplicitLocOpBuilder &builder, Value arg, 122 bool is_positive = false) { 123 assert(isF32(elementType(arg.getType())) && "argument must be f32 type"); 124 125 int width = vectorWidth(arg.getType()); 126 127 auto bcast = [&](Value value) -> Value { 128 return broadcast(builder, value, width); 129 }; 130 131 auto i32 = builder.getIntegerType(32); 132 auto i32Vec = broadcast(i32, width); 133 auto f32Vec = broadcast(builder.getF32Type(), width); 134 135 Value cst126f = f32Cst(builder, 126.0f); 136 Value cstHalf = f32Cst(builder, 0.5f); 137 Value cstInvMantMask = f32FromBits(builder, ~0x7f800000u); 138 139 // Bitcast to i32 for bitwise operations. 140 Value i32Half = builder.create<BitcastOp>(i32, cstHalf); 141 Value i32InvMantMask = builder.create<BitcastOp>(i32, cstInvMantMask); 142 Value i32Arg = builder.create<BitcastOp>(i32Vec, arg); 143 144 // Compute normalized fraction. 145 Value tmp0 = builder.create<AndOp>(i32Arg, bcast(i32InvMantMask)); 146 Value tmp1 = builder.create<OrOp>(tmp0, bcast(i32Half)); 147 Value normalizedFraction = builder.create<BitcastOp>(f32Vec, tmp1); 148 149 // Compute exponent. 150 Value arg0 = is_positive ? arg : builder.create<AbsFOp>(arg); 151 Value biasedExponentBits = builder.create<UnsignedShiftRightOp>( 152 builder.create<BitcastOp>(i32Vec, arg0), bcast(i32Cst(builder, 23))); 153 Value biasedExponent = builder.create<SIToFPOp>(f32Vec, biasedExponentBits); 154 Value exponent = builder.create<SubFOp>(biasedExponent, bcast(cst126f)); 155 156 return {normalizedFraction, exponent}; 157 } 158 159 // Computes exp2 for an i32 argument. 160 static Value exp2I32(ImplicitLocOpBuilder &builder, Value arg) { 161 assert(isI32(elementType(arg.getType())) && "argument must be i32 type"); 162 163 int width = vectorWidth(arg.getType()); 164 165 auto bcast = [&](Value value) -> Value { 166 return broadcast(builder, value, width); 167 }; 168 169 auto f32Vec = broadcast(builder.getF32Type(), width); 170 // The exponent of f32 located at 23-bit. 171 auto exponetBitLocation = bcast(i32Cst(builder, 23)); 172 // Set the exponent bias to zero. 173 auto bias = bcast(i32Cst(builder, 127)); 174 175 Value biasedArg = builder.create<AddIOp>(arg, bias); 176 Value exp2ValueInt = 177 builder.create<ShiftLeftOp>(biasedArg, exponetBitLocation); 178 Value exp2ValueF32 = builder.create<BitcastOp>(f32Vec, exp2ValueInt); 179 180 return exp2ValueF32; 181 } 182 183 //----------------------------------------------------------------------------// 184 // TanhOp approximation. 185 //----------------------------------------------------------------------------// 186 187 namespace { 188 struct TanhApproximation : public OpRewritePattern<math::TanhOp> { 189 public: 190 using OpRewritePattern::OpRewritePattern; 191 192 LogicalResult matchAndRewrite(math::TanhOp op, 193 PatternRewriter &rewriter) const final; 194 }; 195 } // namespace 196 197 LogicalResult 198 TanhApproximation::matchAndRewrite(math::TanhOp op, 199 PatternRewriter &rewriter) const { 200 auto width = vectorWidth(op.operand().getType(), isF32); 201 if (!width.hasValue()) 202 return rewriter.notifyMatchFailure(op, "unsupported operand type"); 203 204 ImplicitLocOpBuilder builder(op->getLoc(), rewriter); 205 auto bcast = [&](Value value) -> Value { 206 return broadcast(builder, value, *width); 207 }; 208 209 // Clamp operand into [plusClamp, minusClamp] range. 210 Value minusClamp = bcast(f32Cst(builder, -7.9053111076354980f)); 211 Value plusClamp = bcast(f32Cst(builder, 7.90531110763549805f)); 212 Value x = clamp(builder, op.operand(), minusClamp, plusClamp); 213 214 // Mask for tiny values that are approximated with `operand`. 215 Value tiny = bcast(f32Cst(builder, 0.0004f)); 216 Value tinyMask = builder.create<CmpFOp>( 217 CmpFPredicate::OLT, builder.create<AbsFOp>(op.operand()), tiny); 218 219 // The monomial coefficients of the numerator polynomial (odd). 220 Value alpha1 = bcast(f32Cst(builder, 4.89352455891786e-03f)); 221 Value alpha3 = bcast(f32Cst(builder, 6.37261928875436e-04f)); 222 Value alpha5 = bcast(f32Cst(builder, 1.48572235717979e-05f)); 223 Value alpha7 = bcast(f32Cst(builder, 5.12229709037114e-08f)); 224 Value alpha9 = bcast(f32Cst(builder, -8.60467152213735e-11f)); 225 Value alpha11 = bcast(f32Cst(builder, 2.00018790482477e-13f)); 226 Value alpha13 = bcast(f32Cst(builder, -2.76076847742355e-16f)); 227 228 // The monomial coefficients of the denominator polynomial (even). 229 Value beta0 = bcast(f32Cst(builder, 4.89352518554385e-03f)); 230 Value beta2 = bcast(f32Cst(builder, 2.26843463243900e-03f)); 231 Value beta4 = bcast(f32Cst(builder, 1.18534705686654e-04f)); 232 Value beta6 = bcast(f32Cst(builder, 1.19825839466702e-06f)); 233 234 // Since the polynomials are odd/even, we need x^2. 235 Value x2 = builder.create<MulFOp>(x, x); 236 237 // Evaluate the numerator polynomial p. 238 Value p = builder.create<FmaFOp>(x2, alpha13, alpha11); 239 p = builder.create<FmaFOp>(x2, p, alpha9); 240 p = builder.create<FmaFOp>(x2, p, alpha7); 241 p = builder.create<FmaFOp>(x2, p, alpha5); 242 p = builder.create<FmaFOp>(x2, p, alpha3); 243 p = builder.create<FmaFOp>(x2, p, alpha1); 244 p = builder.create<MulFOp>(x, p); 245 246 // Evaluate the denominator polynomial q. 247 Value q = builder.create<FmaFOp>(x2, beta6, beta4); 248 q = builder.create<FmaFOp>(x2, q, beta2); 249 q = builder.create<FmaFOp>(x2, q, beta0); 250 251 // Divide the numerator by the denominator. 252 Value res = 253 builder.create<SelectOp>(tinyMask, x, builder.create<DivFOp>(p, q)); 254 255 rewriter.replaceOp(op, res); 256 257 return success(); 258 } 259 260 #define LN2_VALUE \ 261 0.693147180559945309417232121458176568075500134360255254120680009493393621L 262 #define LOG2E_VALUE \ 263 1.442695040888963407359924681001892137426645954152985934135449406931109219L 264 265 //----------------------------------------------------------------------------// 266 // LogOp and Log2Op approximation. 267 //----------------------------------------------------------------------------// 268 269 namespace { 270 template <typename Op> 271 struct LogApproximationBase : public OpRewritePattern<Op> { 272 using OpRewritePattern<Op>::OpRewritePattern; 273 274 /// Base 2 if 'base2' is set; natural logarithm (base e) otherwise. 275 LogicalResult logMatchAndRewrite(Op op, PatternRewriter &rewriter, 276 bool base2) const; 277 }; 278 } // namespace 279 280 // This approximation comes from Julien Pommier's SSE math library. 281 // Link: http://gruntthepeon.free.fr/ssemath 282 template <typename Op> 283 LogicalResult 284 LogApproximationBase<Op>::logMatchAndRewrite(Op op, PatternRewriter &rewriter, 285 bool base2) const { 286 auto width = vectorWidth(op.operand().getType(), isF32); 287 if (!width.hasValue()) 288 return rewriter.notifyMatchFailure(op, "unsupported operand type"); 289 290 ImplicitLocOpBuilder builder(op->getLoc(), rewriter); 291 auto bcast = [&](Value value) -> Value { 292 return broadcast(builder, value, *width); 293 }; 294 295 Value cstZero = bcast(f32Cst(builder, 0.0f)); 296 Value cstOne = bcast(f32Cst(builder, 1.0f)); 297 Value cstNegHalf = bcast(f32Cst(builder, -0.5f)); 298 299 // The smallest non denormalized float number. 300 Value cstMinNormPos = bcast(f32FromBits(builder, 0x00800000u)); 301 Value cstMinusInf = bcast(f32FromBits(builder, 0xff800000u)); 302 Value cstPosInf = bcast(f32FromBits(builder, 0x7f800000u)); 303 Value cstNan = bcast(f32FromBits(builder, 0x7fc00000)); 304 305 // Polynomial coefficients. 306 Value cstCephesSQRTHF = bcast(f32Cst(builder, 0.707106781186547524f)); 307 Value cstCephesLogP0 = bcast(f32Cst(builder, 7.0376836292E-2f)); 308 Value cstCephesLogP1 = bcast(f32Cst(builder, -1.1514610310E-1f)); 309 Value cstCephesLogP2 = bcast(f32Cst(builder, 1.1676998740E-1f)); 310 Value cstCephesLogP3 = bcast(f32Cst(builder, -1.2420140846E-1f)); 311 Value cstCephesLogP4 = bcast(f32Cst(builder, +1.4249322787E-1f)); 312 Value cstCephesLogP5 = bcast(f32Cst(builder, -1.6668057665E-1f)); 313 Value cstCephesLogP6 = bcast(f32Cst(builder, +2.0000714765E-1f)); 314 Value cstCephesLogP7 = bcast(f32Cst(builder, -2.4999993993E-1f)); 315 Value cstCephesLogP8 = bcast(f32Cst(builder, +3.3333331174E-1f)); 316 317 Value x = op.operand(); 318 319 // Truncate input values to the minimum positive normal. 320 x = max(builder, x, cstMinNormPos); 321 322 // Extract significant in the range [0.5,1) and exponent. 323 std::pair<Value, Value> pair = frexp(builder, x, /*is_positive=*/true); 324 x = pair.first; 325 Value e = pair.second; 326 327 // Shift the inputs from the range [0.5,1) to [sqrt(1/2), sqrt(2)) and shift 328 // by -1.0. The values are then centered around 0, which improves the 329 // stability of the polynomial evaluation: 330 // 331 // if( x < SQRTHF ) { 332 // e -= 1; 333 // x = x + x - 1.0; 334 // } else { x = x - 1.0; } 335 Value mask = builder.create<CmpFOp>(CmpFPredicate::OLT, x, cstCephesSQRTHF); 336 Value tmp = builder.create<SelectOp>(mask, x, cstZero); 337 338 x = builder.create<SubFOp>(x, cstOne); 339 e = builder.create<SubFOp>(e, 340 builder.create<SelectOp>(mask, cstOne, cstZero)); 341 x = builder.create<AddFOp>(x, tmp); 342 343 Value x2 = builder.create<MulFOp>(x, x); 344 Value x3 = builder.create<MulFOp>(x2, x); 345 346 // Evaluate the polynomial approximant of degree 8 in three parts. 347 Value y0, y1, y2; 348 y0 = builder.create<FmaFOp>(cstCephesLogP0, x, cstCephesLogP1); 349 y1 = builder.create<FmaFOp>(cstCephesLogP3, x, cstCephesLogP4); 350 y2 = builder.create<FmaFOp>(cstCephesLogP6, x, cstCephesLogP7); 351 y0 = builder.create<FmaFOp>(y0, x, cstCephesLogP2); 352 y1 = builder.create<FmaFOp>(y1, x, cstCephesLogP5); 353 y2 = builder.create<FmaFOp>(y2, x, cstCephesLogP8); 354 y0 = builder.create<FmaFOp>(y0, x3, y1); 355 y0 = builder.create<FmaFOp>(y0, x3, y2); 356 y0 = builder.create<MulFOp>(y0, x3); 357 358 y0 = builder.create<FmaFOp>(cstNegHalf, x2, y0); 359 x = builder.create<AddFOp>(x, y0); 360 361 if (base2) { 362 Value cstLog2e = bcast(f32Cst(builder, static_cast<float>(LOG2E_VALUE))); 363 x = builder.create<FmaFOp>(x, cstLog2e, e); 364 } else { 365 Value cstLn2 = bcast(f32Cst(builder, static_cast<float>(LN2_VALUE))); 366 x = builder.create<FmaFOp>(e, cstLn2, x); 367 } 368 369 Value invalidMask = 370 builder.create<CmpFOp>(CmpFPredicate::ULT, op.operand(), cstZero); 371 Value zeroMask = 372 builder.create<CmpFOp>(CmpFPredicate::OEQ, op.operand(), cstZero); 373 Value posInfMask = 374 builder.create<CmpFOp>(CmpFPredicate::OEQ, op.operand(), cstPosInf); 375 376 // Filter out invalid values: 377 // • x == 0 -> -INF 378 // • x < 0 -> NAN 379 // • x == +INF -> +INF 380 Value aproximation = builder.create<SelectOp>( 381 zeroMask, cstMinusInf, 382 builder.create<SelectOp>( 383 invalidMask, cstNan, 384 builder.create<SelectOp>(posInfMask, cstPosInf, x))); 385 386 rewriter.replaceOp(op, aproximation); 387 388 return success(); 389 } 390 391 namespace { 392 struct LogApproximation : public LogApproximationBase<math::LogOp> { 393 using LogApproximationBase::LogApproximationBase; 394 395 LogicalResult matchAndRewrite(math::LogOp op, 396 PatternRewriter &rewriter) const final { 397 return logMatchAndRewrite(op, rewriter, /*base2=*/false); 398 } 399 }; 400 } // namespace 401 402 namespace { 403 struct Log2Approximation : public LogApproximationBase<math::Log2Op> { 404 using LogApproximationBase::LogApproximationBase; 405 406 LogicalResult matchAndRewrite(math::Log2Op op, 407 PatternRewriter &rewriter) const final { 408 return logMatchAndRewrite(op, rewriter, /*base2=*/true); 409 } 410 }; 411 } // namespace 412 413 //----------------------------------------------------------------------------// 414 // Log1p approximation. 415 //----------------------------------------------------------------------------// 416 417 namespace { 418 struct Log1pApproximation : public OpRewritePattern<math::Log1pOp> { 419 public: 420 using OpRewritePattern::OpRewritePattern; 421 422 LogicalResult matchAndRewrite(math::Log1pOp op, 423 PatternRewriter &rewriter) const final; 424 }; 425 } // namespace 426 427 // Approximate log(1+x). 428 LogicalResult 429 Log1pApproximation::matchAndRewrite(math::Log1pOp op, 430 PatternRewriter &rewriter) const { 431 auto width = vectorWidth(op.operand().getType(), isF32); 432 if (!width.hasValue()) 433 return rewriter.notifyMatchFailure(op, "unsupported operand type"); 434 435 ImplicitLocOpBuilder builder(op->getLoc(), rewriter); 436 auto bcast = [&](Value value) -> Value { 437 return broadcast(builder, value, *width); 438 }; 439 440 // Approximate log(1+x) using the following, due to W. Kahan: 441 // u = x + 1.0; 442 // if (u == 1.0 || u == inf) return x; 443 // return x * log(u) / (u - 1.0); 444 // ^^^^^^^^^^^^^^^^^^^^^^ 445 // "logLarge" below. 446 Value cstOne = bcast(f32Cst(builder, 1.0f)); 447 Value x = op.operand(); 448 Value u = builder.create<AddFOp>(x, cstOne); 449 Value uSmall = builder.create<CmpFOp>(CmpFPredicate::OEQ, u, cstOne); 450 Value logU = builder.create<math::LogOp>(u); 451 Value uInf = builder.create<CmpFOp>(CmpFPredicate::OEQ, u, logU); 452 Value logLarge = builder.create<MulFOp>( 453 x, builder.create<DivFOp>(logU, builder.create<SubFOp>(u, cstOne))); 454 Value approximation = 455 builder.create<SelectOp>(builder.create<OrOp>(uSmall, uInf), x, logLarge); 456 rewriter.replaceOp(op, approximation); 457 return success(); 458 } 459 460 //----------------------------------------------------------------------------// 461 // Exp approximation. 462 //----------------------------------------------------------------------------// 463 464 namespace { 465 466 struct ExpApproximation : public OpRewritePattern<math::ExpOp> { 467 public: 468 using OpRewritePattern::OpRewritePattern; 469 470 LogicalResult matchAndRewrite(math::ExpOp op, 471 PatternRewriter &rewriter) const final; 472 }; 473 } // namespace 474 475 // Approximate exp(x) using its reduced range exp(y) where y is in the range 476 // [0, ln(2)], let y = x - floor(x / ln(2)) * ln(2) = x - k * ln(2), exp(x) 477 // = exp(y) * 2^k. exp(y). 478 LogicalResult 479 ExpApproximation::matchAndRewrite(math::ExpOp op, 480 PatternRewriter &rewriter) const { 481 auto width = vectorWidth(op.operand().getType(), isF32); 482 if (!width.hasValue()) 483 return rewriter.notifyMatchFailure(op, "unsupported operand type"); 484 ImplicitLocOpBuilder builder(op->getLoc(), rewriter); 485 486 // TODO: Consider a common pattern rewriter with all methods below to 487 // write the approximations. 488 auto bcast = [&](Value value) -> Value { 489 return broadcast(builder, value, *width); 490 }; 491 auto fmla = [&](Value a, Value b, Value c) { 492 return builder.create<FmaFOp>(a, b, c); 493 }; 494 auto mul = [&](Value a, Value b) -> Value { 495 return builder.create<MulFOp>(a, b); 496 }; 497 auto sub = [&](Value a, Value b) -> Value { 498 return builder.create<SubFOp>(a, b); 499 }; 500 auto floor = [&](Value a) { return builder.create<FloorFOp>(a); }; 501 502 Value cstLn2 = bcast(f32Cst(builder, static_cast<float>(LN2_VALUE))); 503 Value cstLog2E = bcast(f32Cst(builder, static_cast<float>(LOG2E_VALUE))); 504 505 // Polynomial coefficients. 506 Value cstCephesExpP0 = bcast(f32Cst(builder, 1.0)); 507 Value cstCephesExpP1 = bcast(f32Cst(builder, 1.0)); 508 Value cstCephesExpP2 = bcast(f32Cst(builder, 0.49970514590562437052f)); 509 Value cstCephesExpP3 = bcast(f32Cst(builder, 0.16873890085469545053f)); 510 Value cstCephesExpP4 = bcast(f32Cst(builder, 0.03668965196652099192f)); 511 Value cstCephesExpP5 = bcast(f32Cst(builder, 0.01314350012789660196f)); 512 513 Value x = op.operand(); 514 515 // Reduced y = x - floor(x / ln(2)) * ln(2) = x - k * ln(2) 516 Value xL2Inv = mul(x, cstLog2E); 517 Value kF32 = floor(xL2Inv); 518 Value kLn2 = mul(kF32, cstLn2); 519 Value y = sub(x, kLn2); 520 521 // Use Estrin's evaluation scheme with 3 independent parts: 522 // P(y)^y : (c0 + c1 y) + (c2 + c3 y) y^2 + (c4 + c5 y) y^4 523 Value y2 = mul(y, y); 524 Value y4 = mul(y2, y2); 525 526 Value q0 = fmla(cstCephesExpP1, y, cstCephesExpP0); 527 Value q1 = fmla(cstCephesExpP3, y, cstCephesExpP2); 528 Value q2 = fmla(cstCephesExpP5, y, cstCephesExpP4); 529 Value expY = fmla(q1, y2, q0); 530 expY = fmla(q2, y4, expY); 531 532 auto i32Vec = broadcast(builder.getI32Type(), *width); 533 534 // exp2(k) 535 Value k = builder.create<FPToSIOp>(kF32, i32Vec); 536 Value exp2KValue = exp2I32(builder, k); 537 538 // exp(x) = exp(y) * exp2(k) 539 expY = mul(expY, exp2KValue); 540 541 // Handle overflow, inf and underflow of exp(x). exp(x) range is [0, inf], its 542 // partitioned as the following: 543 // exp(x) = 0, x <= -inf 544 // exp(x) = underflow (min_float), x <= -88 545 // exp(x) = inf (min_float), x >= 88 546 // Note: |k| = 127 is the value where the 8-bits exponent saturates. 547 Value zerof32Const = bcast(f32Cst(builder, 0)); 548 auto constPosInfinity = 549 bcast(f32Cst(builder, std::numeric_limits<float>::infinity())); 550 auto constNegIfinity = 551 bcast(f32Cst(builder, -std::numeric_limits<float>::infinity())); 552 auto underflow = bcast(f32Cst(builder, std::numeric_limits<float>::min())); 553 554 Value kMaxConst = bcast(i32Cst(builder, 127)); 555 Value kMaxNegConst = bcast(i32Cst(builder, -127)); 556 Value rightBound = builder.create<CmpIOp>(CmpIPredicate::sle, k, kMaxConst); 557 Value leftBound = builder.create<CmpIOp>(CmpIPredicate::sge, k, kMaxNegConst); 558 559 Value isNegInfinityX = 560 builder.create<CmpFOp>(CmpFPredicate::OEQ, x, constNegIfinity); 561 Value isPostiveX = 562 builder.create<CmpFOp>(CmpFPredicate::OGT, x, zerof32Const); 563 Value isComputable = builder.create<AndOp>(rightBound, leftBound); 564 565 expY = builder.create<SelectOp>( 566 isComputable, expY, 567 builder.create<SelectOp>( 568 isPostiveX, constPosInfinity, 569 builder.create<SelectOp>(isNegInfinityX, zerof32Const, underflow))); 570 571 rewriter.replaceOp(op, expY); 572 573 return success(); 574 } 575 576 //----------------------------------------------------------------------------// 577 // ExpM1 approximation. 578 //----------------------------------------------------------------------------// 579 580 namespace { 581 582 struct ExpM1Approximation : public OpRewritePattern<math::ExpM1Op> { 583 public: 584 using OpRewritePattern::OpRewritePattern; 585 586 LogicalResult matchAndRewrite(math::ExpM1Op op, 587 PatternRewriter &rewriter) const final; 588 }; 589 } // namespace 590 591 LogicalResult 592 ExpM1Approximation::matchAndRewrite(math::ExpM1Op op, 593 PatternRewriter &rewriter) const { 594 auto width = vectorWidth(op.operand().getType(), isF32); 595 if (!width.hasValue()) 596 return rewriter.notifyMatchFailure(op, "unsupported operand type"); 597 598 ImplicitLocOpBuilder builder(op->getLoc(), rewriter); 599 auto bcast = [&](Value value) -> Value { 600 return broadcast(builder, value, *width); 601 }; 602 603 // expm1(x) = exp(x) - 1 = u - 1. 604 // We have to handle it carefully when x is near 0, i.e. u ~= 1, 605 // and when the input is ~= -inf, i.e. u - 1 ~= -1. 606 Value cstOne = bcast(f32Cst(builder, 1.0f)); 607 Value cstNegOne = bcast(f32Cst(builder, -1.0f)); 608 Value x = op.operand(); 609 Value u = builder.create<math::ExpOp>(x); 610 Value uEqOne = builder.create<CmpFOp>(CmpFPredicate::OEQ, u, cstOne); 611 Value uMinusOne = builder.create<SubFOp>(u, cstOne); 612 Value uMinusOneEqNegOne = 613 builder.create<CmpFOp>(CmpFPredicate::OEQ, uMinusOne, cstNegOne); 614 // logU = log(u) ~= x 615 Value logU = builder.create<math::LogOp>(u); 616 617 // Detect exp(x) = +inf; written this way to avoid having to form +inf. 618 Value isInf = builder.create<CmpFOp>(CmpFPredicate::OEQ, logU, u); 619 620 // (u - 1) * (x / ~x) 621 Value expm1 = 622 builder.create<MulFOp>(uMinusOne, builder.create<DivFOp>(x, logU)); 623 expm1 = builder.create<SelectOp>(isInf, u, expm1); 624 Value approximation = builder.create<SelectOp>( 625 uEqOne, x, builder.create<SelectOp>(uMinusOneEqNegOne, cstNegOne, expm1)); 626 rewriter.replaceOp(op, approximation); 627 return success(); 628 } 629 630 //----------------------------------------------------------------------------// 631 // Sin and Cos approximation. 632 //----------------------------------------------------------------------------// 633 634 namespace { 635 636 template <bool isSine, typename OpTy> 637 struct SinAndCosApproximation : public OpRewritePattern<OpTy> { 638 public: 639 using OpRewritePattern<OpTy>::OpRewritePattern; 640 641 LogicalResult matchAndRewrite(OpTy op, PatternRewriter &rewriter) const final; 642 }; 643 } // namespace 644 645 #define TWO_OVER_PI \ 646 0.6366197723675813430755350534900574481378385829618257949906693762L 647 #define PI_OVER_2 \ 648 1.5707963267948966192313216916397514420985846996875529104874722961L 649 650 // Approximates sin(x) or cos(x) by finding the best approximation polynomial in 651 // the reduced range [0, pi/2] for both sin(x) and cos(x). Then given y in the 652 // reduced range sin(x) will be computed as sin(y), -sin(y), cos(y) or -cos(y). 653 template <bool isSine, typename OpTy> 654 LogicalResult SinAndCosApproximation<isSine, OpTy>::matchAndRewrite( 655 OpTy op, PatternRewriter &rewriter) const { 656 static_assert( 657 llvm::is_one_of<OpTy, math::SinOp, math::CosOp>::value, 658 "SinAndCosApproximation pattern expects math::SinOp or math::CosOp"); 659 auto width = vectorWidth(op.operand().getType(), isF32); 660 if (!width.hasValue()) 661 return rewriter.notifyMatchFailure(op, "unsupported operand type"); 662 663 ImplicitLocOpBuilder builder(op->getLoc(), rewriter); 664 auto bcast = [&](Value value) -> Value { 665 return broadcast(builder, value, *width); 666 }; 667 auto mul = [&](Value a, Value b) -> Value { 668 return builder.create<MulFOp>(a, b); 669 }; 670 auto sub = [&](Value a, Value b) -> Value { 671 return builder.create<SubFOp>(a, b); 672 }; 673 auto floor = [&](Value a) { return builder.create<FloorFOp>(a); }; 674 675 auto i32Vec = broadcast(builder.getI32Type(), *width); 676 auto fPToSingedInteger = [&](Value a) -> Value { 677 return builder.create<FPToSIOp>(a, i32Vec); 678 }; 679 680 auto modulo4 = [&](Value a) -> Value { 681 return builder.create<AndOp>(a, bcast(i32Cst(builder, 3))); 682 }; 683 684 auto isEqualTo = [&](Value a, Value b) -> Value { 685 return builder.create<CmpIOp>(CmpIPredicate::eq, a, b); 686 }; 687 688 auto isGreaterThan = [&](Value a, Value b) -> Value { 689 return builder.create<CmpIOp>(CmpIPredicate::sgt, a, b); 690 }; 691 692 auto select = [&](Value cond, Value t, Value f) -> Value { 693 return builder.create<SelectOp>(cond, t, f); 694 }; 695 696 auto fmla = [&](Value a, Value b, Value c) { 697 return builder.create<FmaFOp>(a, b, c); 698 }; 699 700 auto bitwiseOr = [&](Value a, Value b) { return builder.create<OrOp>(a, b); }; 701 702 Value twoOverPi = bcast(f32Cst(builder, TWO_OVER_PI)); 703 Value piOverTwo = bcast(f32Cst(builder, PI_OVER_2)); 704 705 Value x = op.operand(); 706 707 Value k = floor(mul(x, twoOverPi)); 708 709 Value y = sub(x, mul(k, piOverTwo)); 710 711 Value cstOne = bcast(f32Cst(builder, 1.0)); 712 Value cstNegativeOne = bcast(f32Cst(builder, -1.0)); 713 714 Value cstSC2 = bcast(f32Cst(builder, -0.16666667163372039794921875f)); 715 Value cstSC4 = bcast(f32Cst(builder, 8.333347737789154052734375e-3f)); 716 Value cstSC6 = bcast(f32Cst(builder, -1.9842604524455964565277099609375e-4f)); 717 Value cstSC8 = 718 bcast(f32Cst(builder, 2.760012648650445044040679931640625e-6f)); 719 Value cstSC10 = 720 bcast(f32Cst(builder, -2.50293279435709337121807038784027099609375e-8f)); 721 722 Value cstCC2 = bcast(f32Cst(builder, -0.5f)); 723 Value cstCC4 = bcast(f32Cst(builder, 4.166664183139801025390625e-2f)); 724 Value cstCC6 = bcast(f32Cst(builder, -1.388833043165504932403564453125e-3f)); 725 Value cstCC8 = bcast(f32Cst(builder, 2.47562347794882953166961669921875e-5f)); 726 Value cstCC10 = 727 bcast(f32Cst(builder, -2.59630184018533327616751194000244140625e-7f)); 728 729 Value kMod4 = modulo4(fPToSingedInteger(k)); 730 731 Value kR0 = isEqualTo(kMod4, bcast(i32Cst(builder, 0))); 732 Value kR1 = isEqualTo(kMod4, bcast(i32Cst(builder, 1))); 733 Value kR2 = isEqualTo(kMod4, bcast(i32Cst(builder, 2))); 734 Value kR3 = isEqualTo(kMod4, bcast(i32Cst(builder, 3))); 735 736 Value sinuseCos = isSine ? bitwiseOr(kR1, kR3) : bitwiseOr(kR0, kR2); 737 Value negativeRange = isSine ? isGreaterThan(kMod4, bcast(i32Cst(builder, 1))) 738 : bitwiseOr(kR1, kR2); 739 740 Value y2 = mul(y, y); 741 742 Value base = select(sinuseCos, cstOne, y); 743 Value cstC2 = select(sinuseCos, cstCC2, cstSC2); 744 Value cstC4 = select(sinuseCos, cstCC4, cstSC4); 745 Value cstC6 = select(sinuseCos, cstCC6, cstSC6); 746 Value cstC8 = select(sinuseCos, cstCC8, cstSC8); 747 Value cstC10 = select(sinuseCos, cstCC10, cstSC10); 748 749 Value v1 = fmla(y2, cstC10, cstC8); 750 Value v2 = fmla(y2, v1, cstC6); 751 Value v3 = fmla(y2, v2, cstC4); 752 Value v4 = fmla(y2, v3, cstC2); 753 Value v5 = fmla(y2, v4, cstOne); 754 Value v6 = mul(base, v5); 755 756 Value approximation = select(negativeRange, mul(cstNegativeOne, v6), v6); 757 758 rewriter.replaceOp(op, approximation); 759 760 return success(); 761 } 762 763 //----------------------------------------------------------------------------// 764 765 void mlir::populateMathPolynomialApproximationPatterns( 766 RewritePatternSet &patterns) { 767 patterns.add<TanhApproximation, LogApproximation, Log2Approximation, 768 Log1pApproximation, ExpApproximation, ExpM1Approximation, 769 SinAndCosApproximation<true, math::SinOp>, 770 SinAndCosApproximation<false, math::CosOp>>( 771 patterns.getContext()); 772 } 773