1 //===- PolynomialApproximation.cpp - Approximate math operations ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements expansion of math operations to fast approximations 10 // that do not rely on any of the library functions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 15 #include "mlir/Dialect/LLVMIR/LLVMTypes.h" 16 #include "mlir/Dialect/Math/IR/Math.h" 17 #include "mlir/Dialect/Math/Transforms/Passes.h" 18 #include "mlir/Dialect/Vector/VectorOps.h" 19 #include "mlir/IR/Builders.h" 20 #include "mlir/IR/ImplicitLocOpBuilder.h" 21 #include "mlir/Transforms/DialectConversion.h" 22 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 23 24 using namespace mlir; 25 using namespace mlir::vector; 26 27 using TypePredicate = llvm::function_ref<bool(Type)>; 28 29 static bool isF32(Type type) { return type.isF32(); } 30 31 // Returns vector width if the element type is matching the predicate (scalars 32 // that do match the predicate have width equal to `1`). 33 static Optional<int> vectorWidth(Type type, TypePredicate pred) { 34 // If the type matches the predicate then its width is `1`. 35 if (pred(type)) 36 return 1; 37 38 // Otherwise check if the type is a vector type. 39 auto vectorType = type.dyn_cast<VectorType>(); 40 if (vectorType && pred(vectorType.getElementType())) { 41 assert(vectorType.getRank() == 1 && "only 1d vectors are supported"); 42 return vectorType.getDimSize(0); 43 } 44 45 return llvm::None; 46 } 47 48 // Returns vector width of the type. If the type is a scalar returns `1`. 49 static int vectorWidth(Type type) { 50 auto vectorType = type.dyn_cast<VectorType>(); 51 return vectorType ? vectorType.getDimSize(0) : 1; 52 } 53 54 // Returns vector element type. If the type is a scalar returns the argument. 55 static Type elementType(Type type) { 56 auto vectorType = type.dyn_cast<VectorType>(); 57 return vectorType ? vectorType.getElementType() : type; 58 } 59 60 //----------------------------------------------------------------------------// 61 // Broadcast scalar types and values into vector types and values. 62 //----------------------------------------------------------------------------// 63 64 // Broadcasts scalar type into vector type (iff width is greater then 1). 65 static Type broadcast(Type type, int width) { 66 assert(!type.isa<VectorType>() && "must be scalar type"); 67 return width > 1 ? VectorType::get({width}, type) : type; 68 } 69 70 // Broadcasts scalar value into vector (iff width is greater then 1). 71 static Value broadcast(ImplicitLocOpBuilder &builder, Value value, int width) { 72 assert(!value.getType().isa<VectorType>() && "must be scalar value"); 73 auto type = broadcast(value.getType(), width); 74 return width > 1 ? builder.create<BroadcastOp>(type, value) : value; 75 } 76 77 //----------------------------------------------------------------------------// 78 // Helper functions to create constants. 79 //----------------------------------------------------------------------------// 80 81 static Value f32Cst(ImplicitLocOpBuilder &builder, float value) { 82 return builder.create<ConstantOp>(builder.getF32Type(), 83 builder.getF32FloatAttr(value)); 84 } 85 86 static Value i32Cst(ImplicitLocOpBuilder &builder, int32_t value) { 87 return builder.create<ConstantOp>(builder.getI32Type(), 88 builder.getI32IntegerAttr(value)); 89 } 90 91 static Value f32FromBits(ImplicitLocOpBuilder &builder, uint32_t bits) { 92 Value i32Value = i32Cst(builder, static_cast<int32_t>(bits)); 93 return builder.create<LLVM::BitcastOp>(builder.getF32Type(), i32Value); 94 } 95 96 //----------------------------------------------------------------------------// 97 // Helper functions to build math functions approximations. 98 //----------------------------------------------------------------------------// 99 100 static Value min(ImplicitLocOpBuilder &builder, Value a, Value b) { 101 return builder.create<SelectOp>( 102 builder.create<CmpFOp>(CmpFPredicate::OLT, a, b), a, b); 103 } 104 105 static Value max(ImplicitLocOpBuilder &builder, Value a, Value b) { 106 return builder.create<SelectOp>( 107 builder.create<CmpFOp>(CmpFPredicate::OGT, a, b), a, b); 108 } 109 110 static Value clamp(ImplicitLocOpBuilder &builder, Value value, Value lowerBound, 111 Value upperBound) { 112 return max(builder, min(builder, value, upperBound), lowerBound); 113 } 114 115 // Decomposes given floating point value `arg` into a normalized fraction and 116 // an integral power of two (see std::frexp). Returned values have float type. 117 static std::pair<Value, Value> frexp(ImplicitLocOpBuilder &builder, Value arg, 118 bool is_positive = false) { 119 assert(isF32(elementType(arg.getType())) && "argument must be f32 type"); 120 121 int width = vectorWidth(arg.getType()); 122 123 auto bcast = [&](Value value) -> Value { 124 return broadcast(builder, value, width); 125 }; 126 127 auto i32 = builder.getIntegerType(32); 128 auto i32Vec = broadcast(i32, width); 129 auto f32Vec = broadcast(builder.getF32Type(), width); 130 131 Value cst126f = f32Cst(builder, 126.0f); 132 Value cstHalf = f32Cst(builder, 0.5f); 133 Value cstInvMantMask = f32FromBits(builder, ~0x7f800000u); 134 135 // Bitcast to i32 for bitwise operations. 136 Value i32Half = builder.create<LLVM::BitcastOp>(i32, cstHalf); 137 Value i32InvMantMask = builder.create<LLVM::BitcastOp>(i32, cstInvMantMask); 138 Value i32Arg = builder.create<LLVM::BitcastOp>(i32Vec, arg); 139 140 // Compute normalized fraction. 141 Value tmp0 = builder.create<LLVM::AndOp>(i32Arg, bcast(i32InvMantMask)); 142 Value tmp1 = builder.create<LLVM::OrOp>(tmp0, bcast(i32Half)); 143 Value normalizedFraction = builder.create<LLVM::BitcastOp>(f32Vec, tmp1); 144 145 // Compute exponent. 146 Value arg0 = is_positive ? arg : builder.create<AbsFOp>(arg); 147 Value biasedExponentBits = builder.create<UnsignedShiftRightOp>( 148 builder.create<LLVM::BitcastOp>(i32Vec, arg0), 149 bcast(i32Cst(builder, 23))); 150 Value biasedExponent = builder.create<SIToFPOp>(f32Vec, biasedExponentBits); 151 Value exponent = builder.create<SubFOp>(biasedExponent, bcast(cst126f)); 152 153 return {normalizedFraction, exponent}; 154 } 155 156 //----------------------------------------------------------------------------// 157 // TanhOp approximation. 158 //----------------------------------------------------------------------------// 159 160 namespace { 161 struct TanhApproximation : public OpRewritePattern<math::TanhOp> { 162 public: 163 using OpRewritePattern::OpRewritePattern; 164 165 LogicalResult matchAndRewrite(math::TanhOp op, 166 PatternRewriter &rewriter) const final; 167 }; 168 } // namespace 169 170 LogicalResult 171 TanhApproximation::matchAndRewrite(math::TanhOp op, 172 PatternRewriter &rewriter) const { 173 auto width = vectorWidth(op.operand().getType(), isF32); 174 if (!width.hasValue()) 175 return rewriter.notifyMatchFailure(op, "unsupported operand type"); 176 177 ImplicitLocOpBuilder builder(op->getLoc(), rewriter); 178 auto bcast = [&](Value value) -> Value { 179 return broadcast(builder, value, *width); 180 }; 181 182 // Clamp operand into [plusClamp, minusClamp] range. 183 Value minusClamp = bcast(f32Cst(builder, -7.9053111076354980f)); 184 Value plusClamp = bcast(f32Cst(builder, 7.90531110763549805f)); 185 Value x = clamp(builder, op.operand(), minusClamp, plusClamp); 186 187 // Mask for tiny values that are approximated with `operand`. 188 Value tiny = bcast(f32Cst(builder, 0.0004f)); 189 Value tinyMask = builder.create<CmpFOp>( 190 CmpFPredicate::OLT, builder.create<AbsFOp>(op.operand()), tiny); 191 192 // The monomial coefficients of the numerator polynomial (odd). 193 Value alpha1 = bcast(f32Cst(builder, 4.89352455891786e-03f)); 194 Value alpha3 = bcast(f32Cst(builder, 6.37261928875436e-04f)); 195 Value alpha5 = bcast(f32Cst(builder, 1.48572235717979e-05f)); 196 Value alpha7 = bcast(f32Cst(builder, 5.12229709037114e-08f)); 197 Value alpha9 = bcast(f32Cst(builder, -8.60467152213735e-11f)); 198 Value alpha11 = bcast(f32Cst(builder, 2.00018790482477e-13f)); 199 Value alpha13 = bcast(f32Cst(builder, -2.76076847742355e-16f)); 200 201 // The monomial coefficients of the denominator polynomial (even). 202 Value beta0 = bcast(f32Cst(builder, 4.89352518554385e-03f)); 203 Value beta2 = bcast(f32Cst(builder, 2.26843463243900e-03f)); 204 Value beta4 = bcast(f32Cst(builder, 1.18534705686654e-04f)); 205 Value beta6 = bcast(f32Cst(builder, 1.19825839466702e-06f)); 206 207 // Since the polynomials are odd/even, we need x^2. 208 Value x2 = builder.create<MulFOp>(x, x); 209 210 // Evaluate the numerator polynomial p. 211 Value p = builder.create<FmaFOp>(x2, alpha13, alpha11); 212 p = builder.create<FmaFOp>(x2, p, alpha9); 213 p = builder.create<FmaFOp>(x2, p, alpha7); 214 p = builder.create<FmaFOp>(x2, p, alpha5); 215 p = builder.create<FmaFOp>(x2, p, alpha3); 216 p = builder.create<FmaFOp>(x2, p, alpha1); 217 p = builder.create<MulFOp>(x, p); 218 219 // Evaluate the denominator polynomial q. 220 Value q = builder.create<FmaFOp>(x2, beta6, beta4); 221 q = builder.create<FmaFOp>(x2, q, beta2); 222 q = builder.create<FmaFOp>(x2, q, beta0); 223 224 // Divide the numerator by the denominator. 225 Value res = 226 builder.create<SelectOp>(tinyMask, x, builder.create<DivFOp>(p, q)); 227 228 rewriter.replaceOp(op, res); 229 230 return success(); 231 } 232 233 //----------------------------------------------------------------------------// 234 // LogOp approximation. 235 //----------------------------------------------------------------------------// 236 237 namespace { 238 239 // This approximations comes from the Julien Pommier's SSE math library. 240 // Link: http://gruntthepeon.free.fr/ssemath 241 struct LogApproximation : public OpRewritePattern<math::LogOp> { 242 public: 243 using OpRewritePattern::OpRewritePattern; 244 245 LogicalResult matchAndRewrite(math::LogOp op, 246 PatternRewriter &rewriter) const final; 247 }; 248 } // namespace 249 250 #define LN2_VALUE \ 251 0.693147180559945309417232121458176568075500134360255254120680009493393621L 252 253 LogicalResult 254 LogApproximation::matchAndRewrite(math::LogOp op, 255 PatternRewriter &rewriter) const { 256 auto width = vectorWidth(op.operand().getType(), isF32); 257 if (!width.hasValue()) 258 return rewriter.notifyMatchFailure(op, "unsupported operand type"); 259 260 ImplicitLocOpBuilder builder(op->getLoc(), rewriter); 261 auto bcast = [&](Value value) -> Value { 262 return broadcast(builder, value, *width); 263 }; 264 265 Value cstZero = bcast(f32Cst(builder, 0.0f)); 266 Value cstOne = bcast(f32Cst(builder, 1.0f)); 267 Value cstNegHalf = bcast(f32Cst(builder, -0.5f)); 268 269 // The smallest non denormalized float number. 270 Value cstMinNormPos = bcast(f32FromBits(builder, 0x00800000u)); 271 Value cstMinusInf = bcast(f32FromBits(builder, 0xff800000u)); 272 Value cstPosInf = bcast(f32FromBits(builder, 0x7f800000u)); 273 Value cstNan = bcast(f32FromBits(builder, 0x7fc00000)); 274 275 // Polynomial coefficients. 276 Value cstCephesSQRTHF = bcast(f32Cst(builder, 0.707106781186547524f)); 277 Value cstCephesLogP0 = bcast(f32Cst(builder, 7.0376836292E-2f)); 278 Value cstCephesLogP1 = bcast(f32Cst(builder, -1.1514610310E-1f)); 279 Value cstCephesLogP2 = bcast(f32Cst(builder, 1.1676998740E-1f)); 280 Value cstCephesLogP3 = bcast(f32Cst(builder, -1.2420140846E-1f)); 281 Value cstCephesLogP4 = bcast(f32Cst(builder, +1.4249322787E-1f)); 282 Value cstCephesLogP5 = bcast(f32Cst(builder, -1.6668057665E-1f)); 283 Value cstCephesLogP6 = bcast(f32Cst(builder, +2.0000714765E-1f)); 284 Value cstCephesLogP7 = bcast(f32Cst(builder, -2.4999993993E-1f)); 285 Value cstCephesLogP8 = bcast(f32Cst(builder, +3.3333331174E-1f)); 286 287 Value x = op.operand(); 288 289 // Truncate input values to the minimum positive normal. 290 x = max(builder, x, cstMinNormPos); 291 292 // Extract significant in the range [0.5,1) and exponent. 293 std::pair<Value, Value> pair = frexp(builder, x, /*is_positive=*/true); 294 x = pair.first; 295 Value e = pair.second; 296 297 // Shift the inputs from the range [0.5,1) to [sqrt(1/2), sqrt(2)) and shift 298 // by -1.0. The values are then centered around 0, which improves the 299 // stability of the polynomial evaluation: 300 // 301 // if( x < SQRTHF ) { 302 // e -= 1; 303 // x = x + x - 1.0; 304 // } else { x = x - 1.0; } 305 Value mask = builder.create<CmpFOp>(CmpFPredicate::OLT, x, cstCephesSQRTHF); 306 Value tmp = builder.create<SelectOp>(mask, x, cstZero); 307 308 x = builder.create<SubFOp>(x, cstOne); 309 e = builder.create<SubFOp>(e, 310 builder.create<SelectOp>(mask, cstOne, cstZero)); 311 x = builder.create<AddFOp>(x, tmp); 312 313 Value x2 = builder.create<MulFOp>(x, x); 314 Value x3 = builder.create<MulFOp>(x2, x); 315 316 // Evaluate the polynomial approximant of degree 8 in three parts. 317 Value y0, y1, y2; 318 y0 = builder.create<FmaFOp>(cstCephesLogP0, x, cstCephesLogP1); 319 y1 = builder.create<FmaFOp>(cstCephesLogP3, x, cstCephesLogP4); 320 y2 = builder.create<FmaFOp>(cstCephesLogP6, x, cstCephesLogP7); 321 y0 = builder.create<FmaFOp>(y0, x, cstCephesLogP2); 322 y1 = builder.create<FmaFOp>(y1, x, cstCephesLogP5); 323 y2 = builder.create<FmaFOp>(y2, x, cstCephesLogP8); 324 y0 = builder.create<FmaFOp>(y0, x3, y1); 325 y0 = builder.create<FmaFOp>(y0, x3, y2); 326 y0 = builder.create<MulFOp>(y0, x3); 327 328 y0 = builder.create<FmaFOp>(cstNegHalf, x2, y0); 329 x = builder.create<AddFOp>(x, y0); 330 331 Value cstLn2 = bcast(f32Cst(builder, static_cast<float>(LN2_VALUE))); 332 x = builder.create<FmaFOp>(e, cstLn2, x); 333 334 Value invalidMask = 335 builder.create<CmpFOp>(CmpFPredicate::ULT, op.operand(), cstZero); 336 Value zeroMask = 337 builder.create<CmpFOp>(CmpFPredicate::OEQ, op.operand(), cstZero); 338 Value posInfMask = 339 builder.create<CmpFOp>(CmpFPredicate::OEQ, op.operand(), cstPosInf); 340 341 // Filter out invalid values: 342 // • x == 0 -> -INF 343 // • x < 0 -> NAN 344 // • x == +INF -> +INF 345 Value aproximation = builder.create<SelectOp>( 346 zeroMask, cstMinusInf, 347 builder.create<SelectOp>( 348 invalidMask, cstNan, 349 builder.create<SelectOp>(posInfMask, cstPosInf, x))); 350 351 rewriter.replaceOp(op, aproximation); 352 353 return success(); 354 } 355 356 //----------------------------------------------------------------------------// 357 358 void mlir::populateMathPolynomialApproximationPatterns( 359 OwningRewritePatternList &patterns, MLIRContext *ctx) { 360 patterns.insert<TanhApproximation, LogApproximation>(ctx); 361 } 362