1f99ccf65SEugene Zhulenev //===- PolynomialApproximation.cpp - Approximate math operations ----------===// 2f99ccf65SEugene Zhulenev // 3f99ccf65SEugene Zhulenev // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4f99ccf65SEugene Zhulenev // See https://llvm.org/LICENSE.txt for license information. 5f99ccf65SEugene Zhulenev // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6f99ccf65SEugene Zhulenev // 7f99ccf65SEugene Zhulenev //===----------------------------------------------------------------------===// 8f99ccf65SEugene Zhulenev // 9f99ccf65SEugene Zhulenev // This file implements expansion of math operations to fast approximations 10f99ccf65SEugene Zhulenev // that do not rely on any of the library functions. 11f99ccf65SEugene Zhulenev // 12f99ccf65SEugene Zhulenev //===----------------------------------------------------------------------===// 13ce976d2dSEugene Zhulenev #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 14ce976d2dSEugene Zhulenev #include "mlir/Dialect/LLVMIR/LLVMTypes.h" 15f99ccf65SEugene Zhulenev #include "mlir/Dialect/Math/IR/Math.h" 16f99ccf65SEugene Zhulenev #include "mlir/Dialect/Math/Transforms/Passes.h" 17f99ccf65SEugene Zhulenev #include "mlir/Dialect/Vector/VectorOps.h" 18f99ccf65SEugene Zhulenev #include "mlir/IR/Builders.h" 19ce976d2dSEugene Zhulenev #include "mlir/IR/ImplicitLocOpBuilder.h" 20f99ccf65SEugene Zhulenev #include "mlir/Transforms/DialectConversion.h" 21f99ccf65SEugene Zhulenev #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 22*ea7f211bSAhmed Taei #include <limits.h> 23f99ccf65SEugene Zhulenev 24f99ccf65SEugene Zhulenev using namespace mlir; 25f99ccf65SEugene Zhulenev using namespace mlir::vector; 26f99ccf65SEugene Zhulenev 27ce976d2dSEugene Zhulenev using TypePredicate = llvm::function_ref<bool(Type)>; 28ce976d2dSEugene Zhulenev 29ce976d2dSEugene Zhulenev static bool isF32(Type type) { return type.isF32(); } 30ce976d2dSEugene Zhulenev 31*ea7f211bSAhmed Taei static bool isI32(Type type) { return type.isInteger(32); } 32*ea7f211bSAhmed Taei 33ce976d2dSEugene Zhulenev // Returns vector width if the element type is matching the predicate (scalars 34ce976d2dSEugene Zhulenev // that do match the predicate have width equal to `1`). 35ce976d2dSEugene Zhulenev static Optional<int> vectorWidth(Type type, TypePredicate pred) { 36ce976d2dSEugene Zhulenev // If the type matches the predicate then its width is `1`. 37ce976d2dSEugene Zhulenev if (pred(type)) 38ce976d2dSEugene Zhulenev return 1; 39ce976d2dSEugene Zhulenev 40ce976d2dSEugene Zhulenev // Otherwise check if the type is a vector type. 41ce976d2dSEugene Zhulenev auto vectorType = type.dyn_cast<VectorType>(); 42ce976d2dSEugene Zhulenev if (vectorType && pred(vectorType.getElementType())) { 43ce976d2dSEugene Zhulenev assert(vectorType.getRank() == 1 && "only 1d vectors are supported"); 44ce976d2dSEugene Zhulenev return vectorType.getDimSize(0); 45ce976d2dSEugene Zhulenev } 46ce976d2dSEugene Zhulenev 47ce976d2dSEugene Zhulenev return llvm::None; 48ce976d2dSEugene Zhulenev } 49ce976d2dSEugene Zhulenev 50ce976d2dSEugene Zhulenev // Returns vector width of the type. If the type is a scalar returns `1`. 51ce976d2dSEugene Zhulenev static int vectorWidth(Type type) { 52ce976d2dSEugene Zhulenev auto vectorType = type.dyn_cast<VectorType>(); 53ce976d2dSEugene Zhulenev return vectorType ? vectorType.getDimSize(0) : 1; 54ce976d2dSEugene Zhulenev } 55ce976d2dSEugene Zhulenev 56ce976d2dSEugene Zhulenev // Returns vector element type. If the type is a scalar returns the argument. 57ce976d2dSEugene Zhulenev static Type elementType(Type type) { 58ce976d2dSEugene Zhulenev auto vectorType = type.dyn_cast<VectorType>(); 59ce976d2dSEugene Zhulenev return vectorType ? vectorType.getElementType() : type; 60f99ccf65SEugene Zhulenev } 61f99ccf65SEugene Zhulenev 62f99ccf65SEugene Zhulenev //----------------------------------------------------------------------------// 63ce976d2dSEugene Zhulenev // Broadcast scalar types and values into vector types and values. 64f99ccf65SEugene Zhulenev //----------------------------------------------------------------------------// 65f99ccf65SEugene Zhulenev 66ce976d2dSEugene Zhulenev // Broadcasts scalar type into vector type (iff width is greater then 1). 67ce976d2dSEugene Zhulenev static Type broadcast(Type type, int width) { 68ce976d2dSEugene Zhulenev assert(!type.isa<VectorType>() && "must be scalar type"); 69ce976d2dSEugene Zhulenev return width > 1 ? VectorType::get({width}, type) : type; 70ce976d2dSEugene Zhulenev } 71f99ccf65SEugene Zhulenev 72ce976d2dSEugene Zhulenev // Broadcasts scalar value into vector (iff width is greater then 1). 73ce976d2dSEugene Zhulenev static Value broadcast(ImplicitLocOpBuilder &builder, Value value, int width) { 74ce976d2dSEugene Zhulenev assert(!value.getType().isa<VectorType>() && "must be scalar value"); 75ce976d2dSEugene Zhulenev auto type = broadcast(value.getType(), width); 76ce976d2dSEugene Zhulenev return width > 1 ? builder.create<BroadcastOp>(type, value) : value; 77ce976d2dSEugene Zhulenev } 78f99ccf65SEugene Zhulenev 79ce976d2dSEugene Zhulenev //----------------------------------------------------------------------------// 80ce976d2dSEugene Zhulenev // Helper functions to create constants. 81ce976d2dSEugene Zhulenev //----------------------------------------------------------------------------// 82f99ccf65SEugene Zhulenev 83ce976d2dSEugene Zhulenev static Value f32Cst(ImplicitLocOpBuilder &builder, float value) { 84ce976d2dSEugene Zhulenev return builder.create<ConstantOp>(builder.getF32Type(), 85ce976d2dSEugene Zhulenev builder.getF32FloatAttr(value)); 86ce976d2dSEugene Zhulenev } 87f99ccf65SEugene Zhulenev 88ce976d2dSEugene Zhulenev static Value i32Cst(ImplicitLocOpBuilder &builder, int32_t value) { 89ce976d2dSEugene Zhulenev return builder.create<ConstantOp>(builder.getI32Type(), 90ce976d2dSEugene Zhulenev builder.getI32IntegerAttr(value)); 91ce976d2dSEugene Zhulenev } 92f99ccf65SEugene Zhulenev 93ce976d2dSEugene Zhulenev static Value f32FromBits(ImplicitLocOpBuilder &builder, uint32_t bits) { 94ce976d2dSEugene Zhulenev Value i32Value = i32Cst(builder, static_cast<int32_t>(bits)); 95ce976d2dSEugene Zhulenev return builder.create<LLVM::BitcastOp>(builder.getF32Type(), i32Value); 96ce976d2dSEugene Zhulenev } 97f99ccf65SEugene Zhulenev 98ce976d2dSEugene Zhulenev //----------------------------------------------------------------------------// 99ce976d2dSEugene Zhulenev // Helper functions to build math functions approximations. 100ce976d2dSEugene Zhulenev //----------------------------------------------------------------------------// 101ce976d2dSEugene Zhulenev 102ce976d2dSEugene Zhulenev static Value min(ImplicitLocOpBuilder &builder, Value a, Value b) { 103ce976d2dSEugene Zhulenev return builder.create<SelectOp>( 104ce976d2dSEugene Zhulenev builder.create<CmpFOp>(CmpFPredicate::OLT, a, b), a, b); 105ce976d2dSEugene Zhulenev } 106ce976d2dSEugene Zhulenev 107ce976d2dSEugene Zhulenev static Value max(ImplicitLocOpBuilder &builder, Value a, Value b) { 108ce976d2dSEugene Zhulenev return builder.create<SelectOp>( 109ce976d2dSEugene Zhulenev builder.create<CmpFOp>(CmpFPredicate::OGT, a, b), a, b); 110ce976d2dSEugene Zhulenev } 111ce976d2dSEugene Zhulenev 112ce976d2dSEugene Zhulenev static Value clamp(ImplicitLocOpBuilder &builder, Value value, Value lowerBound, 113ce976d2dSEugene Zhulenev Value upperBound) { 114ce976d2dSEugene Zhulenev return max(builder, min(builder, value, upperBound), lowerBound); 115ce976d2dSEugene Zhulenev } 116ce976d2dSEugene Zhulenev 117ce976d2dSEugene Zhulenev // Decomposes given floating point value `arg` into a normalized fraction and 118ce976d2dSEugene Zhulenev // an integral power of two (see std::frexp). Returned values have float type. 119ce976d2dSEugene Zhulenev static std::pair<Value, Value> frexp(ImplicitLocOpBuilder &builder, Value arg, 120ce976d2dSEugene Zhulenev bool is_positive = false) { 121ce976d2dSEugene Zhulenev assert(isF32(elementType(arg.getType())) && "argument must be f32 type"); 122ce976d2dSEugene Zhulenev 123ce976d2dSEugene Zhulenev int width = vectorWidth(arg.getType()); 124ce976d2dSEugene Zhulenev 125ce976d2dSEugene Zhulenev auto bcast = [&](Value value) -> Value { 126ce976d2dSEugene Zhulenev return broadcast(builder, value, width); 127f99ccf65SEugene Zhulenev }; 128f99ccf65SEugene Zhulenev 129ce976d2dSEugene Zhulenev auto i32 = builder.getIntegerType(32); 130ce976d2dSEugene Zhulenev auto i32Vec = broadcast(i32, width); 131ce976d2dSEugene Zhulenev auto f32Vec = broadcast(builder.getF32Type(), width); 132f99ccf65SEugene Zhulenev 133ce976d2dSEugene Zhulenev Value cst126f = f32Cst(builder, 126.0f); 134ce976d2dSEugene Zhulenev Value cstHalf = f32Cst(builder, 0.5f); 135ce976d2dSEugene Zhulenev Value cstInvMantMask = f32FromBits(builder, ~0x7f800000u); 136f99ccf65SEugene Zhulenev 137ce976d2dSEugene Zhulenev // Bitcast to i32 for bitwise operations. 138ce976d2dSEugene Zhulenev Value i32Half = builder.create<LLVM::BitcastOp>(i32, cstHalf); 139ce976d2dSEugene Zhulenev Value i32InvMantMask = builder.create<LLVM::BitcastOp>(i32, cstInvMantMask); 140ce976d2dSEugene Zhulenev Value i32Arg = builder.create<LLVM::BitcastOp>(i32Vec, arg); 141f99ccf65SEugene Zhulenev 142ce976d2dSEugene Zhulenev // Compute normalized fraction. 143ce976d2dSEugene Zhulenev Value tmp0 = builder.create<LLVM::AndOp>(i32Arg, bcast(i32InvMantMask)); 144ce976d2dSEugene Zhulenev Value tmp1 = builder.create<LLVM::OrOp>(tmp0, bcast(i32Half)); 145ce976d2dSEugene Zhulenev Value normalizedFraction = builder.create<LLVM::BitcastOp>(f32Vec, tmp1); 146f99ccf65SEugene Zhulenev 147ce976d2dSEugene Zhulenev // Compute exponent. 148ce976d2dSEugene Zhulenev Value arg0 = is_positive ? arg : builder.create<AbsFOp>(arg); 149ce976d2dSEugene Zhulenev Value biasedExponentBits = builder.create<UnsignedShiftRightOp>( 150ce976d2dSEugene Zhulenev builder.create<LLVM::BitcastOp>(i32Vec, arg0), 151ce976d2dSEugene Zhulenev bcast(i32Cst(builder, 23))); 152ce976d2dSEugene Zhulenev Value biasedExponent = builder.create<SIToFPOp>(f32Vec, biasedExponentBits); 153ce976d2dSEugene Zhulenev Value exponent = builder.create<SubFOp>(biasedExponent, bcast(cst126f)); 154f99ccf65SEugene Zhulenev 155ce976d2dSEugene Zhulenev return {normalizedFraction, exponent}; 156f99ccf65SEugene Zhulenev } 157f99ccf65SEugene Zhulenev 158*ea7f211bSAhmed Taei // Computes exp2 for an i32 argument. 159*ea7f211bSAhmed Taei static Value exp2I32(ImplicitLocOpBuilder &builder, Value arg) { 160*ea7f211bSAhmed Taei assert(isI32(elementType(arg.getType())) && "argument must be i32 type"); 161*ea7f211bSAhmed Taei 162*ea7f211bSAhmed Taei int width = vectorWidth(arg.getType()); 163*ea7f211bSAhmed Taei 164*ea7f211bSAhmed Taei auto bcast = [&](Value value) -> Value { 165*ea7f211bSAhmed Taei return broadcast(builder, value, width); 166*ea7f211bSAhmed Taei }; 167*ea7f211bSAhmed Taei 168*ea7f211bSAhmed Taei auto f32Vec = broadcast(builder.getF32Type(), width); 169*ea7f211bSAhmed Taei // The exponent of f32 located at 23-bit. 170*ea7f211bSAhmed Taei auto exponetBitLocation = bcast(i32Cst(builder, 23)); 171*ea7f211bSAhmed Taei // Set the exponent bias to zero. 172*ea7f211bSAhmed Taei auto bias = bcast(i32Cst(builder, 127)); 173*ea7f211bSAhmed Taei 174*ea7f211bSAhmed Taei Value biasedArg = builder.create<AddIOp>(arg, bias); 175*ea7f211bSAhmed Taei Value exp2ValueInt = 176*ea7f211bSAhmed Taei builder.create<ShiftLeftOp>(biasedArg, exponetBitLocation); 177*ea7f211bSAhmed Taei Value exp2ValueF32 = builder.create<LLVM::BitcastOp>(f32Vec, exp2ValueInt); 178*ea7f211bSAhmed Taei 179*ea7f211bSAhmed Taei return exp2ValueF32; 180*ea7f211bSAhmed Taei } 181*ea7f211bSAhmed Taei 182f99ccf65SEugene Zhulenev //----------------------------------------------------------------------------// 183f99ccf65SEugene Zhulenev // TanhOp approximation. 184f99ccf65SEugene Zhulenev //----------------------------------------------------------------------------// 185f99ccf65SEugene Zhulenev 186f99ccf65SEugene Zhulenev namespace { 187f99ccf65SEugene Zhulenev struct TanhApproximation : public OpRewritePattern<math::TanhOp> { 188f99ccf65SEugene Zhulenev public: 189f99ccf65SEugene Zhulenev using OpRewritePattern::OpRewritePattern; 190f99ccf65SEugene Zhulenev 191f99ccf65SEugene Zhulenev LogicalResult matchAndRewrite(math::TanhOp op, 192f99ccf65SEugene Zhulenev PatternRewriter &rewriter) const final; 193f99ccf65SEugene Zhulenev }; 194f99ccf65SEugene Zhulenev } // namespace 195f99ccf65SEugene Zhulenev 196f99ccf65SEugene Zhulenev LogicalResult 197f99ccf65SEugene Zhulenev TanhApproximation::matchAndRewrite(math::TanhOp op, 198f99ccf65SEugene Zhulenev PatternRewriter &rewriter) const { 199ce976d2dSEugene Zhulenev auto width = vectorWidth(op.operand().getType(), isF32); 200ce976d2dSEugene Zhulenev if (!width.hasValue()) 201f99ccf65SEugene Zhulenev return rewriter.notifyMatchFailure(op, "unsupported operand type"); 202f99ccf65SEugene Zhulenev 203ce976d2dSEugene Zhulenev ImplicitLocOpBuilder builder(op->getLoc(), rewriter); 204ce976d2dSEugene Zhulenev auto bcast = [&](Value value) -> Value { 205ce976d2dSEugene Zhulenev return broadcast(builder, value, *width); 206ce976d2dSEugene Zhulenev }; 207f99ccf65SEugene Zhulenev 208f99ccf65SEugene Zhulenev // Clamp operand into [plusClamp, minusClamp] range. 209ce976d2dSEugene Zhulenev Value minusClamp = bcast(f32Cst(builder, -7.9053111076354980f)); 210ce976d2dSEugene Zhulenev Value plusClamp = bcast(f32Cst(builder, 7.90531110763549805f)); 211ce976d2dSEugene Zhulenev Value x = clamp(builder, op.operand(), minusClamp, plusClamp); 212f99ccf65SEugene Zhulenev 213f99ccf65SEugene Zhulenev // Mask for tiny values that are approximated with `operand`. 214ce976d2dSEugene Zhulenev Value tiny = bcast(f32Cst(builder, 0.0004f)); 215ce976d2dSEugene Zhulenev Value tinyMask = builder.create<CmpFOp>( 216ce976d2dSEugene Zhulenev CmpFPredicate::OLT, builder.create<AbsFOp>(op.operand()), tiny); 217f99ccf65SEugene Zhulenev 218f99ccf65SEugene Zhulenev // The monomial coefficients of the numerator polynomial (odd). 219ce976d2dSEugene Zhulenev Value alpha1 = bcast(f32Cst(builder, 4.89352455891786e-03f)); 220ce976d2dSEugene Zhulenev Value alpha3 = bcast(f32Cst(builder, 6.37261928875436e-04f)); 221ce976d2dSEugene Zhulenev Value alpha5 = bcast(f32Cst(builder, 1.48572235717979e-05f)); 222ce976d2dSEugene Zhulenev Value alpha7 = bcast(f32Cst(builder, 5.12229709037114e-08f)); 223ce976d2dSEugene Zhulenev Value alpha9 = bcast(f32Cst(builder, -8.60467152213735e-11f)); 224ce976d2dSEugene Zhulenev Value alpha11 = bcast(f32Cst(builder, 2.00018790482477e-13f)); 225ce976d2dSEugene Zhulenev Value alpha13 = bcast(f32Cst(builder, -2.76076847742355e-16f)); 226f99ccf65SEugene Zhulenev 227f99ccf65SEugene Zhulenev // The monomial coefficients of the denominator polynomial (even). 228ce976d2dSEugene Zhulenev Value beta0 = bcast(f32Cst(builder, 4.89352518554385e-03f)); 229ce976d2dSEugene Zhulenev Value beta2 = bcast(f32Cst(builder, 2.26843463243900e-03f)); 230ce976d2dSEugene Zhulenev Value beta4 = bcast(f32Cst(builder, 1.18534705686654e-04f)); 231ce976d2dSEugene Zhulenev Value beta6 = bcast(f32Cst(builder, 1.19825839466702e-06f)); 232f99ccf65SEugene Zhulenev 233f99ccf65SEugene Zhulenev // Since the polynomials are odd/even, we need x^2. 234ce976d2dSEugene Zhulenev Value x2 = builder.create<MulFOp>(x, x); 235f99ccf65SEugene Zhulenev 236f99ccf65SEugene Zhulenev // Evaluate the numerator polynomial p. 237ce976d2dSEugene Zhulenev Value p = builder.create<FmaFOp>(x2, alpha13, alpha11); 238ce976d2dSEugene Zhulenev p = builder.create<FmaFOp>(x2, p, alpha9); 239ce976d2dSEugene Zhulenev p = builder.create<FmaFOp>(x2, p, alpha7); 240ce976d2dSEugene Zhulenev p = builder.create<FmaFOp>(x2, p, alpha5); 241ce976d2dSEugene Zhulenev p = builder.create<FmaFOp>(x2, p, alpha3); 242ce976d2dSEugene Zhulenev p = builder.create<FmaFOp>(x2, p, alpha1); 243ce976d2dSEugene Zhulenev p = builder.create<MulFOp>(x, p); 244f99ccf65SEugene Zhulenev 245f99ccf65SEugene Zhulenev // Evaluate the denominator polynomial q. 246ce976d2dSEugene Zhulenev Value q = builder.create<FmaFOp>(x2, beta6, beta4); 247ce976d2dSEugene Zhulenev q = builder.create<FmaFOp>(x2, q, beta2); 248ce976d2dSEugene Zhulenev q = builder.create<FmaFOp>(x2, q, beta0); 249f99ccf65SEugene Zhulenev 250f99ccf65SEugene Zhulenev // Divide the numerator by the denominator. 251ce976d2dSEugene Zhulenev Value res = 252ce976d2dSEugene Zhulenev builder.create<SelectOp>(tinyMask, x, builder.create<DivFOp>(p, q)); 253f99ccf65SEugene Zhulenev 254f99ccf65SEugene Zhulenev rewriter.replaceOp(op, res); 255f99ccf65SEugene Zhulenev 256f99ccf65SEugene Zhulenev return success(); 257f99ccf65SEugene Zhulenev } 258f99ccf65SEugene Zhulenev 259*ea7f211bSAhmed Taei #define LN2_VALUE \ 260*ea7f211bSAhmed Taei 0.693147180559945309417232121458176568075500134360255254120680009493393621L 261*ea7f211bSAhmed Taei #define LN2E_VALUE \ 262*ea7f211bSAhmed Taei 1.442695040888963407359924681001892137426645954152985934135449406931109219L 263*ea7f211bSAhmed Taei 264f99ccf65SEugene Zhulenev //----------------------------------------------------------------------------// 265ce976d2dSEugene Zhulenev // LogOp approximation. 266ce976d2dSEugene Zhulenev //----------------------------------------------------------------------------// 267ce976d2dSEugene Zhulenev 268ce976d2dSEugene Zhulenev namespace { 269ce976d2dSEugene Zhulenev 270ce976d2dSEugene Zhulenev // This approximations comes from the Julien Pommier's SSE math library. 271ce976d2dSEugene Zhulenev // Link: http://gruntthepeon.free.fr/ssemath 272ce976d2dSEugene Zhulenev struct LogApproximation : public OpRewritePattern<math::LogOp> { 273ce976d2dSEugene Zhulenev public: 274ce976d2dSEugene Zhulenev using OpRewritePattern::OpRewritePattern; 275ce976d2dSEugene Zhulenev 276ce976d2dSEugene Zhulenev LogicalResult matchAndRewrite(math::LogOp op, 277ce976d2dSEugene Zhulenev PatternRewriter &rewriter) const final; 278ce976d2dSEugene Zhulenev }; 279ce976d2dSEugene Zhulenev } // namespace 280ce976d2dSEugene Zhulenev 281ce976d2dSEugene Zhulenev LogicalResult 282ce976d2dSEugene Zhulenev LogApproximation::matchAndRewrite(math::LogOp op, 283ce976d2dSEugene Zhulenev PatternRewriter &rewriter) const { 284ce976d2dSEugene Zhulenev auto width = vectorWidth(op.operand().getType(), isF32); 285ce976d2dSEugene Zhulenev if (!width.hasValue()) 286ce976d2dSEugene Zhulenev return rewriter.notifyMatchFailure(op, "unsupported operand type"); 287ce976d2dSEugene Zhulenev 288ce976d2dSEugene Zhulenev ImplicitLocOpBuilder builder(op->getLoc(), rewriter); 289ce976d2dSEugene Zhulenev auto bcast = [&](Value value) -> Value { 290ce976d2dSEugene Zhulenev return broadcast(builder, value, *width); 291ce976d2dSEugene Zhulenev }; 292ce976d2dSEugene Zhulenev 293ce976d2dSEugene Zhulenev Value cstZero = bcast(f32Cst(builder, 0.0f)); 294ce976d2dSEugene Zhulenev Value cstOne = bcast(f32Cst(builder, 1.0f)); 295ce976d2dSEugene Zhulenev Value cstNegHalf = bcast(f32Cst(builder, -0.5f)); 296ce976d2dSEugene Zhulenev 297ce976d2dSEugene Zhulenev // The smallest non denormalized float number. 298ce976d2dSEugene Zhulenev Value cstMinNormPos = bcast(f32FromBits(builder, 0x00800000u)); 299ce976d2dSEugene Zhulenev Value cstMinusInf = bcast(f32FromBits(builder, 0xff800000u)); 300ce976d2dSEugene Zhulenev Value cstPosInf = bcast(f32FromBits(builder, 0x7f800000u)); 301ce976d2dSEugene Zhulenev Value cstNan = bcast(f32FromBits(builder, 0x7fc00000)); 302ce976d2dSEugene Zhulenev 303ce976d2dSEugene Zhulenev // Polynomial coefficients. 304ce976d2dSEugene Zhulenev Value cstCephesSQRTHF = bcast(f32Cst(builder, 0.707106781186547524f)); 305ce976d2dSEugene Zhulenev Value cstCephesLogP0 = bcast(f32Cst(builder, 7.0376836292E-2f)); 306ce976d2dSEugene Zhulenev Value cstCephesLogP1 = bcast(f32Cst(builder, -1.1514610310E-1f)); 307ce976d2dSEugene Zhulenev Value cstCephesLogP2 = bcast(f32Cst(builder, 1.1676998740E-1f)); 308ce976d2dSEugene Zhulenev Value cstCephesLogP3 = bcast(f32Cst(builder, -1.2420140846E-1f)); 309ce976d2dSEugene Zhulenev Value cstCephesLogP4 = bcast(f32Cst(builder, +1.4249322787E-1f)); 310ce976d2dSEugene Zhulenev Value cstCephesLogP5 = bcast(f32Cst(builder, -1.6668057665E-1f)); 311ce976d2dSEugene Zhulenev Value cstCephesLogP6 = bcast(f32Cst(builder, +2.0000714765E-1f)); 312ce976d2dSEugene Zhulenev Value cstCephesLogP7 = bcast(f32Cst(builder, -2.4999993993E-1f)); 313ce976d2dSEugene Zhulenev Value cstCephesLogP8 = bcast(f32Cst(builder, +3.3333331174E-1f)); 314ce976d2dSEugene Zhulenev 315ce976d2dSEugene Zhulenev Value x = op.operand(); 316ce976d2dSEugene Zhulenev 317ce976d2dSEugene Zhulenev // Truncate input values to the minimum positive normal. 318ce976d2dSEugene Zhulenev x = max(builder, x, cstMinNormPos); 319ce976d2dSEugene Zhulenev 320ce976d2dSEugene Zhulenev // Extract significant in the range [0.5,1) and exponent. 321ce976d2dSEugene Zhulenev std::pair<Value, Value> pair = frexp(builder, x, /*is_positive=*/true); 322ce976d2dSEugene Zhulenev x = pair.first; 323ce976d2dSEugene Zhulenev Value e = pair.second; 324ce976d2dSEugene Zhulenev 325ce976d2dSEugene Zhulenev // Shift the inputs from the range [0.5,1) to [sqrt(1/2), sqrt(2)) and shift 326ce976d2dSEugene Zhulenev // by -1.0. The values are then centered around 0, which improves the 327ce976d2dSEugene Zhulenev // stability of the polynomial evaluation: 328ce976d2dSEugene Zhulenev // 329ce976d2dSEugene Zhulenev // if( x < SQRTHF ) { 330ce976d2dSEugene Zhulenev // e -= 1; 331ce976d2dSEugene Zhulenev // x = x + x - 1.0; 332ce976d2dSEugene Zhulenev // } else { x = x - 1.0; } 333ce976d2dSEugene Zhulenev Value mask = builder.create<CmpFOp>(CmpFPredicate::OLT, x, cstCephesSQRTHF); 334ce976d2dSEugene Zhulenev Value tmp = builder.create<SelectOp>(mask, x, cstZero); 335ce976d2dSEugene Zhulenev 336ce976d2dSEugene Zhulenev x = builder.create<SubFOp>(x, cstOne); 337ce976d2dSEugene Zhulenev e = builder.create<SubFOp>(e, 338ce976d2dSEugene Zhulenev builder.create<SelectOp>(mask, cstOne, cstZero)); 339ce976d2dSEugene Zhulenev x = builder.create<AddFOp>(x, tmp); 340ce976d2dSEugene Zhulenev 341ce976d2dSEugene Zhulenev Value x2 = builder.create<MulFOp>(x, x); 342ce976d2dSEugene Zhulenev Value x3 = builder.create<MulFOp>(x2, x); 343ce976d2dSEugene Zhulenev 344ce976d2dSEugene Zhulenev // Evaluate the polynomial approximant of degree 8 in three parts. 345ce976d2dSEugene Zhulenev Value y0, y1, y2; 346ce976d2dSEugene Zhulenev y0 = builder.create<FmaFOp>(cstCephesLogP0, x, cstCephesLogP1); 347ce976d2dSEugene Zhulenev y1 = builder.create<FmaFOp>(cstCephesLogP3, x, cstCephesLogP4); 348ce976d2dSEugene Zhulenev y2 = builder.create<FmaFOp>(cstCephesLogP6, x, cstCephesLogP7); 349ce976d2dSEugene Zhulenev y0 = builder.create<FmaFOp>(y0, x, cstCephesLogP2); 350ce976d2dSEugene Zhulenev y1 = builder.create<FmaFOp>(y1, x, cstCephesLogP5); 351ce976d2dSEugene Zhulenev y2 = builder.create<FmaFOp>(y2, x, cstCephesLogP8); 352ce976d2dSEugene Zhulenev y0 = builder.create<FmaFOp>(y0, x3, y1); 353ce976d2dSEugene Zhulenev y0 = builder.create<FmaFOp>(y0, x3, y2); 354ce976d2dSEugene Zhulenev y0 = builder.create<MulFOp>(y0, x3); 355ce976d2dSEugene Zhulenev 356ce976d2dSEugene Zhulenev y0 = builder.create<FmaFOp>(cstNegHalf, x2, y0); 357ce976d2dSEugene Zhulenev x = builder.create<AddFOp>(x, y0); 358ce976d2dSEugene Zhulenev 359ce976d2dSEugene Zhulenev Value cstLn2 = bcast(f32Cst(builder, static_cast<float>(LN2_VALUE))); 360ce976d2dSEugene Zhulenev x = builder.create<FmaFOp>(e, cstLn2, x); 361ce976d2dSEugene Zhulenev 362ce976d2dSEugene Zhulenev Value invalidMask = 363ce976d2dSEugene Zhulenev builder.create<CmpFOp>(CmpFPredicate::ULT, op.operand(), cstZero); 364ce976d2dSEugene Zhulenev Value zeroMask = 365ce976d2dSEugene Zhulenev builder.create<CmpFOp>(CmpFPredicate::OEQ, op.operand(), cstZero); 366ce976d2dSEugene Zhulenev Value posInfMask = 367ce976d2dSEugene Zhulenev builder.create<CmpFOp>(CmpFPredicate::OEQ, op.operand(), cstPosInf); 368ce976d2dSEugene Zhulenev 369ce976d2dSEugene Zhulenev // Filter out invalid values: 370ce976d2dSEugene Zhulenev // • x == 0 -> -INF 371ce976d2dSEugene Zhulenev // • x < 0 -> NAN 372ce976d2dSEugene Zhulenev // • x == +INF -> +INF 373ce976d2dSEugene Zhulenev Value aproximation = builder.create<SelectOp>( 374ce976d2dSEugene Zhulenev zeroMask, cstMinusInf, 375ce976d2dSEugene Zhulenev builder.create<SelectOp>( 376ce976d2dSEugene Zhulenev invalidMask, cstNan, 377ce976d2dSEugene Zhulenev builder.create<SelectOp>(posInfMask, cstPosInf, x))); 378ce976d2dSEugene Zhulenev 379ce976d2dSEugene Zhulenev rewriter.replaceOp(op, aproximation); 380ce976d2dSEugene Zhulenev 381ce976d2dSEugene Zhulenev return success(); 382ce976d2dSEugene Zhulenev } 383ce976d2dSEugene Zhulenev 384ce976d2dSEugene Zhulenev //----------------------------------------------------------------------------// 385*ea7f211bSAhmed Taei // Exp approximation. 386*ea7f211bSAhmed Taei //----------------------------------------------------------------------------// 387*ea7f211bSAhmed Taei 388*ea7f211bSAhmed Taei namespace { 389*ea7f211bSAhmed Taei 390*ea7f211bSAhmed Taei struct ExpApproximation : public OpRewritePattern<math::ExpOp> { 391*ea7f211bSAhmed Taei public: 392*ea7f211bSAhmed Taei using OpRewritePattern::OpRewritePattern; 393*ea7f211bSAhmed Taei 394*ea7f211bSAhmed Taei LogicalResult matchAndRewrite(math::ExpOp op, 395*ea7f211bSAhmed Taei PatternRewriter &rewriter) const final; 396*ea7f211bSAhmed Taei }; 397*ea7f211bSAhmed Taei } // namespace 398*ea7f211bSAhmed Taei 399*ea7f211bSAhmed Taei // Approximate exp(x) using its reduced range exp(y) where y is in the range 400*ea7f211bSAhmed Taei // [0, ln(2)], let y = x - floor(x / ln(2)) * ln(2) = x - k * ln(2), exp(x) 401*ea7f211bSAhmed Taei // = exp(y) * 2^k. exp(y). 402*ea7f211bSAhmed Taei LogicalResult 403*ea7f211bSAhmed Taei ExpApproximation::matchAndRewrite(math::ExpOp op, 404*ea7f211bSAhmed Taei PatternRewriter &rewriter) const { 405*ea7f211bSAhmed Taei auto width = vectorWidth(op.operand().getType(), isF32); 406*ea7f211bSAhmed Taei if (!width.hasValue()) 407*ea7f211bSAhmed Taei return rewriter.notifyMatchFailure(op, "unsupported operand type"); 408*ea7f211bSAhmed Taei ImplicitLocOpBuilder builder(op->getLoc(), rewriter); 409*ea7f211bSAhmed Taei 410*ea7f211bSAhmed Taei // TODO: Consider a common pattern rewriter with all methods below to 411*ea7f211bSAhmed Taei // write the approximations. 412*ea7f211bSAhmed Taei auto bcast = [&](Value value) -> Value { 413*ea7f211bSAhmed Taei return broadcast(builder, value, *width); 414*ea7f211bSAhmed Taei }; 415*ea7f211bSAhmed Taei auto fmla = [&](Value a, Value b, Value c) { 416*ea7f211bSAhmed Taei return builder.create<FmaFOp>(a, b, c); 417*ea7f211bSAhmed Taei }; 418*ea7f211bSAhmed Taei auto mul = [&](Value a, Value b) -> Value { 419*ea7f211bSAhmed Taei return builder.create<MulFOp>(a, b); 420*ea7f211bSAhmed Taei }; 421*ea7f211bSAhmed Taei auto sub = [&](Value a, Value b) -> Value { 422*ea7f211bSAhmed Taei return builder.create<SubFOp>(a, b); 423*ea7f211bSAhmed Taei }; 424*ea7f211bSAhmed Taei auto floor = [&](Value a) { return builder.create<FloorFOp>(a); }; 425*ea7f211bSAhmed Taei 426*ea7f211bSAhmed Taei Value cstLn2 = bcast(f32Cst(builder, static_cast<float>(LN2_VALUE))); 427*ea7f211bSAhmed Taei Value cstLN2E = bcast(f32Cst(builder, static_cast<float>(LN2E_VALUE))); 428*ea7f211bSAhmed Taei 429*ea7f211bSAhmed Taei // Polynomial coefficients. 430*ea7f211bSAhmed Taei Value cstCephesExpP0 = bcast(f32Cst(builder, 1.0)); 431*ea7f211bSAhmed Taei Value cstCephesExpP1 = bcast(f32Cst(builder, 1.0)); 432*ea7f211bSAhmed Taei Value cstCephesExpP2 = bcast(f32Cst(builder, 0.49970514590562437052f)); 433*ea7f211bSAhmed Taei Value cstCephesExpP3 = bcast(f32Cst(builder, 0.16873890085469545053f)); 434*ea7f211bSAhmed Taei Value cstCephesExpP4 = bcast(f32Cst(builder, 0.03668965196652099192f)); 435*ea7f211bSAhmed Taei Value cstCephesExpP5 = bcast(f32Cst(builder, 0.01314350012789660196f)); 436*ea7f211bSAhmed Taei 437*ea7f211bSAhmed Taei Value x = op.operand(); 438*ea7f211bSAhmed Taei 439*ea7f211bSAhmed Taei // Reduced y = x - floor(x / ln(2)) * ln(2) = x - k * ln(2) 440*ea7f211bSAhmed Taei Value xL2Inv = mul(x, cstLN2E); 441*ea7f211bSAhmed Taei Value kF32 = floor(xL2Inv); 442*ea7f211bSAhmed Taei Value kLn2 = mul(kF32, cstLn2); 443*ea7f211bSAhmed Taei Value y = sub(x, kLn2); 444*ea7f211bSAhmed Taei 445*ea7f211bSAhmed Taei // Use Estrin's evaluation scheme with 3 independent parts: 446*ea7f211bSAhmed Taei // P(y)^y : (c0 + c1 y) + (c2 + c3 y) y^2 + (c4 + c5 y) y^4 447*ea7f211bSAhmed Taei Value y2 = mul(y, y); 448*ea7f211bSAhmed Taei Value y4 = mul(y2, y2); 449*ea7f211bSAhmed Taei 450*ea7f211bSAhmed Taei Value q0 = fmla(cstCephesExpP1, y, cstCephesExpP0); 451*ea7f211bSAhmed Taei Value q1 = fmla(cstCephesExpP3, y, cstCephesExpP2); 452*ea7f211bSAhmed Taei Value q2 = fmla(cstCephesExpP5, y, cstCephesExpP4); 453*ea7f211bSAhmed Taei Value expY = fmla(q1, y2, q0); 454*ea7f211bSAhmed Taei expY = fmla(q2, y4, expY); 455*ea7f211bSAhmed Taei 456*ea7f211bSAhmed Taei auto i32Vec = broadcast(builder.getI32Type(), *width); 457*ea7f211bSAhmed Taei 458*ea7f211bSAhmed Taei // exp2(k) 459*ea7f211bSAhmed Taei Value k = builder.create<FPToSIOp>(kF32, i32Vec); 460*ea7f211bSAhmed Taei Value exp2KValue = exp2I32(builder, k); 461*ea7f211bSAhmed Taei 462*ea7f211bSAhmed Taei // exp(x) = exp(y) * exp2(k) 463*ea7f211bSAhmed Taei expY = mul(expY, exp2KValue); 464*ea7f211bSAhmed Taei 465*ea7f211bSAhmed Taei // Handle overflow, inf and underflow of exp(x). exp(x) range is [0, inf], its 466*ea7f211bSAhmed Taei // partitioned as the following: 467*ea7f211bSAhmed Taei // exp(x) = 0, x <= -inf 468*ea7f211bSAhmed Taei // exp(x) = underflow (min_float), x <= -88 469*ea7f211bSAhmed Taei // exp(x) = inf (min_float), x >= 88 470*ea7f211bSAhmed Taei // Note: |k| = 127 is the value where the 8-bits exponent saturates. 471*ea7f211bSAhmed Taei Value zerof32Const = bcast(f32Cst(builder, 0)); 472*ea7f211bSAhmed Taei auto constPosInfinity = 473*ea7f211bSAhmed Taei bcast(f32Cst(builder, std::numeric_limits<float>::infinity())); 474*ea7f211bSAhmed Taei auto constNegIfinity = 475*ea7f211bSAhmed Taei bcast(f32Cst(builder, -std::numeric_limits<float>::infinity())); 476*ea7f211bSAhmed Taei auto underflow = bcast(f32Cst(builder, std::numeric_limits<float>::min())); 477*ea7f211bSAhmed Taei 478*ea7f211bSAhmed Taei Value kMaxConst = bcast(i32Cst(builder, 127)); 479*ea7f211bSAhmed Taei Value kMaxNegConst = bcast(i32Cst(builder, -127)); 480*ea7f211bSAhmed Taei Value rightBound = builder.create<CmpIOp>(CmpIPredicate::sle, k, kMaxConst); 481*ea7f211bSAhmed Taei Value leftBound = builder.create<CmpIOp>(CmpIPredicate::sge, k, kMaxNegConst); 482*ea7f211bSAhmed Taei 483*ea7f211bSAhmed Taei Value isNegInfinityX = 484*ea7f211bSAhmed Taei builder.create<CmpFOp>(CmpFPredicate::OEQ, x, constNegIfinity); 485*ea7f211bSAhmed Taei Value isPostiveX = 486*ea7f211bSAhmed Taei builder.create<CmpFOp>(CmpFPredicate::OGT, x, zerof32Const); 487*ea7f211bSAhmed Taei Value isComputable = builder.create<AndOp>(rightBound, leftBound); 488*ea7f211bSAhmed Taei 489*ea7f211bSAhmed Taei expY = builder.create<SelectOp>( 490*ea7f211bSAhmed Taei isComputable, expY, 491*ea7f211bSAhmed Taei builder.create<SelectOp>( 492*ea7f211bSAhmed Taei isPostiveX, constPosInfinity, 493*ea7f211bSAhmed Taei builder.create<SelectOp>(isNegInfinityX, zerof32Const, underflow))); 494*ea7f211bSAhmed Taei 495*ea7f211bSAhmed Taei rewriter.replaceOp(op, expY); 496*ea7f211bSAhmed Taei 497*ea7f211bSAhmed Taei return success(); 498*ea7f211bSAhmed Taei } 499*ea7f211bSAhmed Taei 500*ea7f211bSAhmed Taei //----------------------------------------------------------------------------// 501f99ccf65SEugene Zhulenev 502f99ccf65SEugene Zhulenev void mlir::populateMathPolynomialApproximationPatterns( 503f99ccf65SEugene Zhulenev OwningRewritePatternList &patterns, MLIRContext *ctx) { 504*ea7f211bSAhmed Taei patterns.insert<TanhApproximation, LogApproximation, ExpApproximation>(ctx); 505f99ccf65SEugene Zhulenev } 506