1f99ccf65SEugene Zhulenev //===- PolynomialApproximation.cpp - Approximate math operations ----------===// 2f99ccf65SEugene Zhulenev // 3f99ccf65SEugene Zhulenev // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4f99ccf65SEugene Zhulenev // See https://llvm.org/LICENSE.txt for license information. 5f99ccf65SEugene Zhulenev // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6f99ccf65SEugene Zhulenev // 7f99ccf65SEugene Zhulenev //===----------------------------------------------------------------------===// 8f99ccf65SEugene Zhulenev // 9f99ccf65SEugene Zhulenev // This file implements expansion of math operations to fast approximations 10f99ccf65SEugene Zhulenev // that do not rely on any of the library functions. 11f99ccf65SEugene Zhulenev // 12f99ccf65SEugene Zhulenev //===----------------------------------------------------------------------===// 133a506b31SChris Lattner 14ce976d2dSEugene Zhulenev #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 15ce976d2dSEugene Zhulenev #include "mlir/Dialect/LLVMIR/LLVMTypes.h" 16f99ccf65SEugene Zhulenev #include "mlir/Dialect/Math/IR/Math.h" 17f99ccf65SEugene Zhulenev #include "mlir/Dialect/Math/Transforms/Passes.h" 18f99ccf65SEugene Zhulenev #include "mlir/Dialect/Vector/VectorOps.h" 19f99ccf65SEugene Zhulenev #include "mlir/IR/Builders.h" 20ce976d2dSEugene Zhulenev #include "mlir/IR/ImplicitLocOpBuilder.h" 213a506b31SChris Lattner #include "mlir/Transforms/Bufferize.h" 22f99ccf65SEugene Zhulenev #include "mlir/Transforms/DialectConversion.h" 23f99ccf65SEugene Zhulenev #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 243a506b31SChris Lattner #include <climits> 25f99ccf65SEugene Zhulenev 26f99ccf65SEugene Zhulenev using namespace mlir; 27f99ccf65SEugene Zhulenev using namespace mlir::vector; 28f99ccf65SEugene Zhulenev 29ce976d2dSEugene Zhulenev using TypePredicate = llvm::function_ref<bool(Type)>; 30ce976d2dSEugene Zhulenev 31ce976d2dSEugene Zhulenev // Returns vector width if the element type is matching the predicate (scalars 32ce976d2dSEugene Zhulenev // that do match the predicate have width equal to `1`). 33ce976d2dSEugene Zhulenev static Optional<int> vectorWidth(Type type, TypePredicate pred) { 34ce976d2dSEugene Zhulenev // If the type matches the predicate then its width is `1`. 35ce976d2dSEugene Zhulenev if (pred(type)) 36ce976d2dSEugene Zhulenev return 1; 37ce976d2dSEugene Zhulenev 38ce976d2dSEugene Zhulenev // Otherwise check if the type is a vector type. 39ce976d2dSEugene Zhulenev auto vectorType = type.dyn_cast<VectorType>(); 40ce976d2dSEugene Zhulenev if (vectorType && pred(vectorType.getElementType())) { 41ce976d2dSEugene Zhulenev assert(vectorType.getRank() == 1 && "only 1d vectors are supported"); 42ce976d2dSEugene Zhulenev return vectorType.getDimSize(0); 43ce976d2dSEugene Zhulenev } 44ce976d2dSEugene Zhulenev 45ce976d2dSEugene Zhulenev return llvm::None; 46ce976d2dSEugene Zhulenev } 47ce976d2dSEugene Zhulenev 48ce976d2dSEugene Zhulenev // Returns vector width of the type. If the type is a scalar returns `1`. 49ce976d2dSEugene Zhulenev static int vectorWidth(Type type) { 50ce976d2dSEugene Zhulenev auto vectorType = type.dyn_cast<VectorType>(); 51ce976d2dSEugene Zhulenev return vectorType ? vectorType.getDimSize(0) : 1; 52ce976d2dSEugene Zhulenev } 53ce976d2dSEugene Zhulenev 54ce976d2dSEugene Zhulenev // Returns vector element type. If the type is a scalar returns the argument. 5539b2cd40SEugene Zhulenev LLVM_ATTRIBUTE_UNUSED static Type elementType(Type type) { 56ce976d2dSEugene Zhulenev auto vectorType = type.dyn_cast<VectorType>(); 57ce976d2dSEugene Zhulenev return vectorType ? vectorType.getElementType() : type; 58f99ccf65SEugene Zhulenev } 59f99ccf65SEugene Zhulenev 6039b2cd40SEugene Zhulenev LLVM_ATTRIBUTE_UNUSED static bool isF32(Type type) { return type.isF32(); } 6139b2cd40SEugene Zhulenev 6239b2cd40SEugene Zhulenev LLVM_ATTRIBUTE_UNUSED static bool isI32(Type type) { 6339b2cd40SEugene Zhulenev return type.isInteger(32); 6439b2cd40SEugene Zhulenev } 6539b2cd40SEugene Zhulenev 66f99ccf65SEugene Zhulenev //----------------------------------------------------------------------------// 67ce976d2dSEugene Zhulenev // Broadcast scalar types and values into vector types and values. 68f99ccf65SEugene Zhulenev //----------------------------------------------------------------------------// 69f99ccf65SEugene Zhulenev 70ce976d2dSEugene Zhulenev // Broadcasts scalar type into vector type (iff width is greater then 1). 71ce976d2dSEugene Zhulenev static Type broadcast(Type type, int width) { 72ce976d2dSEugene Zhulenev assert(!type.isa<VectorType>() && "must be scalar type"); 73ce976d2dSEugene Zhulenev return width > 1 ? VectorType::get({width}, type) : type; 74ce976d2dSEugene Zhulenev } 75f99ccf65SEugene Zhulenev 76ce976d2dSEugene Zhulenev // Broadcasts scalar value into vector (iff width is greater then 1). 77ce976d2dSEugene Zhulenev static Value broadcast(ImplicitLocOpBuilder &builder, Value value, int width) { 78ce976d2dSEugene Zhulenev assert(!value.getType().isa<VectorType>() && "must be scalar value"); 79ce976d2dSEugene Zhulenev auto type = broadcast(value.getType(), width); 80ce976d2dSEugene Zhulenev return width > 1 ? builder.create<BroadcastOp>(type, value) : value; 81ce976d2dSEugene Zhulenev } 82f99ccf65SEugene Zhulenev 83ce976d2dSEugene Zhulenev //----------------------------------------------------------------------------// 84ce976d2dSEugene Zhulenev // Helper functions to create constants. 85ce976d2dSEugene Zhulenev //----------------------------------------------------------------------------// 86f99ccf65SEugene Zhulenev 87ce976d2dSEugene Zhulenev static Value f32Cst(ImplicitLocOpBuilder &builder, float value) { 88ce976d2dSEugene Zhulenev return builder.create<ConstantOp>(builder.getF32Type(), 89ce976d2dSEugene Zhulenev builder.getF32FloatAttr(value)); 90ce976d2dSEugene Zhulenev } 91f99ccf65SEugene Zhulenev 92ce976d2dSEugene Zhulenev static Value i32Cst(ImplicitLocOpBuilder &builder, int32_t value) { 93ce976d2dSEugene Zhulenev return builder.create<ConstantOp>(builder.getI32Type(), 94ce976d2dSEugene Zhulenev builder.getI32IntegerAttr(value)); 95ce976d2dSEugene Zhulenev } 96f99ccf65SEugene Zhulenev 97ce976d2dSEugene Zhulenev static Value f32FromBits(ImplicitLocOpBuilder &builder, uint32_t bits) { 98ce976d2dSEugene Zhulenev Value i32Value = i32Cst(builder, static_cast<int32_t>(bits)); 99ce976d2dSEugene Zhulenev return builder.create<LLVM::BitcastOp>(builder.getF32Type(), i32Value); 100ce976d2dSEugene Zhulenev } 101f99ccf65SEugene Zhulenev 102ce976d2dSEugene Zhulenev //----------------------------------------------------------------------------// 103ce976d2dSEugene Zhulenev // Helper functions to build math functions approximations. 104ce976d2dSEugene Zhulenev //----------------------------------------------------------------------------// 105ce976d2dSEugene Zhulenev 106ce976d2dSEugene Zhulenev static Value min(ImplicitLocOpBuilder &builder, Value a, Value b) { 107ce976d2dSEugene Zhulenev return builder.create<SelectOp>( 108ce976d2dSEugene Zhulenev builder.create<CmpFOp>(CmpFPredicate::OLT, a, b), a, b); 109ce976d2dSEugene Zhulenev } 110ce976d2dSEugene Zhulenev 111ce976d2dSEugene Zhulenev static Value max(ImplicitLocOpBuilder &builder, Value a, Value b) { 112ce976d2dSEugene Zhulenev return builder.create<SelectOp>( 113ce976d2dSEugene Zhulenev builder.create<CmpFOp>(CmpFPredicate::OGT, a, b), a, b); 114ce976d2dSEugene Zhulenev } 115ce976d2dSEugene Zhulenev 116ce976d2dSEugene Zhulenev static Value clamp(ImplicitLocOpBuilder &builder, Value value, Value lowerBound, 117ce976d2dSEugene Zhulenev Value upperBound) { 118ce976d2dSEugene Zhulenev return max(builder, min(builder, value, upperBound), lowerBound); 119ce976d2dSEugene Zhulenev } 120ce976d2dSEugene Zhulenev 121ce976d2dSEugene Zhulenev // Decomposes given floating point value `arg` into a normalized fraction and 122ce976d2dSEugene Zhulenev // an integral power of two (see std::frexp). Returned values have float type. 123ce976d2dSEugene Zhulenev static std::pair<Value, Value> frexp(ImplicitLocOpBuilder &builder, Value arg, 124ce976d2dSEugene Zhulenev bool is_positive = false) { 125ce976d2dSEugene Zhulenev assert(isF32(elementType(arg.getType())) && "argument must be f32 type"); 126ce976d2dSEugene Zhulenev 127ce976d2dSEugene Zhulenev int width = vectorWidth(arg.getType()); 128ce976d2dSEugene Zhulenev 129ce976d2dSEugene Zhulenev auto bcast = [&](Value value) -> Value { 130ce976d2dSEugene Zhulenev return broadcast(builder, value, width); 131f99ccf65SEugene Zhulenev }; 132f99ccf65SEugene Zhulenev 133ce976d2dSEugene Zhulenev auto i32 = builder.getIntegerType(32); 134ce976d2dSEugene Zhulenev auto i32Vec = broadcast(i32, width); 135ce976d2dSEugene Zhulenev auto f32Vec = broadcast(builder.getF32Type(), width); 136f99ccf65SEugene Zhulenev 137ce976d2dSEugene Zhulenev Value cst126f = f32Cst(builder, 126.0f); 138ce976d2dSEugene Zhulenev Value cstHalf = f32Cst(builder, 0.5f); 139ce976d2dSEugene Zhulenev Value cstInvMantMask = f32FromBits(builder, ~0x7f800000u); 140f99ccf65SEugene Zhulenev 141ce976d2dSEugene Zhulenev // Bitcast to i32 for bitwise operations. 142ce976d2dSEugene Zhulenev Value i32Half = builder.create<LLVM::BitcastOp>(i32, cstHalf); 143ce976d2dSEugene Zhulenev Value i32InvMantMask = builder.create<LLVM::BitcastOp>(i32, cstInvMantMask); 144ce976d2dSEugene Zhulenev Value i32Arg = builder.create<LLVM::BitcastOp>(i32Vec, arg); 145f99ccf65SEugene Zhulenev 146ce976d2dSEugene Zhulenev // Compute normalized fraction. 147ce976d2dSEugene Zhulenev Value tmp0 = builder.create<LLVM::AndOp>(i32Arg, bcast(i32InvMantMask)); 148ce976d2dSEugene Zhulenev Value tmp1 = builder.create<LLVM::OrOp>(tmp0, bcast(i32Half)); 149ce976d2dSEugene Zhulenev Value normalizedFraction = builder.create<LLVM::BitcastOp>(f32Vec, tmp1); 150f99ccf65SEugene Zhulenev 151ce976d2dSEugene Zhulenev // Compute exponent. 152ce976d2dSEugene Zhulenev Value arg0 = is_positive ? arg : builder.create<AbsFOp>(arg); 153ce976d2dSEugene Zhulenev Value biasedExponentBits = builder.create<UnsignedShiftRightOp>( 154ce976d2dSEugene Zhulenev builder.create<LLVM::BitcastOp>(i32Vec, arg0), 155ce976d2dSEugene Zhulenev bcast(i32Cst(builder, 23))); 156ce976d2dSEugene Zhulenev Value biasedExponent = builder.create<SIToFPOp>(f32Vec, biasedExponentBits); 157ce976d2dSEugene Zhulenev Value exponent = builder.create<SubFOp>(biasedExponent, bcast(cst126f)); 158f99ccf65SEugene Zhulenev 159ce976d2dSEugene Zhulenev return {normalizedFraction, exponent}; 160f99ccf65SEugene Zhulenev } 161f99ccf65SEugene Zhulenev 162ea7f211bSAhmed Taei // Computes exp2 for an i32 argument. 163ea7f211bSAhmed Taei static Value exp2I32(ImplicitLocOpBuilder &builder, Value arg) { 164ea7f211bSAhmed Taei assert(isI32(elementType(arg.getType())) && "argument must be i32 type"); 165ea7f211bSAhmed Taei 166ea7f211bSAhmed Taei int width = vectorWidth(arg.getType()); 167ea7f211bSAhmed Taei 168ea7f211bSAhmed Taei auto bcast = [&](Value value) -> Value { 169ea7f211bSAhmed Taei return broadcast(builder, value, width); 170ea7f211bSAhmed Taei }; 171ea7f211bSAhmed Taei 172ea7f211bSAhmed Taei auto f32Vec = broadcast(builder.getF32Type(), width); 173ea7f211bSAhmed Taei // The exponent of f32 located at 23-bit. 174ea7f211bSAhmed Taei auto exponetBitLocation = bcast(i32Cst(builder, 23)); 175ea7f211bSAhmed Taei // Set the exponent bias to zero. 176ea7f211bSAhmed Taei auto bias = bcast(i32Cst(builder, 127)); 177ea7f211bSAhmed Taei 178ea7f211bSAhmed Taei Value biasedArg = builder.create<AddIOp>(arg, bias); 179ea7f211bSAhmed Taei Value exp2ValueInt = 180ea7f211bSAhmed Taei builder.create<ShiftLeftOp>(biasedArg, exponetBitLocation); 181ea7f211bSAhmed Taei Value exp2ValueF32 = builder.create<LLVM::BitcastOp>(f32Vec, exp2ValueInt); 182ea7f211bSAhmed Taei 183ea7f211bSAhmed Taei return exp2ValueF32; 184ea7f211bSAhmed Taei } 185ea7f211bSAhmed Taei 186f99ccf65SEugene Zhulenev //----------------------------------------------------------------------------// 187f99ccf65SEugene Zhulenev // TanhOp approximation. 188f99ccf65SEugene Zhulenev //----------------------------------------------------------------------------// 189f99ccf65SEugene Zhulenev 190f99ccf65SEugene Zhulenev namespace { 191f99ccf65SEugene Zhulenev struct TanhApproximation : public OpRewritePattern<math::TanhOp> { 192f99ccf65SEugene Zhulenev public: 193f99ccf65SEugene Zhulenev using OpRewritePattern::OpRewritePattern; 194f99ccf65SEugene Zhulenev 195f99ccf65SEugene Zhulenev LogicalResult matchAndRewrite(math::TanhOp op, 196f99ccf65SEugene Zhulenev PatternRewriter &rewriter) const final; 197f99ccf65SEugene Zhulenev }; 198f99ccf65SEugene Zhulenev } // namespace 199f99ccf65SEugene Zhulenev 200f99ccf65SEugene Zhulenev LogicalResult 201f99ccf65SEugene Zhulenev TanhApproximation::matchAndRewrite(math::TanhOp op, 202f99ccf65SEugene Zhulenev PatternRewriter &rewriter) const { 203ce976d2dSEugene Zhulenev auto width = vectorWidth(op.operand().getType(), isF32); 204ce976d2dSEugene Zhulenev if (!width.hasValue()) 205f99ccf65SEugene Zhulenev return rewriter.notifyMatchFailure(op, "unsupported operand type"); 206f99ccf65SEugene Zhulenev 207ce976d2dSEugene Zhulenev ImplicitLocOpBuilder builder(op->getLoc(), rewriter); 208ce976d2dSEugene Zhulenev auto bcast = [&](Value value) -> Value { 209ce976d2dSEugene Zhulenev return broadcast(builder, value, *width); 210ce976d2dSEugene Zhulenev }; 211f99ccf65SEugene Zhulenev 212f99ccf65SEugene Zhulenev // Clamp operand into [plusClamp, minusClamp] range. 213ce976d2dSEugene Zhulenev Value minusClamp = bcast(f32Cst(builder, -7.9053111076354980f)); 214ce976d2dSEugene Zhulenev Value plusClamp = bcast(f32Cst(builder, 7.90531110763549805f)); 215ce976d2dSEugene Zhulenev Value x = clamp(builder, op.operand(), minusClamp, plusClamp); 216f99ccf65SEugene Zhulenev 217f99ccf65SEugene Zhulenev // Mask for tiny values that are approximated with `operand`. 218ce976d2dSEugene Zhulenev Value tiny = bcast(f32Cst(builder, 0.0004f)); 219ce976d2dSEugene Zhulenev Value tinyMask = builder.create<CmpFOp>( 220ce976d2dSEugene Zhulenev CmpFPredicate::OLT, builder.create<AbsFOp>(op.operand()), tiny); 221f99ccf65SEugene Zhulenev 222f99ccf65SEugene Zhulenev // The monomial coefficients of the numerator polynomial (odd). 223ce976d2dSEugene Zhulenev Value alpha1 = bcast(f32Cst(builder, 4.89352455891786e-03f)); 224ce976d2dSEugene Zhulenev Value alpha3 = bcast(f32Cst(builder, 6.37261928875436e-04f)); 225ce976d2dSEugene Zhulenev Value alpha5 = bcast(f32Cst(builder, 1.48572235717979e-05f)); 226ce976d2dSEugene Zhulenev Value alpha7 = bcast(f32Cst(builder, 5.12229709037114e-08f)); 227ce976d2dSEugene Zhulenev Value alpha9 = bcast(f32Cst(builder, -8.60467152213735e-11f)); 228ce976d2dSEugene Zhulenev Value alpha11 = bcast(f32Cst(builder, 2.00018790482477e-13f)); 229ce976d2dSEugene Zhulenev Value alpha13 = bcast(f32Cst(builder, -2.76076847742355e-16f)); 230f99ccf65SEugene Zhulenev 231f99ccf65SEugene Zhulenev // The monomial coefficients of the denominator polynomial (even). 232ce976d2dSEugene Zhulenev Value beta0 = bcast(f32Cst(builder, 4.89352518554385e-03f)); 233ce976d2dSEugene Zhulenev Value beta2 = bcast(f32Cst(builder, 2.26843463243900e-03f)); 234ce976d2dSEugene Zhulenev Value beta4 = bcast(f32Cst(builder, 1.18534705686654e-04f)); 235ce976d2dSEugene Zhulenev Value beta6 = bcast(f32Cst(builder, 1.19825839466702e-06f)); 236f99ccf65SEugene Zhulenev 237f99ccf65SEugene Zhulenev // Since the polynomials are odd/even, we need x^2. 238ce976d2dSEugene Zhulenev Value x2 = builder.create<MulFOp>(x, x); 239f99ccf65SEugene Zhulenev 240f99ccf65SEugene Zhulenev // Evaluate the numerator polynomial p. 241ce976d2dSEugene Zhulenev Value p = builder.create<FmaFOp>(x2, alpha13, alpha11); 242ce976d2dSEugene Zhulenev p = builder.create<FmaFOp>(x2, p, alpha9); 243ce976d2dSEugene Zhulenev p = builder.create<FmaFOp>(x2, p, alpha7); 244ce976d2dSEugene Zhulenev p = builder.create<FmaFOp>(x2, p, alpha5); 245ce976d2dSEugene Zhulenev p = builder.create<FmaFOp>(x2, p, alpha3); 246ce976d2dSEugene Zhulenev p = builder.create<FmaFOp>(x2, p, alpha1); 247ce976d2dSEugene Zhulenev p = builder.create<MulFOp>(x, p); 248f99ccf65SEugene Zhulenev 249f99ccf65SEugene Zhulenev // Evaluate the denominator polynomial q. 250ce976d2dSEugene Zhulenev Value q = builder.create<FmaFOp>(x2, beta6, beta4); 251ce976d2dSEugene Zhulenev q = builder.create<FmaFOp>(x2, q, beta2); 252ce976d2dSEugene Zhulenev q = builder.create<FmaFOp>(x2, q, beta0); 253f99ccf65SEugene Zhulenev 254f99ccf65SEugene Zhulenev // Divide the numerator by the denominator. 255ce976d2dSEugene Zhulenev Value res = 256ce976d2dSEugene Zhulenev builder.create<SelectOp>(tinyMask, x, builder.create<DivFOp>(p, q)); 257f99ccf65SEugene Zhulenev 258f99ccf65SEugene Zhulenev rewriter.replaceOp(op, res); 259f99ccf65SEugene Zhulenev 260f99ccf65SEugene Zhulenev return success(); 261f99ccf65SEugene Zhulenev } 262f99ccf65SEugene Zhulenev 263ea7f211bSAhmed Taei #define LN2_VALUE \ 264ea7f211bSAhmed Taei 0.693147180559945309417232121458176568075500134360255254120680009493393621L 265c0891706SEmilio Cota #define LOG2E_VALUE \ 266ea7f211bSAhmed Taei 1.442695040888963407359924681001892137426645954152985934135449406931109219L 267ea7f211bSAhmed Taei 268f99ccf65SEugene Zhulenev //----------------------------------------------------------------------------// 269c0891706SEmilio Cota // LogOp and Log2Op approximation. 270ce976d2dSEugene Zhulenev //----------------------------------------------------------------------------// 271ce976d2dSEugene Zhulenev 272ce976d2dSEugene Zhulenev namespace { 273c0891706SEmilio Cota template <typename Op> 274c0891706SEmilio Cota struct LogApproximationBase : public OpRewritePattern<Op> { 275c0891706SEmilio Cota using OpRewritePattern<Op>::OpRewritePattern; 276ce976d2dSEugene Zhulenev 277c0891706SEmilio Cota /// Base 2 if 'base2' is set; natural logarithm (base e) otherwise. 278c0891706SEmilio Cota LogicalResult logMatchAndRewrite(Op op, PatternRewriter &rewriter, 279c0891706SEmilio Cota bool base2) const; 280ce976d2dSEugene Zhulenev }; 281ce976d2dSEugene Zhulenev } // namespace 282ce976d2dSEugene Zhulenev 283c0891706SEmilio Cota // This approximation comes from Julien Pommier's SSE math library. 284c0891706SEmilio Cota // Link: http://gruntthepeon.free.fr/ssemath 285c0891706SEmilio Cota template <typename Op> 286ce976d2dSEugene Zhulenev LogicalResult 287c0891706SEmilio Cota LogApproximationBase<Op>::logMatchAndRewrite(Op op, PatternRewriter &rewriter, 288c0891706SEmilio Cota bool base2) const { 289ce976d2dSEugene Zhulenev auto width = vectorWidth(op.operand().getType(), isF32); 290ce976d2dSEugene Zhulenev if (!width.hasValue()) 291ce976d2dSEugene Zhulenev return rewriter.notifyMatchFailure(op, "unsupported operand type"); 292ce976d2dSEugene Zhulenev 293ce976d2dSEugene Zhulenev ImplicitLocOpBuilder builder(op->getLoc(), rewriter); 294ce976d2dSEugene Zhulenev auto bcast = [&](Value value) -> Value { 295ce976d2dSEugene Zhulenev return broadcast(builder, value, *width); 296ce976d2dSEugene Zhulenev }; 297ce976d2dSEugene Zhulenev 298ce976d2dSEugene Zhulenev Value cstZero = bcast(f32Cst(builder, 0.0f)); 299ce976d2dSEugene Zhulenev Value cstOne = bcast(f32Cst(builder, 1.0f)); 300ce976d2dSEugene Zhulenev Value cstNegHalf = bcast(f32Cst(builder, -0.5f)); 301ce976d2dSEugene Zhulenev 302ce976d2dSEugene Zhulenev // The smallest non denormalized float number. 303ce976d2dSEugene Zhulenev Value cstMinNormPos = bcast(f32FromBits(builder, 0x00800000u)); 304ce976d2dSEugene Zhulenev Value cstMinusInf = bcast(f32FromBits(builder, 0xff800000u)); 305ce976d2dSEugene Zhulenev Value cstPosInf = bcast(f32FromBits(builder, 0x7f800000u)); 306ce976d2dSEugene Zhulenev Value cstNan = bcast(f32FromBits(builder, 0x7fc00000)); 307ce976d2dSEugene Zhulenev 308ce976d2dSEugene Zhulenev // Polynomial coefficients. 309ce976d2dSEugene Zhulenev Value cstCephesSQRTHF = bcast(f32Cst(builder, 0.707106781186547524f)); 310ce976d2dSEugene Zhulenev Value cstCephesLogP0 = bcast(f32Cst(builder, 7.0376836292E-2f)); 311ce976d2dSEugene Zhulenev Value cstCephesLogP1 = bcast(f32Cst(builder, -1.1514610310E-1f)); 312ce976d2dSEugene Zhulenev Value cstCephesLogP2 = bcast(f32Cst(builder, 1.1676998740E-1f)); 313ce976d2dSEugene Zhulenev Value cstCephesLogP3 = bcast(f32Cst(builder, -1.2420140846E-1f)); 314ce976d2dSEugene Zhulenev Value cstCephesLogP4 = bcast(f32Cst(builder, +1.4249322787E-1f)); 315ce976d2dSEugene Zhulenev Value cstCephesLogP5 = bcast(f32Cst(builder, -1.6668057665E-1f)); 316ce976d2dSEugene Zhulenev Value cstCephesLogP6 = bcast(f32Cst(builder, +2.0000714765E-1f)); 317ce976d2dSEugene Zhulenev Value cstCephesLogP7 = bcast(f32Cst(builder, -2.4999993993E-1f)); 318ce976d2dSEugene Zhulenev Value cstCephesLogP8 = bcast(f32Cst(builder, +3.3333331174E-1f)); 319ce976d2dSEugene Zhulenev 320ce976d2dSEugene Zhulenev Value x = op.operand(); 321ce976d2dSEugene Zhulenev 322ce976d2dSEugene Zhulenev // Truncate input values to the minimum positive normal. 323ce976d2dSEugene Zhulenev x = max(builder, x, cstMinNormPos); 324ce976d2dSEugene Zhulenev 325ce976d2dSEugene Zhulenev // Extract significant in the range [0.5,1) and exponent. 326ce976d2dSEugene Zhulenev std::pair<Value, Value> pair = frexp(builder, x, /*is_positive=*/true); 327ce976d2dSEugene Zhulenev x = pair.first; 328ce976d2dSEugene Zhulenev Value e = pair.second; 329ce976d2dSEugene Zhulenev 330ce976d2dSEugene Zhulenev // Shift the inputs from the range [0.5,1) to [sqrt(1/2), sqrt(2)) and shift 331ce976d2dSEugene Zhulenev // by -1.0. The values are then centered around 0, which improves the 332ce976d2dSEugene Zhulenev // stability of the polynomial evaluation: 333ce976d2dSEugene Zhulenev // 334ce976d2dSEugene Zhulenev // if( x < SQRTHF ) { 335ce976d2dSEugene Zhulenev // e -= 1; 336ce976d2dSEugene Zhulenev // x = x + x - 1.0; 337ce976d2dSEugene Zhulenev // } else { x = x - 1.0; } 338ce976d2dSEugene Zhulenev Value mask = builder.create<CmpFOp>(CmpFPredicate::OLT, x, cstCephesSQRTHF); 339ce976d2dSEugene Zhulenev Value tmp = builder.create<SelectOp>(mask, x, cstZero); 340ce976d2dSEugene Zhulenev 341ce976d2dSEugene Zhulenev x = builder.create<SubFOp>(x, cstOne); 342ce976d2dSEugene Zhulenev e = builder.create<SubFOp>(e, 343ce976d2dSEugene Zhulenev builder.create<SelectOp>(mask, cstOne, cstZero)); 344ce976d2dSEugene Zhulenev x = builder.create<AddFOp>(x, tmp); 345ce976d2dSEugene Zhulenev 346ce976d2dSEugene Zhulenev Value x2 = builder.create<MulFOp>(x, x); 347ce976d2dSEugene Zhulenev Value x3 = builder.create<MulFOp>(x2, x); 348ce976d2dSEugene Zhulenev 349ce976d2dSEugene Zhulenev // Evaluate the polynomial approximant of degree 8 in three parts. 350ce976d2dSEugene Zhulenev Value y0, y1, y2; 351ce976d2dSEugene Zhulenev y0 = builder.create<FmaFOp>(cstCephesLogP0, x, cstCephesLogP1); 352ce976d2dSEugene Zhulenev y1 = builder.create<FmaFOp>(cstCephesLogP3, x, cstCephesLogP4); 353ce976d2dSEugene Zhulenev y2 = builder.create<FmaFOp>(cstCephesLogP6, x, cstCephesLogP7); 354ce976d2dSEugene Zhulenev y0 = builder.create<FmaFOp>(y0, x, cstCephesLogP2); 355ce976d2dSEugene Zhulenev y1 = builder.create<FmaFOp>(y1, x, cstCephesLogP5); 356ce976d2dSEugene Zhulenev y2 = builder.create<FmaFOp>(y2, x, cstCephesLogP8); 357ce976d2dSEugene Zhulenev y0 = builder.create<FmaFOp>(y0, x3, y1); 358ce976d2dSEugene Zhulenev y0 = builder.create<FmaFOp>(y0, x3, y2); 359ce976d2dSEugene Zhulenev y0 = builder.create<MulFOp>(y0, x3); 360ce976d2dSEugene Zhulenev 361ce976d2dSEugene Zhulenev y0 = builder.create<FmaFOp>(cstNegHalf, x2, y0); 362ce976d2dSEugene Zhulenev x = builder.create<AddFOp>(x, y0); 363ce976d2dSEugene Zhulenev 364c0891706SEmilio Cota if (base2) { 365c0891706SEmilio Cota Value cstLog2e = bcast(f32Cst(builder, static_cast<float>(LOG2E_VALUE))); 366c0891706SEmilio Cota x = builder.create<FmaFOp>(x, cstLog2e, e); 367c0891706SEmilio Cota } else { 368ce976d2dSEugene Zhulenev Value cstLn2 = bcast(f32Cst(builder, static_cast<float>(LN2_VALUE))); 369ce976d2dSEugene Zhulenev x = builder.create<FmaFOp>(e, cstLn2, x); 370c0891706SEmilio Cota } 371ce976d2dSEugene Zhulenev 372ce976d2dSEugene Zhulenev Value invalidMask = 373ce976d2dSEugene Zhulenev builder.create<CmpFOp>(CmpFPredicate::ULT, op.operand(), cstZero); 374ce976d2dSEugene Zhulenev Value zeroMask = 375ce976d2dSEugene Zhulenev builder.create<CmpFOp>(CmpFPredicate::OEQ, op.operand(), cstZero); 376ce976d2dSEugene Zhulenev Value posInfMask = 377ce976d2dSEugene Zhulenev builder.create<CmpFOp>(CmpFPredicate::OEQ, op.operand(), cstPosInf); 378ce976d2dSEugene Zhulenev 379ce976d2dSEugene Zhulenev // Filter out invalid values: 380ce976d2dSEugene Zhulenev // • x == 0 -> -INF 381ce976d2dSEugene Zhulenev // • x < 0 -> NAN 382ce976d2dSEugene Zhulenev // • x == +INF -> +INF 383ce976d2dSEugene Zhulenev Value aproximation = builder.create<SelectOp>( 384ce976d2dSEugene Zhulenev zeroMask, cstMinusInf, 385ce976d2dSEugene Zhulenev builder.create<SelectOp>( 386ce976d2dSEugene Zhulenev invalidMask, cstNan, 387ce976d2dSEugene Zhulenev builder.create<SelectOp>(posInfMask, cstPosInf, x))); 388ce976d2dSEugene Zhulenev 389ce976d2dSEugene Zhulenev rewriter.replaceOp(op, aproximation); 390ce976d2dSEugene Zhulenev 391ce976d2dSEugene Zhulenev return success(); 392ce976d2dSEugene Zhulenev } 393ce976d2dSEugene Zhulenev 394c0891706SEmilio Cota namespace { 395c0891706SEmilio Cota struct LogApproximation : public LogApproximationBase<math::LogOp> { 396c0891706SEmilio Cota using LogApproximationBase::LogApproximationBase; 397c0891706SEmilio Cota 398c0891706SEmilio Cota LogicalResult matchAndRewrite(math::LogOp op, 399c0891706SEmilio Cota PatternRewriter &rewriter) const final { 400c0891706SEmilio Cota return logMatchAndRewrite(op, rewriter, /*base2=*/false); 401c0891706SEmilio Cota } 402c0891706SEmilio Cota }; 403c0891706SEmilio Cota } // namespace 404c0891706SEmilio Cota 405c0891706SEmilio Cota namespace { 406c0891706SEmilio Cota struct Log2Approximation : public LogApproximationBase<math::Log2Op> { 407c0891706SEmilio Cota using LogApproximationBase::LogApproximationBase; 408c0891706SEmilio Cota 409c0891706SEmilio Cota LogicalResult matchAndRewrite(math::Log2Op op, 410c0891706SEmilio Cota PatternRewriter &rewriter) const final { 411c0891706SEmilio Cota return logMatchAndRewrite(op, rewriter, /*base2=*/true); 412c0891706SEmilio Cota } 413c0891706SEmilio Cota }; 414c0891706SEmilio Cota } // namespace 415c0891706SEmilio Cota 416ce976d2dSEugene Zhulenev //----------------------------------------------------------------------------// 417ea7f211bSAhmed Taei // Exp approximation. 418ea7f211bSAhmed Taei //----------------------------------------------------------------------------// 419ea7f211bSAhmed Taei 420ea7f211bSAhmed Taei namespace { 421ea7f211bSAhmed Taei 422ea7f211bSAhmed Taei struct ExpApproximation : public OpRewritePattern<math::ExpOp> { 423ea7f211bSAhmed Taei public: 424ea7f211bSAhmed Taei using OpRewritePattern::OpRewritePattern; 425ea7f211bSAhmed Taei 426ea7f211bSAhmed Taei LogicalResult matchAndRewrite(math::ExpOp op, 427ea7f211bSAhmed Taei PatternRewriter &rewriter) const final; 428ea7f211bSAhmed Taei }; 429ea7f211bSAhmed Taei } // namespace 430ea7f211bSAhmed Taei 431ea7f211bSAhmed Taei // Approximate exp(x) using its reduced range exp(y) where y is in the range 432ea7f211bSAhmed Taei // [0, ln(2)], let y = x - floor(x / ln(2)) * ln(2) = x - k * ln(2), exp(x) 433ea7f211bSAhmed Taei // = exp(y) * 2^k. exp(y). 434ea7f211bSAhmed Taei LogicalResult 435ea7f211bSAhmed Taei ExpApproximation::matchAndRewrite(math::ExpOp op, 436ea7f211bSAhmed Taei PatternRewriter &rewriter) const { 437ea7f211bSAhmed Taei auto width = vectorWidth(op.operand().getType(), isF32); 438ea7f211bSAhmed Taei if (!width.hasValue()) 439ea7f211bSAhmed Taei return rewriter.notifyMatchFailure(op, "unsupported operand type"); 440ea7f211bSAhmed Taei ImplicitLocOpBuilder builder(op->getLoc(), rewriter); 441ea7f211bSAhmed Taei 442ea7f211bSAhmed Taei // TODO: Consider a common pattern rewriter with all methods below to 443ea7f211bSAhmed Taei // write the approximations. 444ea7f211bSAhmed Taei auto bcast = [&](Value value) -> Value { 445ea7f211bSAhmed Taei return broadcast(builder, value, *width); 446ea7f211bSAhmed Taei }; 447ea7f211bSAhmed Taei auto fmla = [&](Value a, Value b, Value c) { 448ea7f211bSAhmed Taei return builder.create<FmaFOp>(a, b, c); 449ea7f211bSAhmed Taei }; 450ea7f211bSAhmed Taei auto mul = [&](Value a, Value b) -> Value { 451ea7f211bSAhmed Taei return builder.create<MulFOp>(a, b); 452ea7f211bSAhmed Taei }; 453ea7f211bSAhmed Taei auto sub = [&](Value a, Value b) -> Value { 454ea7f211bSAhmed Taei return builder.create<SubFOp>(a, b); 455ea7f211bSAhmed Taei }; 456ea7f211bSAhmed Taei auto floor = [&](Value a) { return builder.create<FloorFOp>(a); }; 457ea7f211bSAhmed Taei 458ea7f211bSAhmed Taei Value cstLn2 = bcast(f32Cst(builder, static_cast<float>(LN2_VALUE))); 459c0891706SEmilio Cota Value cstLog2E = bcast(f32Cst(builder, static_cast<float>(LOG2E_VALUE))); 460ea7f211bSAhmed Taei 461ea7f211bSAhmed Taei // Polynomial coefficients. 462ea7f211bSAhmed Taei Value cstCephesExpP0 = bcast(f32Cst(builder, 1.0)); 463ea7f211bSAhmed Taei Value cstCephesExpP1 = bcast(f32Cst(builder, 1.0)); 464ea7f211bSAhmed Taei Value cstCephesExpP2 = bcast(f32Cst(builder, 0.49970514590562437052f)); 465ea7f211bSAhmed Taei Value cstCephesExpP3 = bcast(f32Cst(builder, 0.16873890085469545053f)); 466ea7f211bSAhmed Taei Value cstCephesExpP4 = bcast(f32Cst(builder, 0.03668965196652099192f)); 467ea7f211bSAhmed Taei Value cstCephesExpP5 = bcast(f32Cst(builder, 0.01314350012789660196f)); 468ea7f211bSAhmed Taei 469ea7f211bSAhmed Taei Value x = op.operand(); 470ea7f211bSAhmed Taei 471ea7f211bSAhmed Taei // Reduced y = x - floor(x / ln(2)) * ln(2) = x - k * ln(2) 472c0891706SEmilio Cota Value xL2Inv = mul(x, cstLog2E); 473ea7f211bSAhmed Taei Value kF32 = floor(xL2Inv); 474ea7f211bSAhmed Taei Value kLn2 = mul(kF32, cstLn2); 475ea7f211bSAhmed Taei Value y = sub(x, kLn2); 476ea7f211bSAhmed Taei 477ea7f211bSAhmed Taei // Use Estrin's evaluation scheme with 3 independent parts: 478ea7f211bSAhmed Taei // P(y)^y : (c0 + c1 y) + (c2 + c3 y) y^2 + (c4 + c5 y) y^4 479ea7f211bSAhmed Taei Value y2 = mul(y, y); 480ea7f211bSAhmed Taei Value y4 = mul(y2, y2); 481ea7f211bSAhmed Taei 482ea7f211bSAhmed Taei Value q0 = fmla(cstCephesExpP1, y, cstCephesExpP0); 483ea7f211bSAhmed Taei Value q1 = fmla(cstCephesExpP3, y, cstCephesExpP2); 484ea7f211bSAhmed Taei Value q2 = fmla(cstCephesExpP5, y, cstCephesExpP4); 485ea7f211bSAhmed Taei Value expY = fmla(q1, y2, q0); 486ea7f211bSAhmed Taei expY = fmla(q2, y4, expY); 487ea7f211bSAhmed Taei 488ea7f211bSAhmed Taei auto i32Vec = broadcast(builder.getI32Type(), *width); 489ea7f211bSAhmed Taei 490ea7f211bSAhmed Taei // exp2(k) 491ea7f211bSAhmed Taei Value k = builder.create<FPToSIOp>(kF32, i32Vec); 492ea7f211bSAhmed Taei Value exp2KValue = exp2I32(builder, k); 493ea7f211bSAhmed Taei 494ea7f211bSAhmed Taei // exp(x) = exp(y) * exp2(k) 495ea7f211bSAhmed Taei expY = mul(expY, exp2KValue); 496ea7f211bSAhmed Taei 497ea7f211bSAhmed Taei // Handle overflow, inf and underflow of exp(x). exp(x) range is [0, inf], its 498ea7f211bSAhmed Taei // partitioned as the following: 499ea7f211bSAhmed Taei // exp(x) = 0, x <= -inf 500ea7f211bSAhmed Taei // exp(x) = underflow (min_float), x <= -88 501ea7f211bSAhmed Taei // exp(x) = inf (min_float), x >= 88 502ea7f211bSAhmed Taei // Note: |k| = 127 is the value where the 8-bits exponent saturates. 503ea7f211bSAhmed Taei Value zerof32Const = bcast(f32Cst(builder, 0)); 504ea7f211bSAhmed Taei auto constPosInfinity = 505ea7f211bSAhmed Taei bcast(f32Cst(builder, std::numeric_limits<float>::infinity())); 506ea7f211bSAhmed Taei auto constNegIfinity = 507ea7f211bSAhmed Taei bcast(f32Cst(builder, -std::numeric_limits<float>::infinity())); 508ea7f211bSAhmed Taei auto underflow = bcast(f32Cst(builder, std::numeric_limits<float>::min())); 509ea7f211bSAhmed Taei 510ea7f211bSAhmed Taei Value kMaxConst = bcast(i32Cst(builder, 127)); 511ea7f211bSAhmed Taei Value kMaxNegConst = bcast(i32Cst(builder, -127)); 512ea7f211bSAhmed Taei Value rightBound = builder.create<CmpIOp>(CmpIPredicate::sle, k, kMaxConst); 513ea7f211bSAhmed Taei Value leftBound = builder.create<CmpIOp>(CmpIPredicate::sge, k, kMaxNegConst); 514ea7f211bSAhmed Taei 515ea7f211bSAhmed Taei Value isNegInfinityX = 516ea7f211bSAhmed Taei builder.create<CmpFOp>(CmpFPredicate::OEQ, x, constNegIfinity); 517ea7f211bSAhmed Taei Value isPostiveX = 518ea7f211bSAhmed Taei builder.create<CmpFOp>(CmpFPredicate::OGT, x, zerof32Const); 519ea7f211bSAhmed Taei Value isComputable = builder.create<AndOp>(rightBound, leftBound); 520ea7f211bSAhmed Taei 521ea7f211bSAhmed Taei expY = builder.create<SelectOp>( 522ea7f211bSAhmed Taei isComputable, expY, 523ea7f211bSAhmed Taei builder.create<SelectOp>( 524ea7f211bSAhmed Taei isPostiveX, constPosInfinity, 525ea7f211bSAhmed Taei builder.create<SelectOp>(isNegInfinityX, zerof32Const, underflow))); 526ea7f211bSAhmed Taei 527ea7f211bSAhmed Taei rewriter.replaceOp(op, expY); 528ea7f211bSAhmed Taei 529ea7f211bSAhmed Taei return success(); 530ea7f211bSAhmed Taei } 531ea7f211bSAhmed Taei 532ea7f211bSAhmed Taei //----------------------------------------------------------------------------// 533f99ccf65SEugene Zhulenev 534f99ccf65SEugene Zhulenev void mlir::populateMathPolynomialApproximationPatterns( 535*dc4e913bSChris Lattner RewritePatternSet &patterns) { 536*dc4e913bSChris Lattner patterns.add<TanhApproximation, LogApproximation, Log2Approximation, 5373a506b31SChris Lattner ExpApproximation>(patterns.getContext()); 538f99ccf65SEugene Zhulenev } 539