1f99ccf65SEugene Zhulenev //===- PolynomialApproximation.cpp - Approximate math operations ----------===//
2f99ccf65SEugene Zhulenev //
3f99ccf65SEugene Zhulenev // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4f99ccf65SEugene Zhulenev // See https://llvm.org/LICENSE.txt for license information.
5f99ccf65SEugene Zhulenev // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6f99ccf65SEugene Zhulenev //
7f99ccf65SEugene Zhulenev //===----------------------------------------------------------------------===//
8f99ccf65SEugene Zhulenev //
9f99ccf65SEugene Zhulenev // This file implements expansion of math operations to fast approximations
10f99ccf65SEugene Zhulenev // that do not rely on any of the library functions.
11f99ccf65SEugene Zhulenev //
12f99ccf65SEugene Zhulenev //===----------------------------------------------------------------------===//
13f99ccf65SEugene Zhulenev 
14*ce976d2dSEugene Zhulenev #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
15*ce976d2dSEugene Zhulenev #include "mlir/Dialect/LLVMIR/LLVMTypes.h"
16f99ccf65SEugene Zhulenev #include "mlir/Dialect/Math/IR/Math.h"
17f99ccf65SEugene Zhulenev #include "mlir/Dialect/Math/Transforms/Passes.h"
18f99ccf65SEugene Zhulenev #include "mlir/Dialect/Vector/VectorOps.h"
19f99ccf65SEugene Zhulenev #include "mlir/IR/Builders.h"
20*ce976d2dSEugene Zhulenev #include "mlir/IR/ImplicitLocOpBuilder.h"
21f99ccf65SEugene Zhulenev #include "mlir/Transforms/DialectConversion.h"
22f99ccf65SEugene Zhulenev #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
23f99ccf65SEugene Zhulenev 
24f99ccf65SEugene Zhulenev using namespace mlir;
25f99ccf65SEugene Zhulenev using namespace mlir::vector;
26f99ccf65SEugene Zhulenev 
27*ce976d2dSEugene Zhulenev using TypePredicate = llvm::function_ref<bool(Type)>;
28*ce976d2dSEugene Zhulenev 
29*ce976d2dSEugene Zhulenev static bool isF32(Type type) { return type.isF32(); }
30*ce976d2dSEugene Zhulenev 
31*ce976d2dSEugene Zhulenev // Returns vector width if the element type is matching the predicate (scalars
32*ce976d2dSEugene Zhulenev // that do match the predicate have width equal to `1`).
33*ce976d2dSEugene Zhulenev static Optional<int> vectorWidth(Type type, TypePredicate pred) {
34*ce976d2dSEugene Zhulenev   // If the type matches the predicate then its width is `1`.
35*ce976d2dSEugene Zhulenev   if (pred(type))
36*ce976d2dSEugene Zhulenev     return 1;
37*ce976d2dSEugene Zhulenev 
38*ce976d2dSEugene Zhulenev   // Otherwise check if the type is a vector type.
39*ce976d2dSEugene Zhulenev   auto vectorType = type.dyn_cast<VectorType>();
40*ce976d2dSEugene Zhulenev   if (vectorType && pred(vectorType.getElementType())) {
41*ce976d2dSEugene Zhulenev     assert(vectorType.getRank() == 1 && "only 1d vectors are supported");
42*ce976d2dSEugene Zhulenev     return vectorType.getDimSize(0);
43*ce976d2dSEugene Zhulenev   }
44*ce976d2dSEugene Zhulenev 
45*ce976d2dSEugene Zhulenev   return llvm::None;
46*ce976d2dSEugene Zhulenev }
47*ce976d2dSEugene Zhulenev 
48*ce976d2dSEugene Zhulenev // Returns vector width of the type. If the type is a scalar returns `1`.
49*ce976d2dSEugene Zhulenev static int vectorWidth(Type type) {
50*ce976d2dSEugene Zhulenev   auto vectorType = type.dyn_cast<VectorType>();
51*ce976d2dSEugene Zhulenev   return vectorType ? vectorType.getDimSize(0) : 1;
52*ce976d2dSEugene Zhulenev }
53*ce976d2dSEugene Zhulenev 
54*ce976d2dSEugene Zhulenev // Returns vector element type. If the type is a scalar returns the argument.
55*ce976d2dSEugene Zhulenev static Type elementType(Type type) {
56*ce976d2dSEugene Zhulenev   auto vectorType = type.dyn_cast<VectorType>();
57*ce976d2dSEugene Zhulenev   return vectorType ? vectorType.getElementType() : type;
58f99ccf65SEugene Zhulenev }
59f99ccf65SEugene Zhulenev 
60f99ccf65SEugene Zhulenev //----------------------------------------------------------------------------//
61*ce976d2dSEugene Zhulenev // Broadcast scalar types and values into vector types and values.
62f99ccf65SEugene Zhulenev //----------------------------------------------------------------------------//
63f99ccf65SEugene Zhulenev 
64*ce976d2dSEugene Zhulenev // Broadcasts scalar type into vector type (iff width is greater then 1).
65*ce976d2dSEugene Zhulenev static Type broadcast(Type type, int width) {
66*ce976d2dSEugene Zhulenev   assert(!type.isa<VectorType>() && "must be scalar type");
67*ce976d2dSEugene Zhulenev   return width > 1 ? VectorType::get({width}, type) : type;
68*ce976d2dSEugene Zhulenev }
69f99ccf65SEugene Zhulenev 
70*ce976d2dSEugene Zhulenev // Broadcasts scalar value into vector (iff width is greater then 1).
71*ce976d2dSEugene Zhulenev static Value broadcast(ImplicitLocOpBuilder &builder, Value value, int width) {
72*ce976d2dSEugene Zhulenev   assert(!value.getType().isa<VectorType>() && "must be scalar value");
73*ce976d2dSEugene Zhulenev   auto type = broadcast(value.getType(), width);
74*ce976d2dSEugene Zhulenev   return width > 1 ? builder.create<BroadcastOp>(type, value) : value;
75*ce976d2dSEugene Zhulenev }
76f99ccf65SEugene Zhulenev 
77*ce976d2dSEugene Zhulenev //----------------------------------------------------------------------------//
78*ce976d2dSEugene Zhulenev // Helper functions to create constants.
79*ce976d2dSEugene Zhulenev //----------------------------------------------------------------------------//
80f99ccf65SEugene Zhulenev 
81*ce976d2dSEugene Zhulenev static Value f32Cst(ImplicitLocOpBuilder &builder, float value) {
82*ce976d2dSEugene Zhulenev   return builder.create<ConstantOp>(builder.getF32Type(),
83*ce976d2dSEugene Zhulenev                                     builder.getF32FloatAttr(value));
84*ce976d2dSEugene Zhulenev }
85f99ccf65SEugene Zhulenev 
86*ce976d2dSEugene Zhulenev static Value i32Cst(ImplicitLocOpBuilder &builder, int32_t value) {
87*ce976d2dSEugene Zhulenev   return builder.create<ConstantOp>(builder.getI32Type(),
88*ce976d2dSEugene Zhulenev                                     builder.getI32IntegerAttr(value));
89*ce976d2dSEugene Zhulenev }
90f99ccf65SEugene Zhulenev 
91*ce976d2dSEugene Zhulenev static Value f32FromBits(ImplicitLocOpBuilder &builder, uint32_t bits) {
92*ce976d2dSEugene Zhulenev   Value i32Value = i32Cst(builder, static_cast<int32_t>(bits));
93*ce976d2dSEugene Zhulenev   return builder.create<LLVM::BitcastOp>(builder.getF32Type(), i32Value);
94*ce976d2dSEugene Zhulenev }
95f99ccf65SEugene Zhulenev 
96*ce976d2dSEugene Zhulenev //----------------------------------------------------------------------------//
97*ce976d2dSEugene Zhulenev // Helper functions to build math functions approximations.
98*ce976d2dSEugene Zhulenev //----------------------------------------------------------------------------//
99*ce976d2dSEugene Zhulenev 
100*ce976d2dSEugene Zhulenev static Value min(ImplicitLocOpBuilder &builder, Value a, Value b) {
101*ce976d2dSEugene Zhulenev   return builder.create<SelectOp>(
102*ce976d2dSEugene Zhulenev       builder.create<CmpFOp>(CmpFPredicate::OLT, a, b), a, b);
103*ce976d2dSEugene Zhulenev }
104*ce976d2dSEugene Zhulenev 
105*ce976d2dSEugene Zhulenev static Value max(ImplicitLocOpBuilder &builder, Value a, Value b) {
106*ce976d2dSEugene Zhulenev   return builder.create<SelectOp>(
107*ce976d2dSEugene Zhulenev       builder.create<CmpFOp>(CmpFPredicate::OGT, a, b), a, b);
108*ce976d2dSEugene Zhulenev }
109*ce976d2dSEugene Zhulenev 
110*ce976d2dSEugene Zhulenev static Value clamp(ImplicitLocOpBuilder &builder, Value value, Value lowerBound,
111*ce976d2dSEugene Zhulenev                    Value upperBound) {
112*ce976d2dSEugene Zhulenev   return max(builder, min(builder, value, upperBound), lowerBound);
113*ce976d2dSEugene Zhulenev }
114*ce976d2dSEugene Zhulenev 
115*ce976d2dSEugene Zhulenev // Decomposes given floating point value `arg` into a normalized fraction and
116*ce976d2dSEugene Zhulenev // an integral power of two (see std::frexp). Returned values have float type.
117*ce976d2dSEugene Zhulenev static std::pair<Value, Value> frexp(ImplicitLocOpBuilder &builder, Value arg,
118*ce976d2dSEugene Zhulenev                                      bool is_positive = false) {
119*ce976d2dSEugene Zhulenev   assert(isF32(elementType(arg.getType())) && "argument must be f32 type");
120*ce976d2dSEugene Zhulenev 
121*ce976d2dSEugene Zhulenev   int width = vectorWidth(arg.getType());
122*ce976d2dSEugene Zhulenev 
123*ce976d2dSEugene Zhulenev   auto bcast = [&](Value value) -> Value {
124*ce976d2dSEugene Zhulenev     return broadcast(builder, value, width);
125f99ccf65SEugene Zhulenev   };
126f99ccf65SEugene Zhulenev 
127*ce976d2dSEugene Zhulenev   auto i32 = builder.getIntegerType(32);
128*ce976d2dSEugene Zhulenev   auto i32Vec = broadcast(i32, width);
129*ce976d2dSEugene Zhulenev   auto f32Vec = broadcast(builder.getF32Type(), width);
130f99ccf65SEugene Zhulenev 
131*ce976d2dSEugene Zhulenev   Value cst126f = f32Cst(builder, 126.0f);
132*ce976d2dSEugene Zhulenev   Value cstHalf = f32Cst(builder, 0.5f);
133*ce976d2dSEugene Zhulenev   Value cstInvMantMask = f32FromBits(builder, ~0x7f800000u);
134f99ccf65SEugene Zhulenev 
135*ce976d2dSEugene Zhulenev   // Bitcast to i32 for bitwise operations.
136*ce976d2dSEugene Zhulenev   Value i32Half = builder.create<LLVM::BitcastOp>(i32, cstHalf);
137*ce976d2dSEugene Zhulenev   Value i32InvMantMask = builder.create<LLVM::BitcastOp>(i32, cstInvMantMask);
138*ce976d2dSEugene Zhulenev   Value i32Arg = builder.create<LLVM::BitcastOp>(i32Vec, arg);
139f99ccf65SEugene Zhulenev 
140*ce976d2dSEugene Zhulenev   // Compute normalized fraction.
141*ce976d2dSEugene Zhulenev   Value tmp0 = builder.create<LLVM::AndOp>(i32Arg, bcast(i32InvMantMask));
142*ce976d2dSEugene Zhulenev   Value tmp1 = builder.create<LLVM::OrOp>(tmp0, bcast(i32Half));
143*ce976d2dSEugene Zhulenev   Value normalizedFraction = builder.create<LLVM::BitcastOp>(f32Vec, tmp1);
144f99ccf65SEugene Zhulenev 
145*ce976d2dSEugene Zhulenev   // Compute exponent.
146*ce976d2dSEugene Zhulenev   Value arg0 = is_positive ? arg : builder.create<AbsFOp>(arg);
147*ce976d2dSEugene Zhulenev   Value biasedExponentBits = builder.create<UnsignedShiftRightOp>(
148*ce976d2dSEugene Zhulenev       builder.create<LLVM::BitcastOp>(i32Vec, arg0),
149*ce976d2dSEugene Zhulenev       bcast(i32Cst(builder, 23)));
150*ce976d2dSEugene Zhulenev   Value biasedExponent = builder.create<SIToFPOp>(f32Vec, biasedExponentBits);
151*ce976d2dSEugene Zhulenev   Value exponent = builder.create<SubFOp>(biasedExponent, bcast(cst126f));
152f99ccf65SEugene Zhulenev 
153*ce976d2dSEugene Zhulenev   return {normalizedFraction, exponent};
154f99ccf65SEugene Zhulenev }
155f99ccf65SEugene Zhulenev 
156f99ccf65SEugene Zhulenev //----------------------------------------------------------------------------//
157f99ccf65SEugene Zhulenev // TanhOp approximation.
158f99ccf65SEugene Zhulenev //----------------------------------------------------------------------------//
159f99ccf65SEugene Zhulenev 
160f99ccf65SEugene Zhulenev namespace {
161f99ccf65SEugene Zhulenev struct TanhApproximation : public OpRewritePattern<math::TanhOp> {
162f99ccf65SEugene Zhulenev public:
163f99ccf65SEugene Zhulenev   using OpRewritePattern::OpRewritePattern;
164f99ccf65SEugene Zhulenev 
165f99ccf65SEugene Zhulenev   LogicalResult matchAndRewrite(math::TanhOp op,
166f99ccf65SEugene Zhulenev                                 PatternRewriter &rewriter) const final;
167f99ccf65SEugene Zhulenev };
168f99ccf65SEugene Zhulenev } // namespace
169f99ccf65SEugene Zhulenev 
170f99ccf65SEugene Zhulenev LogicalResult
171f99ccf65SEugene Zhulenev TanhApproximation::matchAndRewrite(math::TanhOp op,
172f99ccf65SEugene Zhulenev                                    PatternRewriter &rewriter) const {
173*ce976d2dSEugene Zhulenev   auto width = vectorWidth(op.operand().getType(), isF32);
174*ce976d2dSEugene Zhulenev   if (!width.hasValue())
175f99ccf65SEugene Zhulenev     return rewriter.notifyMatchFailure(op, "unsupported operand type");
176f99ccf65SEugene Zhulenev 
177*ce976d2dSEugene Zhulenev   ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
178*ce976d2dSEugene Zhulenev   auto bcast = [&](Value value) -> Value {
179*ce976d2dSEugene Zhulenev     return broadcast(builder, value, *width);
180*ce976d2dSEugene Zhulenev   };
181f99ccf65SEugene Zhulenev 
182f99ccf65SEugene Zhulenev   // Clamp operand into [plusClamp, minusClamp] range.
183*ce976d2dSEugene Zhulenev   Value minusClamp = bcast(f32Cst(builder, -7.9053111076354980f));
184*ce976d2dSEugene Zhulenev   Value plusClamp = bcast(f32Cst(builder, 7.90531110763549805f));
185*ce976d2dSEugene Zhulenev   Value x = clamp(builder, op.operand(), minusClamp, plusClamp);
186f99ccf65SEugene Zhulenev 
187f99ccf65SEugene Zhulenev   // Mask for tiny values that are approximated with `operand`.
188*ce976d2dSEugene Zhulenev   Value tiny = bcast(f32Cst(builder, 0.0004f));
189*ce976d2dSEugene Zhulenev   Value tinyMask = builder.create<CmpFOp>(
190*ce976d2dSEugene Zhulenev       CmpFPredicate::OLT, builder.create<AbsFOp>(op.operand()), tiny);
191f99ccf65SEugene Zhulenev 
192f99ccf65SEugene Zhulenev   // The monomial coefficients of the numerator polynomial (odd).
193*ce976d2dSEugene Zhulenev   Value alpha1 = bcast(f32Cst(builder, 4.89352455891786e-03f));
194*ce976d2dSEugene Zhulenev   Value alpha3 = bcast(f32Cst(builder, 6.37261928875436e-04f));
195*ce976d2dSEugene Zhulenev   Value alpha5 = bcast(f32Cst(builder, 1.48572235717979e-05f));
196*ce976d2dSEugene Zhulenev   Value alpha7 = bcast(f32Cst(builder, 5.12229709037114e-08f));
197*ce976d2dSEugene Zhulenev   Value alpha9 = bcast(f32Cst(builder, -8.60467152213735e-11f));
198*ce976d2dSEugene Zhulenev   Value alpha11 = bcast(f32Cst(builder, 2.00018790482477e-13f));
199*ce976d2dSEugene Zhulenev   Value alpha13 = bcast(f32Cst(builder, -2.76076847742355e-16f));
200f99ccf65SEugene Zhulenev 
201f99ccf65SEugene Zhulenev   // The monomial coefficients of the denominator polynomial (even).
202*ce976d2dSEugene Zhulenev   Value beta0 = bcast(f32Cst(builder, 4.89352518554385e-03f));
203*ce976d2dSEugene Zhulenev   Value beta2 = bcast(f32Cst(builder, 2.26843463243900e-03f));
204*ce976d2dSEugene Zhulenev   Value beta4 = bcast(f32Cst(builder, 1.18534705686654e-04f));
205*ce976d2dSEugene Zhulenev   Value beta6 = bcast(f32Cst(builder, 1.19825839466702e-06f));
206f99ccf65SEugene Zhulenev 
207f99ccf65SEugene Zhulenev   // Since the polynomials are odd/even, we need x^2.
208*ce976d2dSEugene Zhulenev   Value x2 = builder.create<MulFOp>(x, x);
209f99ccf65SEugene Zhulenev 
210f99ccf65SEugene Zhulenev   // Evaluate the numerator polynomial p.
211*ce976d2dSEugene Zhulenev   Value p = builder.create<FmaFOp>(x2, alpha13, alpha11);
212*ce976d2dSEugene Zhulenev   p = builder.create<FmaFOp>(x2, p, alpha9);
213*ce976d2dSEugene Zhulenev   p = builder.create<FmaFOp>(x2, p, alpha7);
214*ce976d2dSEugene Zhulenev   p = builder.create<FmaFOp>(x2, p, alpha5);
215*ce976d2dSEugene Zhulenev   p = builder.create<FmaFOp>(x2, p, alpha3);
216*ce976d2dSEugene Zhulenev   p = builder.create<FmaFOp>(x2, p, alpha1);
217*ce976d2dSEugene Zhulenev   p = builder.create<MulFOp>(x, p);
218f99ccf65SEugene Zhulenev 
219f99ccf65SEugene Zhulenev   // Evaluate the denominator polynomial q.
220*ce976d2dSEugene Zhulenev   Value q = builder.create<FmaFOp>(x2, beta6, beta4);
221*ce976d2dSEugene Zhulenev   q = builder.create<FmaFOp>(x2, q, beta2);
222*ce976d2dSEugene Zhulenev   q = builder.create<FmaFOp>(x2, q, beta0);
223f99ccf65SEugene Zhulenev 
224f99ccf65SEugene Zhulenev   // Divide the numerator by the denominator.
225*ce976d2dSEugene Zhulenev   Value res =
226*ce976d2dSEugene Zhulenev       builder.create<SelectOp>(tinyMask, x, builder.create<DivFOp>(p, q));
227f99ccf65SEugene Zhulenev 
228f99ccf65SEugene Zhulenev   rewriter.replaceOp(op, res);
229f99ccf65SEugene Zhulenev 
230f99ccf65SEugene Zhulenev   return success();
231f99ccf65SEugene Zhulenev }
232f99ccf65SEugene Zhulenev 
233f99ccf65SEugene Zhulenev //----------------------------------------------------------------------------//
234*ce976d2dSEugene Zhulenev // LogOp approximation.
235*ce976d2dSEugene Zhulenev //----------------------------------------------------------------------------//
236*ce976d2dSEugene Zhulenev 
237*ce976d2dSEugene Zhulenev namespace {
238*ce976d2dSEugene Zhulenev 
239*ce976d2dSEugene Zhulenev // This approximations comes from the Julien Pommier's SSE math library.
240*ce976d2dSEugene Zhulenev // Link: http://gruntthepeon.free.fr/ssemath
241*ce976d2dSEugene Zhulenev struct LogApproximation : public OpRewritePattern<math::LogOp> {
242*ce976d2dSEugene Zhulenev public:
243*ce976d2dSEugene Zhulenev   using OpRewritePattern::OpRewritePattern;
244*ce976d2dSEugene Zhulenev 
245*ce976d2dSEugene Zhulenev   LogicalResult matchAndRewrite(math::LogOp op,
246*ce976d2dSEugene Zhulenev                                 PatternRewriter &rewriter) const final;
247*ce976d2dSEugene Zhulenev };
248*ce976d2dSEugene Zhulenev } // namespace
249*ce976d2dSEugene Zhulenev 
250*ce976d2dSEugene Zhulenev #define LN2_VALUE                                                              \
251*ce976d2dSEugene Zhulenev   0.693147180559945309417232121458176568075500134360255254120680009493393621L
252*ce976d2dSEugene Zhulenev 
253*ce976d2dSEugene Zhulenev LogicalResult
254*ce976d2dSEugene Zhulenev LogApproximation::matchAndRewrite(math::LogOp op,
255*ce976d2dSEugene Zhulenev                                   PatternRewriter &rewriter) const {
256*ce976d2dSEugene Zhulenev   auto width = vectorWidth(op.operand().getType(), isF32);
257*ce976d2dSEugene Zhulenev   if (!width.hasValue())
258*ce976d2dSEugene Zhulenev     return rewriter.notifyMatchFailure(op, "unsupported operand type");
259*ce976d2dSEugene Zhulenev 
260*ce976d2dSEugene Zhulenev   ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
261*ce976d2dSEugene Zhulenev   auto bcast = [&](Value value) -> Value {
262*ce976d2dSEugene Zhulenev     return broadcast(builder, value, *width);
263*ce976d2dSEugene Zhulenev   };
264*ce976d2dSEugene Zhulenev 
265*ce976d2dSEugene Zhulenev   Value cstZero = bcast(f32Cst(builder, 0.0f));
266*ce976d2dSEugene Zhulenev   Value cstOne = bcast(f32Cst(builder, 1.0f));
267*ce976d2dSEugene Zhulenev   Value cstNegHalf = bcast(f32Cst(builder, -0.5f));
268*ce976d2dSEugene Zhulenev 
269*ce976d2dSEugene Zhulenev   // The smallest non denormalized float number.
270*ce976d2dSEugene Zhulenev   Value cstMinNormPos = bcast(f32FromBits(builder, 0x00800000u));
271*ce976d2dSEugene Zhulenev   Value cstMinusInf = bcast(f32FromBits(builder, 0xff800000u));
272*ce976d2dSEugene Zhulenev   Value cstPosInf = bcast(f32FromBits(builder, 0x7f800000u));
273*ce976d2dSEugene Zhulenev   Value cstNan = bcast(f32FromBits(builder, 0x7fc00000));
274*ce976d2dSEugene Zhulenev 
275*ce976d2dSEugene Zhulenev   // Polynomial coefficients.
276*ce976d2dSEugene Zhulenev   Value cstCephesSQRTHF = bcast(f32Cst(builder, 0.707106781186547524f));
277*ce976d2dSEugene Zhulenev   Value cstCephesLogP0 = bcast(f32Cst(builder, 7.0376836292E-2f));
278*ce976d2dSEugene Zhulenev   Value cstCephesLogP1 = bcast(f32Cst(builder, -1.1514610310E-1f));
279*ce976d2dSEugene Zhulenev   Value cstCephesLogP2 = bcast(f32Cst(builder, 1.1676998740E-1f));
280*ce976d2dSEugene Zhulenev   Value cstCephesLogP3 = bcast(f32Cst(builder, -1.2420140846E-1f));
281*ce976d2dSEugene Zhulenev   Value cstCephesLogP4 = bcast(f32Cst(builder, +1.4249322787E-1f));
282*ce976d2dSEugene Zhulenev   Value cstCephesLogP5 = bcast(f32Cst(builder, -1.6668057665E-1f));
283*ce976d2dSEugene Zhulenev   Value cstCephesLogP6 = bcast(f32Cst(builder, +2.0000714765E-1f));
284*ce976d2dSEugene Zhulenev   Value cstCephesLogP7 = bcast(f32Cst(builder, -2.4999993993E-1f));
285*ce976d2dSEugene Zhulenev   Value cstCephesLogP8 = bcast(f32Cst(builder, +3.3333331174E-1f));
286*ce976d2dSEugene Zhulenev 
287*ce976d2dSEugene Zhulenev   Value x = op.operand();
288*ce976d2dSEugene Zhulenev 
289*ce976d2dSEugene Zhulenev   // Truncate input values to the minimum positive normal.
290*ce976d2dSEugene Zhulenev   x = max(builder, x, cstMinNormPos);
291*ce976d2dSEugene Zhulenev 
292*ce976d2dSEugene Zhulenev   // Extract significant in the range [0.5,1) and exponent.
293*ce976d2dSEugene Zhulenev   std::pair<Value, Value> pair = frexp(builder, x, /*is_positive=*/true);
294*ce976d2dSEugene Zhulenev   x = pair.first;
295*ce976d2dSEugene Zhulenev   Value e = pair.second;
296*ce976d2dSEugene Zhulenev 
297*ce976d2dSEugene Zhulenev   // Shift the inputs from the range [0.5,1) to [sqrt(1/2), sqrt(2)) and shift
298*ce976d2dSEugene Zhulenev   // by -1.0. The values are then centered around 0, which improves the
299*ce976d2dSEugene Zhulenev   // stability of the polynomial evaluation:
300*ce976d2dSEugene Zhulenev   //
301*ce976d2dSEugene Zhulenev   //   if( x < SQRTHF ) {
302*ce976d2dSEugene Zhulenev   //     e -= 1;
303*ce976d2dSEugene Zhulenev   //     x = x + x - 1.0;
304*ce976d2dSEugene Zhulenev   //   } else { x = x - 1.0; }
305*ce976d2dSEugene Zhulenev   Value mask = builder.create<CmpFOp>(CmpFPredicate::OLT, x, cstCephesSQRTHF);
306*ce976d2dSEugene Zhulenev   Value tmp = builder.create<SelectOp>(mask, x, cstZero);
307*ce976d2dSEugene Zhulenev 
308*ce976d2dSEugene Zhulenev   x = builder.create<SubFOp>(x, cstOne);
309*ce976d2dSEugene Zhulenev   e = builder.create<SubFOp>(e,
310*ce976d2dSEugene Zhulenev                              builder.create<SelectOp>(mask, cstOne, cstZero));
311*ce976d2dSEugene Zhulenev   x = builder.create<AddFOp>(x, tmp);
312*ce976d2dSEugene Zhulenev 
313*ce976d2dSEugene Zhulenev   Value x2 = builder.create<MulFOp>(x, x);
314*ce976d2dSEugene Zhulenev   Value x3 = builder.create<MulFOp>(x2, x);
315*ce976d2dSEugene Zhulenev 
316*ce976d2dSEugene Zhulenev   // Evaluate the polynomial approximant of degree 8 in three parts.
317*ce976d2dSEugene Zhulenev   Value y0, y1, y2;
318*ce976d2dSEugene Zhulenev   y0 = builder.create<FmaFOp>(cstCephesLogP0, x, cstCephesLogP1);
319*ce976d2dSEugene Zhulenev   y1 = builder.create<FmaFOp>(cstCephesLogP3, x, cstCephesLogP4);
320*ce976d2dSEugene Zhulenev   y2 = builder.create<FmaFOp>(cstCephesLogP6, x, cstCephesLogP7);
321*ce976d2dSEugene Zhulenev   y0 = builder.create<FmaFOp>(y0, x, cstCephesLogP2);
322*ce976d2dSEugene Zhulenev   y1 = builder.create<FmaFOp>(y1, x, cstCephesLogP5);
323*ce976d2dSEugene Zhulenev   y2 = builder.create<FmaFOp>(y2, x, cstCephesLogP8);
324*ce976d2dSEugene Zhulenev   y0 = builder.create<FmaFOp>(y0, x3, y1);
325*ce976d2dSEugene Zhulenev   y0 = builder.create<FmaFOp>(y0, x3, y2);
326*ce976d2dSEugene Zhulenev   y0 = builder.create<MulFOp>(y0, x3);
327*ce976d2dSEugene Zhulenev 
328*ce976d2dSEugene Zhulenev   y0 = builder.create<FmaFOp>(cstNegHalf, x2, y0);
329*ce976d2dSEugene Zhulenev   x = builder.create<AddFOp>(x, y0);
330*ce976d2dSEugene Zhulenev 
331*ce976d2dSEugene Zhulenev   Value cstLn2 = bcast(f32Cst(builder, static_cast<float>(LN2_VALUE)));
332*ce976d2dSEugene Zhulenev   x = builder.create<FmaFOp>(e, cstLn2, x);
333*ce976d2dSEugene Zhulenev 
334*ce976d2dSEugene Zhulenev   Value invalidMask =
335*ce976d2dSEugene Zhulenev       builder.create<CmpFOp>(CmpFPredicate::ULT, op.operand(), cstZero);
336*ce976d2dSEugene Zhulenev   Value zeroMask =
337*ce976d2dSEugene Zhulenev       builder.create<CmpFOp>(CmpFPredicate::OEQ, op.operand(), cstZero);
338*ce976d2dSEugene Zhulenev   Value posInfMask =
339*ce976d2dSEugene Zhulenev       builder.create<CmpFOp>(CmpFPredicate::OEQ, op.operand(), cstPosInf);
340*ce976d2dSEugene Zhulenev 
341*ce976d2dSEugene Zhulenev   // Filter out invalid values:
342*ce976d2dSEugene Zhulenev   //  • x == 0     -> -INF
343*ce976d2dSEugene Zhulenev   //  • x < 0      ->  NAN
344*ce976d2dSEugene Zhulenev   //  • x == +INF  -> +INF
345*ce976d2dSEugene Zhulenev   Value aproximation = builder.create<SelectOp>(
346*ce976d2dSEugene Zhulenev       zeroMask, cstMinusInf,
347*ce976d2dSEugene Zhulenev       builder.create<SelectOp>(
348*ce976d2dSEugene Zhulenev           invalidMask, cstNan,
349*ce976d2dSEugene Zhulenev           builder.create<SelectOp>(posInfMask, cstPosInf, x)));
350*ce976d2dSEugene Zhulenev 
351*ce976d2dSEugene Zhulenev   rewriter.replaceOp(op, aproximation);
352*ce976d2dSEugene Zhulenev 
353*ce976d2dSEugene Zhulenev   return success();
354*ce976d2dSEugene Zhulenev }
355*ce976d2dSEugene Zhulenev 
356*ce976d2dSEugene Zhulenev //----------------------------------------------------------------------------//
357f99ccf65SEugene Zhulenev 
358f99ccf65SEugene Zhulenev void mlir::populateMathPolynomialApproximationPatterns(
359f99ccf65SEugene Zhulenev     OwningRewritePatternList &patterns, MLIRContext *ctx) {
360*ce976d2dSEugene Zhulenev   patterns.insert<TanhApproximation, LogApproximation>(ctx);
361f99ccf65SEugene Zhulenev }
362