1f99ccf65SEugene Zhulenev //===- PolynomialApproximation.cpp - Approximate math operations ----------===// 2f99ccf65SEugene Zhulenev // 3f99ccf65SEugene Zhulenev // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4f99ccf65SEugene Zhulenev // See https://llvm.org/LICENSE.txt for license information. 5f99ccf65SEugene Zhulenev // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6f99ccf65SEugene Zhulenev // 7f99ccf65SEugene Zhulenev //===----------------------------------------------------------------------===// 8f99ccf65SEugene Zhulenev // 9f99ccf65SEugene Zhulenev // This file implements expansion of math operations to fast approximations 10f99ccf65SEugene Zhulenev // that do not rely on any of the library functions. 11f99ccf65SEugene Zhulenev // 12f99ccf65SEugene Zhulenev //===----------------------------------------------------------------------===// 133a506b31SChris Lattner 14*a54f4eaeSMogball #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 15f99ccf65SEugene Zhulenev #include "mlir/Dialect/Math/IR/Math.h" 16f99ccf65SEugene Zhulenev #include "mlir/Dialect/Math/Transforms/Passes.h" 17f99ccf65SEugene Zhulenev #include "mlir/Dialect/Vector/VectorOps.h" 18f99ccf65SEugene Zhulenev #include "mlir/IR/Builders.h" 19ce976d2dSEugene Zhulenev #include "mlir/IR/ImplicitLocOpBuilder.h" 203a506b31SChris Lattner #include "mlir/Transforms/Bufferize.h" 21f99ccf65SEugene Zhulenev #include "mlir/Transforms/DialectConversion.h" 22f99ccf65SEugene Zhulenev #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 233a506b31SChris Lattner #include <climits> 24f99ccf65SEugene Zhulenev 25f99ccf65SEugene Zhulenev using namespace mlir; 26f99ccf65SEugene Zhulenev using namespace mlir::vector; 27f99ccf65SEugene Zhulenev 28ce976d2dSEugene Zhulenev using TypePredicate = llvm::function_ref<bool(Type)>; 29ce976d2dSEugene Zhulenev 30ce976d2dSEugene Zhulenev // Returns vector width if the element type is matching the predicate (scalars 31ce976d2dSEugene Zhulenev // that do match the predicate have width equal to `1`). 32ce976d2dSEugene Zhulenev static Optional<int> vectorWidth(Type type, TypePredicate pred) { 33ce976d2dSEugene Zhulenev // If the type matches the predicate then its width is `1`. 34ce976d2dSEugene Zhulenev if (pred(type)) 35ce976d2dSEugene Zhulenev return 1; 36ce976d2dSEugene Zhulenev 37ce976d2dSEugene Zhulenev // Otherwise check if the type is a vector type. 38ce976d2dSEugene Zhulenev auto vectorType = type.dyn_cast<VectorType>(); 39ce976d2dSEugene Zhulenev if (vectorType && pred(vectorType.getElementType())) { 40ce976d2dSEugene Zhulenev assert(vectorType.getRank() == 1 && "only 1d vectors are supported"); 41ce976d2dSEugene Zhulenev return vectorType.getDimSize(0); 42ce976d2dSEugene Zhulenev } 43ce976d2dSEugene Zhulenev 44ce976d2dSEugene Zhulenev return llvm::None; 45ce976d2dSEugene Zhulenev } 46ce976d2dSEugene Zhulenev 47ce976d2dSEugene Zhulenev // Returns vector width of the type. If the type is a scalar returns `1`. 48ce976d2dSEugene Zhulenev static int vectorWidth(Type type) { 49ce976d2dSEugene Zhulenev auto vectorType = type.dyn_cast<VectorType>(); 50ce976d2dSEugene Zhulenev return vectorType ? vectorType.getDimSize(0) : 1; 51ce976d2dSEugene Zhulenev } 52ce976d2dSEugene Zhulenev 53ce976d2dSEugene Zhulenev // Returns vector element type. If the type is a scalar returns the argument. 5439b2cd40SEugene Zhulenev LLVM_ATTRIBUTE_UNUSED static Type elementType(Type type) { 55ce976d2dSEugene Zhulenev auto vectorType = type.dyn_cast<VectorType>(); 56ce976d2dSEugene Zhulenev return vectorType ? vectorType.getElementType() : type; 57f99ccf65SEugene Zhulenev } 58f99ccf65SEugene Zhulenev 5939b2cd40SEugene Zhulenev LLVM_ATTRIBUTE_UNUSED static bool isF32(Type type) { return type.isF32(); } 6039b2cd40SEugene Zhulenev 6139b2cd40SEugene Zhulenev LLVM_ATTRIBUTE_UNUSED static bool isI32(Type type) { 6239b2cd40SEugene Zhulenev return type.isInteger(32); 6339b2cd40SEugene Zhulenev } 6439b2cd40SEugene Zhulenev 65f99ccf65SEugene Zhulenev //----------------------------------------------------------------------------// 66ce976d2dSEugene Zhulenev // Broadcast scalar types and values into vector types and values. 67f99ccf65SEugene Zhulenev //----------------------------------------------------------------------------// 68f99ccf65SEugene Zhulenev 69ce976d2dSEugene Zhulenev // Broadcasts scalar type into vector type (iff width is greater then 1). 70ce976d2dSEugene Zhulenev static Type broadcast(Type type, int width) { 71ce976d2dSEugene Zhulenev assert(!type.isa<VectorType>() && "must be scalar type"); 72ce976d2dSEugene Zhulenev return width > 1 ? VectorType::get({width}, type) : type; 73ce976d2dSEugene Zhulenev } 74f99ccf65SEugene Zhulenev 75ce976d2dSEugene Zhulenev // Broadcasts scalar value into vector (iff width is greater then 1). 76ce976d2dSEugene Zhulenev static Value broadcast(ImplicitLocOpBuilder &builder, Value value, int width) { 77ce976d2dSEugene Zhulenev assert(!value.getType().isa<VectorType>() && "must be scalar value"); 78ce976d2dSEugene Zhulenev auto type = broadcast(value.getType(), width); 79ce976d2dSEugene Zhulenev return width > 1 ? builder.create<BroadcastOp>(type, value) : value; 80ce976d2dSEugene Zhulenev } 81f99ccf65SEugene Zhulenev 82ce976d2dSEugene Zhulenev //----------------------------------------------------------------------------// 83ce976d2dSEugene Zhulenev // Helper functions to create constants. 84ce976d2dSEugene Zhulenev //----------------------------------------------------------------------------// 85f99ccf65SEugene Zhulenev 86ce976d2dSEugene Zhulenev static Value f32Cst(ImplicitLocOpBuilder &builder, float value) { 87*a54f4eaeSMogball return builder.create<arith::ConstantOp>(builder.getF32FloatAttr(value)); 88ce976d2dSEugene Zhulenev } 89f99ccf65SEugene Zhulenev 90ce976d2dSEugene Zhulenev static Value i32Cst(ImplicitLocOpBuilder &builder, int32_t value) { 91*a54f4eaeSMogball return builder.create<arith::ConstantOp>(builder.getI32IntegerAttr(value)); 92ce976d2dSEugene Zhulenev } 93f99ccf65SEugene Zhulenev 94ce976d2dSEugene Zhulenev static Value f32FromBits(ImplicitLocOpBuilder &builder, uint32_t bits) { 95ce976d2dSEugene Zhulenev Value i32Value = i32Cst(builder, static_cast<int32_t>(bits)); 96*a54f4eaeSMogball return builder.create<arith::BitcastOp>(builder.getF32Type(), i32Value); 97ce976d2dSEugene Zhulenev } 98f99ccf65SEugene Zhulenev 99ce976d2dSEugene Zhulenev //----------------------------------------------------------------------------// 100ce976d2dSEugene Zhulenev // Helper functions to build math functions approximations. 101ce976d2dSEugene Zhulenev //----------------------------------------------------------------------------// 102ce976d2dSEugene Zhulenev 103ce976d2dSEugene Zhulenev static Value min(ImplicitLocOpBuilder &builder, Value a, Value b) { 104ce976d2dSEugene Zhulenev return builder.create<SelectOp>( 105*a54f4eaeSMogball builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, a, b), a, b); 106ce976d2dSEugene Zhulenev } 107ce976d2dSEugene Zhulenev 108ce976d2dSEugene Zhulenev static Value max(ImplicitLocOpBuilder &builder, Value a, Value b) { 109ce976d2dSEugene Zhulenev return builder.create<SelectOp>( 110*a54f4eaeSMogball builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, a, b), a, b); 111ce976d2dSEugene Zhulenev } 112ce976d2dSEugene Zhulenev 113ce976d2dSEugene Zhulenev static Value clamp(ImplicitLocOpBuilder &builder, Value value, Value lowerBound, 114ce976d2dSEugene Zhulenev Value upperBound) { 115ce976d2dSEugene Zhulenev return max(builder, min(builder, value, upperBound), lowerBound); 116ce976d2dSEugene Zhulenev } 117ce976d2dSEugene Zhulenev 118ce976d2dSEugene Zhulenev // Decomposes given floating point value `arg` into a normalized fraction and 119ce976d2dSEugene Zhulenev // an integral power of two (see std::frexp). Returned values have float type. 120ce976d2dSEugene Zhulenev static std::pair<Value, Value> frexp(ImplicitLocOpBuilder &builder, Value arg, 121ce976d2dSEugene Zhulenev bool is_positive = false) { 122ce976d2dSEugene Zhulenev assert(isF32(elementType(arg.getType())) && "argument must be f32 type"); 123ce976d2dSEugene Zhulenev 124ce976d2dSEugene Zhulenev int width = vectorWidth(arg.getType()); 125ce976d2dSEugene Zhulenev 126ce976d2dSEugene Zhulenev auto bcast = [&](Value value) -> Value { 127ce976d2dSEugene Zhulenev return broadcast(builder, value, width); 128f99ccf65SEugene Zhulenev }; 129f99ccf65SEugene Zhulenev 130ce976d2dSEugene Zhulenev auto i32 = builder.getIntegerType(32); 131ce976d2dSEugene Zhulenev auto i32Vec = broadcast(i32, width); 132ce976d2dSEugene Zhulenev auto f32Vec = broadcast(builder.getF32Type(), width); 133f99ccf65SEugene Zhulenev 134ce976d2dSEugene Zhulenev Value cst126f = f32Cst(builder, 126.0f); 135ce976d2dSEugene Zhulenev Value cstHalf = f32Cst(builder, 0.5f); 136ce976d2dSEugene Zhulenev Value cstInvMantMask = f32FromBits(builder, ~0x7f800000u); 137f99ccf65SEugene Zhulenev 138ce976d2dSEugene Zhulenev // Bitcast to i32 for bitwise operations. 139*a54f4eaeSMogball Value i32Half = builder.create<arith::BitcastOp>(i32, cstHalf); 140*a54f4eaeSMogball Value i32InvMantMask = builder.create<arith::BitcastOp>(i32, cstInvMantMask); 141*a54f4eaeSMogball Value i32Arg = builder.create<arith::BitcastOp>(i32Vec, arg); 142f99ccf65SEugene Zhulenev 143ce976d2dSEugene Zhulenev // Compute normalized fraction. 144*a54f4eaeSMogball Value tmp0 = builder.create<arith::AndIOp>(i32Arg, bcast(i32InvMantMask)); 145*a54f4eaeSMogball Value tmp1 = builder.create<arith::OrIOp>(tmp0, bcast(i32Half)); 146*a54f4eaeSMogball Value normalizedFraction = builder.create<arith::BitcastOp>(f32Vec, tmp1); 147f99ccf65SEugene Zhulenev 148ce976d2dSEugene Zhulenev // Compute exponent. 149*a54f4eaeSMogball Value arg0 = is_positive ? arg : builder.create<math::AbsOp>(arg); 150*a54f4eaeSMogball Value biasedExponentBits = builder.create<arith::ShRUIOp>( 151*a54f4eaeSMogball builder.create<arith::BitcastOp>(i32Vec, arg0), 152*a54f4eaeSMogball bcast(i32Cst(builder, 23))); 153*a54f4eaeSMogball Value biasedExponent = 154*a54f4eaeSMogball builder.create<arith::SIToFPOp>(f32Vec, biasedExponentBits); 155*a54f4eaeSMogball Value exponent = 156*a54f4eaeSMogball builder.create<arith::SubFOp>(biasedExponent, bcast(cst126f)); 157f99ccf65SEugene Zhulenev 158ce976d2dSEugene Zhulenev return {normalizedFraction, exponent}; 159f99ccf65SEugene Zhulenev } 160f99ccf65SEugene Zhulenev 161ea7f211bSAhmed Taei // Computes exp2 for an i32 argument. 162ea7f211bSAhmed Taei static Value exp2I32(ImplicitLocOpBuilder &builder, Value arg) { 163ea7f211bSAhmed Taei assert(isI32(elementType(arg.getType())) && "argument must be i32 type"); 164ea7f211bSAhmed Taei 165ea7f211bSAhmed Taei int width = vectorWidth(arg.getType()); 166ea7f211bSAhmed Taei 167ea7f211bSAhmed Taei auto bcast = [&](Value value) -> Value { 168ea7f211bSAhmed Taei return broadcast(builder, value, width); 169ea7f211bSAhmed Taei }; 170ea7f211bSAhmed Taei 171ea7f211bSAhmed Taei auto f32Vec = broadcast(builder.getF32Type(), width); 172ea7f211bSAhmed Taei // The exponent of f32 located at 23-bit. 173ea7f211bSAhmed Taei auto exponetBitLocation = bcast(i32Cst(builder, 23)); 174ea7f211bSAhmed Taei // Set the exponent bias to zero. 175ea7f211bSAhmed Taei auto bias = bcast(i32Cst(builder, 127)); 176ea7f211bSAhmed Taei 177*a54f4eaeSMogball Value biasedArg = builder.create<arith::AddIOp>(arg, bias); 178ea7f211bSAhmed Taei Value exp2ValueInt = 179*a54f4eaeSMogball builder.create<arith::ShLIOp>(biasedArg, exponetBitLocation); 180*a54f4eaeSMogball Value exp2ValueF32 = builder.create<arith::BitcastOp>(f32Vec, exp2ValueInt); 181ea7f211bSAhmed Taei 182ea7f211bSAhmed Taei return exp2ValueF32; 183ea7f211bSAhmed Taei } 184ea7f211bSAhmed Taei 185f99ccf65SEugene Zhulenev //----------------------------------------------------------------------------// 186f99ccf65SEugene Zhulenev // TanhOp approximation. 187f99ccf65SEugene Zhulenev //----------------------------------------------------------------------------// 188f99ccf65SEugene Zhulenev 189f99ccf65SEugene Zhulenev namespace { 190f99ccf65SEugene Zhulenev struct TanhApproximation : public OpRewritePattern<math::TanhOp> { 191f99ccf65SEugene Zhulenev public: 192f99ccf65SEugene Zhulenev using OpRewritePattern::OpRewritePattern; 193f99ccf65SEugene Zhulenev 194f99ccf65SEugene Zhulenev LogicalResult matchAndRewrite(math::TanhOp op, 195f99ccf65SEugene Zhulenev PatternRewriter &rewriter) const final; 196f99ccf65SEugene Zhulenev }; 197f99ccf65SEugene Zhulenev } // namespace 198f99ccf65SEugene Zhulenev 199f99ccf65SEugene Zhulenev LogicalResult 200f99ccf65SEugene Zhulenev TanhApproximation::matchAndRewrite(math::TanhOp op, 201f99ccf65SEugene Zhulenev PatternRewriter &rewriter) const { 202ce976d2dSEugene Zhulenev auto width = vectorWidth(op.operand().getType(), isF32); 203ce976d2dSEugene Zhulenev if (!width.hasValue()) 204f99ccf65SEugene Zhulenev return rewriter.notifyMatchFailure(op, "unsupported operand type"); 205f99ccf65SEugene Zhulenev 206ce976d2dSEugene Zhulenev ImplicitLocOpBuilder builder(op->getLoc(), rewriter); 207ce976d2dSEugene Zhulenev auto bcast = [&](Value value) -> Value { 208ce976d2dSEugene Zhulenev return broadcast(builder, value, *width); 209ce976d2dSEugene Zhulenev }; 210f99ccf65SEugene Zhulenev 211f99ccf65SEugene Zhulenev // Clamp operand into [plusClamp, minusClamp] range. 212ce976d2dSEugene Zhulenev Value minusClamp = bcast(f32Cst(builder, -7.9053111076354980f)); 213ce976d2dSEugene Zhulenev Value plusClamp = bcast(f32Cst(builder, 7.90531110763549805f)); 214ce976d2dSEugene Zhulenev Value x = clamp(builder, op.operand(), minusClamp, plusClamp); 215f99ccf65SEugene Zhulenev 216f99ccf65SEugene Zhulenev // Mask for tiny values that are approximated with `operand`. 217ce976d2dSEugene Zhulenev Value tiny = bcast(f32Cst(builder, 0.0004f)); 218*a54f4eaeSMogball Value tinyMask = builder.create<arith::CmpFOp>( 219*a54f4eaeSMogball arith::CmpFPredicate::OLT, builder.create<math::AbsOp>(op.operand()), 220*a54f4eaeSMogball tiny); 221f99ccf65SEugene Zhulenev 222f99ccf65SEugene Zhulenev // The monomial coefficients of the numerator polynomial (odd). 223ce976d2dSEugene Zhulenev Value alpha1 = bcast(f32Cst(builder, 4.89352455891786e-03f)); 224ce976d2dSEugene Zhulenev Value alpha3 = bcast(f32Cst(builder, 6.37261928875436e-04f)); 225ce976d2dSEugene Zhulenev Value alpha5 = bcast(f32Cst(builder, 1.48572235717979e-05f)); 226ce976d2dSEugene Zhulenev Value alpha7 = bcast(f32Cst(builder, 5.12229709037114e-08f)); 227ce976d2dSEugene Zhulenev Value alpha9 = bcast(f32Cst(builder, -8.60467152213735e-11f)); 228ce976d2dSEugene Zhulenev Value alpha11 = bcast(f32Cst(builder, 2.00018790482477e-13f)); 229ce976d2dSEugene Zhulenev Value alpha13 = bcast(f32Cst(builder, -2.76076847742355e-16f)); 230f99ccf65SEugene Zhulenev 231f99ccf65SEugene Zhulenev // The monomial coefficients of the denominator polynomial (even). 232ce976d2dSEugene Zhulenev Value beta0 = bcast(f32Cst(builder, 4.89352518554385e-03f)); 233ce976d2dSEugene Zhulenev Value beta2 = bcast(f32Cst(builder, 2.26843463243900e-03f)); 234ce976d2dSEugene Zhulenev Value beta4 = bcast(f32Cst(builder, 1.18534705686654e-04f)); 235ce976d2dSEugene Zhulenev Value beta6 = bcast(f32Cst(builder, 1.19825839466702e-06f)); 236f99ccf65SEugene Zhulenev 237f99ccf65SEugene Zhulenev // Since the polynomials are odd/even, we need x^2. 238*a54f4eaeSMogball Value x2 = builder.create<arith::MulFOp>(x, x); 239f99ccf65SEugene Zhulenev 240f99ccf65SEugene Zhulenev // Evaluate the numerator polynomial p. 241*a54f4eaeSMogball Value p = builder.create<math::FmaOp>(x2, alpha13, alpha11); 242*a54f4eaeSMogball p = builder.create<math::FmaOp>(x2, p, alpha9); 243*a54f4eaeSMogball p = builder.create<math::FmaOp>(x2, p, alpha7); 244*a54f4eaeSMogball p = builder.create<math::FmaOp>(x2, p, alpha5); 245*a54f4eaeSMogball p = builder.create<math::FmaOp>(x2, p, alpha3); 246*a54f4eaeSMogball p = builder.create<math::FmaOp>(x2, p, alpha1); 247*a54f4eaeSMogball p = builder.create<arith::MulFOp>(x, p); 248f99ccf65SEugene Zhulenev 249f99ccf65SEugene Zhulenev // Evaluate the denominator polynomial q. 250*a54f4eaeSMogball Value q = builder.create<math::FmaOp>(x2, beta6, beta4); 251*a54f4eaeSMogball q = builder.create<math::FmaOp>(x2, q, beta2); 252*a54f4eaeSMogball q = builder.create<math::FmaOp>(x2, q, beta0); 253f99ccf65SEugene Zhulenev 254f99ccf65SEugene Zhulenev // Divide the numerator by the denominator. 255*a54f4eaeSMogball Value res = builder.create<SelectOp>(tinyMask, x, 256*a54f4eaeSMogball builder.create<arith::DivFOp>(p, q)); 257f99ccf65SEugene Zhulenev 258f99ccf65SEugene Zhulenev rewriter.replaceOp(op, res); 259f99ccf65SEugene Zhulenev 260f99ccf65SEugene Zhulenev return success(); 261f99ccf65SEugene Zhulenev } 262f99ccf65SEugene Zhulenev 263ea7f211bSAhmed Taei #define LN2_VALUE \ 264ea7f211bSAhmed Taei 0.693147180559945309417232121458176568075500134360255254120680009493393621L 265c0891706SEmilio Cota #define LOG2E_VALUE \ 266ea7f211bSAhmed Taei 1.442695040888963407359924681001892137426645954152985934135449406931109219L 267ea7f211bSAhmed Taei 268f99ccf65SEugene Zhulenev //----------------------------------------------------------------------------// 269c0891706SEmilio Cota // LogOp and Log2Op approximation. 270ce976d2dSEugene Zhulenev //----------------------------------------------------------------------------// 271ce976d2dSEugene Zhulenev 272ce976d2dSEugene Zhulenev namespace { 273c0891706SEmilio Cota template <typename Op> 274c0891706SEmilio Cota struct LogApproximationBase : public OpRewritePattern<Op> { 275c0891706SEmilio Cota using OpRewritePattern<Op>::OpRewritePattern; 276ce976d2dSEugene Zhulenev 277c0891706SEmilio Cota /// Base 2 if 'base2' is set; natural logarithm (base e) otherwise. 278c0891706SEmilio Cota LogicalResult logMatchAndRewrite(Op op, PatternRewriter &rewriter, 279c0891706SEmilio Cota bool base2) const; 280ce976d2dSEugene Zhulenev }; 281ce976d2dSEugene Zhulenev } // namespace 282ce976d2dSEugene Zhulenev 283c0891706SEmilio Cota // This approximation comes from Julien Pommier's SSE math library. 284c0891706SEmilio Cota // Link: http://gruntthepeon.free.fr/ssemath 285c0891706SEmilio Cota template <typename Op> 286ce976d2dSEugene Zhulenev LogicalResult 287c0891706SEmilio Cota LogApproximationBase<Op>::logMatchAndRewrite(Op op, PatternRewriter &rewriter, 288c0891706SEmilio Cota bool base2) const { 289ce976d2dSEugene Zhulenev auto width = vectorWidth(op.operand().getType(), isF32); 290ce976d2dSEugene Zhulenev if (!width.hasValue()) 291ce976d2dSEugene Zhulenev return rewriter.notifyMatchFailure(op, "unsupported operand type"); 292ce976d2dSEugene Zhulenev 293ce976d2dSEugene Zhulenev ImplicitLocOpBuilder builder(op->getLoc(), rewriter); 294ce976d2dSEugene Zhulenev auto bcast = [&](Value value) -> Value { 295ce976d2dSEugene Zhulenev return broadcast(builder, value, *width); 296ce976d2dSEugene Zhulenev }; 297ce976d2dSEugene Zhulenev 298ce976d2dSEugene Zhulenev Value cstZero = bcast(f32Cst(builder, 0.0f)); 299ce976d2dSEugene Zhulenev Value cstOne = bcast(f32Cst(builder, 1.0f)); 300ce976d2dSEugene Zhulenev Value cstNegHalf = bcast(f32Cst(builder, -0.5f)); 301ce976d2dSEugene Zhulenev 302ce976d2dSEugene Zhulenev // The smallest non denormalized float number. 303ce976d2dSEugene Zhulenev Value cstMinNormPos = bcast(f32FromBits(builder, 0x00800000u)); 304ce976d2dSEugene Zhulenev Value cstMinusInf = bcast(f32FromBits(builder, 0xff800000u)); 305ce976d2dSEugene Zhulenev Value cstPosInf = bcast(f32FromBits(builder, 0x7f800000u)); 306ce976d2dSEugene Zhulenev Value cstNan = bcast(f32FromBits(builder, 0x7fc00000)); 307ce976d2dSEugene Zhulenev 308ce976d2dSEugene Zhulenev // Polynomial coefficients. 309ce976d2dSEugene Zhulenev Value cstCephesSQRTHF = bcast(f32Cst(builder, 0.707106781186547524f)); 310ce976d2dSEugene Zhulenev Value cstCephesLogP0 = bcast(f32Cst(builder, 7.0376836292E-2f)); 311ce976d2dSEugene Zhulenev Value cstCephesLogP1 = bcast(f32Cst(builder, -1.1514610310E-1f)); 312ce976d2dSEugene Zhulenev Value cstCephesLogP2 = bcast(f32Cst(builder, 1.1676998740E-1f)); 313ce976d2dSEugene Zhulenev Value cstCephesLogP3 = bcast(f32Cst(builder, -1.2420140846E-1f)); 314ce976d2dSEugene Zhulenev Value cstCephesLogP4 = bcast(f32Cst(builder, +1.4249322787E-1f)); 315ce976d2dSEugene Zhulenev Value cstCephesLogP5 = bcast(f32Cst(builder, -1.6668057665E-1f)); 316ce976d2dSEugene Zhulenev Value cstCephesLogP6 = bcast(f32Cst(builder, +2.0000714765E-1f)); 317ce976d2dSEugene Zhulenev Value cstCephesLogP7 = bcast(f32Cst(builder, -2.4999993993E-1f)); 318ce976d2dSEugene Zhulenev Value cstCephesLogP8 = bcast(f32Cst(builder, +3.3333331174E-1f)); 319ce976d2dSEugene Zhulenev 320ce976d2dSEugene Zhulenev Value x = op.operand(); 321ce976d2dSEugene Zhulenev 322ce976d2dSEugene Zhulenev // Truncate input values to the minimum positive normal. 323ce976d2dSEugene Zhulenev x = max(builder, x, cstMinNormPos); 324ce976d2dSEugene Zhulenev 325ce976d2dSEugene Zhulenev // Extract significant in the range [0.5,1) and exponent. 326ce976d2dSEugene Zhulenev std::pair<Value, Value> pair = frexp(builder, x, /*is_positive=*/true); 327ce976d2dSEugene Zhulenev x = pair.first; 328ce976d2dSEugene Zhulenev Value e = pair.second; 329ce976d2dSEugene Zhulenev 330ce976d2dSEugene Zhulenev // Shift the inputs from the range [0.5,1) to [sqrt(1/2), sqrt(2)) and shift 331ce976d2dSEugene Zhulenev // by -1.0. The values are then centered around 0, which improves the 332ce976d2dSEugene Zhulenev // stability of the polynomial evaluation: 333ce976d2dSEugene Zhulenev // 334ce976d2dSEugene Zhulenev // if( x < SQRTHF ) { 335ce976d2dSEugene Zhulenev // e -= 1; 336ce976d2dSEugene Zhulenev // x = x + x - 1.0; 337ce976d2dSEugene Zhulenev // } else { x = x - 1.0; } 338*a54f4eaeSMogball Value mask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, x, 339*a54f4eaeSMogball cstCephesSQRTHF); 340ce976d2dSEugene Zhulenev Value tmp = builder.create<SelectOp>(mask, x, cstZero); 341ce976d2dSEugene Zhulenev 342*a54f4eaeSMogball x = builder.create<arith::SubFOp>(x, cstOne); 343*a54f4eaeSMogball e = builder.create<arith::SubFOp>( 344*a54f4eaeSMogball e, builder.create<SelectOp>(mask, cstOne, cstZero)); 345*a54f4eaeSMogball x = builder.create<arith::AddFOp>(x, tmp); 346ce976d2dSEugene Zhulenev 347*a54f4eaeSMogball Value x2 = builder.create<arith::MulFOp>(x, x); 348*a54f4eaeSMogball Value x3 = builder.create<arith::MulFOp>(x2, x); 349ce976d2dSEugene Zhulenev 350ce976d2dSEugene Zhulenev // Evaluate the polynomial approximant of degree 8 in three parts. 351ce976d2dSEugene Zhulenev Value y0, y1, y2; 352*a54f4eaeSMogball y0 = builder.create<math::FmaOp>(cstCephesLogP0, x, cstCephesLogP1); 353*a54f4eaeSMogball y1 = builder.create<math::FmaOp>(cstCephesLogP3, x, cstCephesLogP4); 354*a54f4eaeSMogball y2 = builder.create<math::FmaOp>(cstCephesLogP6, x, cstCephesLogP7); 355*a54f4eaeSMogball y0 = builder.create<math::FmaOp>(y0, x, cstCephesLogP2); 356*a54f4eaeSMogball y1 = builder.create<math::FmaOp>(y1, x, cstCephesLogP5); 357*a54f4eaeSMogball y2 = builder.create<math::FmaOp>(y2, x, cstCephesLogP8); 358*a54f4eaeSMogball y0 = builder.create<math::FmaOp>(y0, x3, y1); 359*a54f4eaeSMogball y0 = builder.create<math::FmaOp>(y0, x3, y2); 360*a54f4eaeSMogball y0 = builder.create<arith::MulFOp>(y0, x3); 361ce976d2dSEugene Zhulenev 362*a54f4eaeSMogball y0 = builder.create<math::FmaOp>(cstNegHalf, x2, y0); 363*a54f4eaeSMogball x = builder.create<arith::AddFOp>(x, y0); 364ce976d2dSEugene Zhulenev 365c0891706SEmilio Cota if (base2) { 366c0891706SEmilio Cota Value cstLog2e = bcast(f32Cst(builder, static_cast<float>(LOG2E_VALUE))); 367*a54f4eaeSMogball x = builder.create<math::FmaOp>(x, cstLog2e, e); 368c0891706SEmilio Cota } else { 369ce976d2dSEugene Zhulenev Value cstLn2 = bcast(f32Cst(builder, static_cast<float>(LN2_VALUE))); 370*a54f4eaeSMogball x = builder.create<math::FmaOp>(e, cstLn2, x); 371c0891706SEmilio Cota } 372ce976d2dSEugene Zhulenev 373*a54f4eaeSMogball Value invalidMask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::ULT, 374*a54f4eaeSMogball op.operand(), cstZero); 375*a54f4eaeSMogball Value zeroMask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, 376*a54f4eaeSMogball op.operand(), cstZero); 377*a54f4eaeSMogball Value posInfMask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, 378*a54f4eaeSMogball op.operand(), cstPosInf); 379ce976d2dSEugene Zhulenev 380ce976d2dSEugene Zhulenev // Filter out invalid values: 381ce976d2dSEugene Zhulenev // • x == 0 -> -INF 382ce976d2dSEugene Zhulenev // • x < 0 -> NAN 383ce976d2dSEugene Zhulenev // • x == +INF -> +INF 384ce976d2dSEugene Zhulenev Value aproximation = builder.create<SelectOp>( 385ce976d2dSEugene Zhulenev zeroMask, cstMinusInf, 386ce976d2dSEugene Zhulenev builder.create<SelectOp>( 387ce976d2dSEugene Zhulenev invalidMask, cstNan, 388ce976d2dSEugene Zhulenev builder.create<SelectOp>(posInfMask, cstPosInf, x))); 389ce976d2dSEugene Zhulenev 390ce976d2dSEugene Zhulenev rewriter.replaceOp(op, aproximation); 391ce976d2dSEugene Zhulenev 392ce976d2dSEugene Zhulenev return success(); 393ce976d2dSEugene Zhulenev } 394ce976d2dSEugene Zhulenev 395c0891706SEmilio Cota namespace { 396c0891706SEmilio Cota struct LogApproximation : public LogApproximationBase<math::LogOp> { 397c0891706SEmilio Cota using LogApproximationBase::LogApproximationBase; 398c0891706SEmilio Cota 399c0891706SEmilio Cota LogicalResult matchAndRewrite(math::LogOp op, 400c0891706SEmilio Cota PatternRewriter &rewriter) const final { 401c0891706SEmilio Cota return logMatchAndRewrite(op, rewriter, /*base2=*/false); 402c0891706SEmilio Cota } 403c0891706SEmilio Cota }; 404c0891706SEmilio Cota } // namespace 405c0891706SEmilio Cota 406c0891706SEmilio Cota namespace { 407c0891706SEmilio Cota struct Log2Approximation : public LogApproximationBase<math::Log2Op> { 408c0891706SEmilio Cota using LogApproximationBase::LogApproximationBase; 409c0891706SEmilio Cota 410c0891706SEmilio Cota LogicalResult matchAndRewrite(math::Log2Op op, 411c0891706SEmilio Cota PatternRewriter &rewriter) const final { 412c0891706SEmilio Cota return logMatchAndRewrite(op, rewriter, /*base2=*/true); 413c0891706SEmilio Cota } 414c0891706SEmilio Cota }; 415c0891706SEmilio Cota } // namespace 416c0891706SEmilio Cota 417ce976d2dSEugene Zhulenev //----------------------------------------------------------------------------// 4181c0374e7SEmilio Cota // Log1p approximation. 4191c0374e7SEmilio Cota //----------------------------------------------------------------------------// 4201c0374e7SEmilio Cota 4211c0374e7SEmilio Cota namespace { 4221c0374e7SEmilio Cota struct Log1pApproximation : public OpRewritePattern<math::Log1pOp> { 4231c0374e7SEmilio Cota public: 4241c0374e7SEmilio Cota using OpRewritePattern::OpRewritePattern; 4251c0374e7SEmilio Cota 4261c0374e7SEmilio Cota LogicalResult matchAndRewrite(math::Log1pOp op, 4271c0374e7SEmilio Cota PatternRewriter &rewriter) const final; 4281c0374e7SEmilio Cota }; 4291c0374e7SEmilio Cota } // namespace 4301c0374e7SEmilio Cota 4311c0374e7SEmilio Cota // Approximate log(1+x). 4321c0374e7SEmilio Cota LogicalResult 4331c0374e7SEmilio Cota Log1pApproximation::matchAndRewrite(math::Log1pOp op, 4341c0374e7SEmilio Cota PatternRewriter &rewriter) const { 4351c0374e7SEmilio Cota auto width = vectorWidth(op.operand().getType(), isF32); 4361c0374e7SEmilio Cota if (!width.hasValue()) 4371c0374e7SEmilio Cota return rewriter.notifyMatchFailure(op, "unsupported operand type"); 4381c0374e7SEmilio Cota 4391c0374e7SEmilio Cota ImplicitLocOpBuilder builder(op->getLoc(), rewriter); 4401c0374e7SEmilio Cota auto bcast = [&](Value value) -> Value { 4411c0374e7SEmilio Cota return broadcast(builder, value, *width); 4421c0374e7SEmilio Cota }; 4431c0374e7SEmilio Cota 4441c0374e7SEmilio Cota // Approximate log(1+x) using the following, due to W. Kahan: 4451c0374e7SEmilio Cota // u = x + 1.0; 4461c0374e7SEmilio Cota // if (u == 1.0 || u == inf) return x; 4471c0374e7SEmilio Cota // return x * log(u) / (u - 1.0); 4481c0374e7SEmilio Cota // ^^^^^^^^^^^^^^^^^^^^^^ 4491c0374e7SEmilio Cota // "logLarge" below. 4501c0374e7SEmilio Cota Value cstOne = bcast(f32Cst(builder, 1.0f)); 4511c0374e7SEmilio Cota Value x = op.operand(); 452*a54f4eaeSMogball Value u = builder.create<arith::AddFOp>(x, cstOne); 453*a54f4eaeSMogball Value uSmall = 454*a54f4eaeSMogball builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, u, cstOne); 4551c0374e7SEmilio Cota Value logU = builder.create<math::LogOp>(u); 456*a54f4eaeSMogball Value uInf = 457*a54f4eaeSMogball builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, u, logU); 458*a54f4eaeSMogball Value logLarge = builder.create<arith::MulFOp>( 459*a54f4eaeSMogball x, builder.create<arith::DivFOp>( 460*a54f4eaeSMogball logU, builder.create<arith::SubFOp>(u, cstOne))); 461*a54f4eaeSMogball Value approximation = builder.create<SelectOp>( 462*a54f4eaeSMogball builder.create<arith::OrIOp>(uSmall, uInf), x, logLarge); 4631c0374e7SEmilio Cota rewriter.replaceOp(op, approximation); 4641c0374e7SEmilio Cota return success(); 4651c0374e7SEmilio Cota } 4661c0374e7SEmilio Cota 4671c0374e7SEmilio Cota //----------------------------------------------------------------------------// 468ea7f211bSAhmed Taei // Exp approximation. 469ea7f211bSAhmed Taei //----------------------------------------------------------------------------// 470ea7f211bSAhmed Taei 471ea7f211bSAhmed Taei namespace { 472ea7f211bSAhmed Taei 473ea7f211bSAhmed Taei struct ExpApproximation : public OpRewritePattern<math::ExpOp> { 474ea7f211bSAhmed Taei public: 475ea7f211bSAhmed Taei using OpRewritePattern::OpRewritePattern; 476ea7f211bSAhmed Taei 477ea7f211bSAhmed Taei LogicalResult matchAndRewrite(math::ExpOp op, 478ea7f211bSAhmed Taei PatternRewriter &rewriter) const final; 479ea7f211bSAhmed Taei }; 480ea7f211bSAhmed Taei } // namespace 481ea7f211bSAhmed Taei 482ea7f211bSAhmed Taei // Approximate exp(x) using its reduced range exp(y) where y is in the range 483ea7f211bSAhmed Taei // [0, ln(2)], let y = x - floor(x / ln(2)) * ln(2) = x - k * ln(2), exp(x) 484ea7f211bSAhmed Taei // = exp(y) * 2^k. exp(y). 485ea7f211bSAhmed Taei LogicalResult 486ea7f211bSAhmed Taei ExpApproximation::matchAndRewrite(math::ExpOp op, 487ea7f211bSAhmed Taei PatternRewriter &rewriter) const { 488ea7f211bSAhmed Taei auto width = vectorWidth(op.operand().getType(), isF32); 489ea7f211bSAhmed Taei if (!width.hasValue()) 490ea7f211bSAhmed Taei return rewriter.notifyMatchFailure(op, "unsupported operand type"); 491ea7f211bSAhmed Taei ImplicitLocOpBuilder builder(op->getLoc(), rewriter); 492ea7f211bSAhmed Taei 493ea7f211bSAhmed Taei // TODO: Consider a common pattern rewriter with all methods below to 494ea7f211bSAhmed Taei // write the approximations. 495ea7f211bSAhmed Taei auto bcast = [&](Value value) -> Value { 496ea7f211bSAhmed Taei return broadcast(builder, value, *width); 497ea7f211bSAhmed Taei }; 498ea7f211bSAhmed Taei auto fmla = [&](Value a, Value b, Value c) { 499*a54f4eaeSMogball return builder.create<math::FmaOp>(a, b, c); 500ea7f211bSAhmed Taei }; 501ea7f211bSAhmed Taei auto mul = [&](Value a, Value b) -> Value { 502*a54f4eaeSMogball return builder.create<arith::MulFOp>(a, b); 503ea7f211bSAhmed Taei }; 504ea7f211bSAhmed Taei auto sub = [&](Value a, Value b) -> Value { 505*a54f4eaeSMogball return builder.create<arith::SubFOp>(a, b); 506ea7f211bSAhmed Taei }; 507*a54f4eaeSMogball auto floor = [&](Value a) { return builder.create<math::FloorOp>(a); }; 508ea7f211bSAhmed Taei 509ea7f211bSAhmed Taei Value cstLn2 = bcast(f32Cst(builder, static_cast<float>(LN2_VALUE))); 510c0891706SEmilio Cota Value cstLog2E = bcast(f32Cst(builder, static_cast<float>(LOG2E_VALUE))); 511ea7f211bSAhmed Taei 512ea7f211bSAhmed Taei // Polynomial coefficients. 513ea7f211bSAhmed Taei Value cstCephesExpP0 = bcast(f32Cst(builder, 1.0)); 514ea7f211bSAhmed Taei Value cstCephesExpP1 = bcast(f32Cst(builder, 1.0)); 515ea7f211bSAhmed Taei Value cstCephesExpP2 = bcast(f32Cst(builder, 0.49970514590562437052f)); 516ea7f211bSAhmed Taei Value cstCephesExpP3 = bcast(f32Cst(builder, 0.16873890085469545053f)); 517ea7f211bSAhmed Taei Value cstCephesExpP4 = bcast(f32Cst(builder, 0.03668965196652099192f)); 518ea7f211bSAhmed Taei Value cstCephesExpP5 = bcast(f32Cst(builder, 0.01314350012789660196f)); 519ea7f211bSAhmed Taei 520ea7f211bSAhmed Taei Value x = op.operand(); 521ea7f211bSAhmed Taei 522ea7f211bSAhmed Taei // Reduced y = x - floor(x / ln(2)) * ln(2) = x - k * ln(2) 523c0891706SEmilio Cota Value xL2Inv = mul(x, cstLog2E); 524ea7f211bSAhmed Taei Value kF32 = floor(xL2Inv); 525ea7f211bSAhmed Taei Value kLn2 = mul(kF32, cstLn2); 526ea7f211bSAhmed Taei Value y = sub(x, kLn2); 527ea7f211bSAhmed Taei 528ea7f211bSAhmed Taei // Use Estrin's evaluation scheme with 3 independent parts: 529ea7f211bSAhmed Taei // P(y)^y : (c0 + c1 y) + (c2 + c3 y) y^2 + (c4 + c5 y) y^4 530ea7f211bSAhmed Taei Value y2 = mul(y, y); 531ea7f211bSAhmed Taei Value y4 = mul(y2, y2); 532ea7f211bSAhmed Taei 533ea7f211bSAhmed Taei Value q0 = fmla(cstCephesExpP1, y, cstCephesExpP0); 534ea7f211bSAhmed Taei Value q1 = fmla(cstCephesExpP3, y, cstCephesExpP2); 535ea7f211bSAhmed Taei Value q2 = fmla(cstCephesExpP5, y, cstCephesExpP4); 536ea7f211bSAhmed Taei Value expY = fmla(q1, y2, q0); 537ea7f211bSAhmed Taei expY = fmla(q2, y4, expY); 538ea7f211bSAhmed Taei 539ea7f211bSAhmed Taei auto i32Vec = broadcast(builder.getI32Type(), *width); 540ea7f211bSAhmed Taei 541ea7f211bSAhmed Taei // exp2(k) 542*a54f4eaeSMogball Value k = builder.create<arith::FPToSIOp>(kF32, i32Vec); 543ea7f211bSAhmed Taei Value exp2KValue = exp2I32(builder, k); 544ea7f211bSAhmed Taei 545ea7f211bSAhmed Taei // exp(x) = exp(y) * exp2(k) 546ea7f211bSAhmed Taei expY = mul(expY, exp2KValue); 547ea7f211bSAhmed Taei 548ea7f211bSAhmed Taei // Handle overflow, inf and underflow of exp(x). exp(x) range is [0, inf], its 549ea7f211bSAhmed Taei // partitioned as the following: 550ea7f211bSAhmed Taei // exp(x) = 0, x <= -inf 551ea7f211bSAhmed Taei // exp(x) = underflow (min_float), x <= -88 552ea7f211bSAhmed Taei // exp(x) = inf (min_float), x >= 88 553ea7f211bSAhmed Taei // Note: |k| = 127 is the value where the 8-bits exponent saturates. 554ea7f211bSAhmed Taei Value zerof32Const = bcast(f32Cst(builder, 0)); 555ea7f211bSAhmed Taei auto constPosInfinity = 556ea7f211bSAhmed Taei bcast(f32Cst(builder, std::numeric_limits<float>::infinity())); 557ea7f211bSAhmed Taei auto constNegIfinity = 558ea7f211bSAhmed Taei bcast(f32Cst(builder, -std::numeric_limits<float>::infinity())); 559ea7f211bSAhmed Taei auto underflow = bcast(f32Cst(builder, std::numeric_limits<float>::min())); 560ea7f211bSAhmed Taei 561ea7f211bSAhmed Taei Value kMaxConst = bcast(i32Cst(builder, 127)); 562ea7f211bSAhmed Taei Value kMaxNegConst = bcast(i32Cst(builder, -127)); 563*a54f4eaeSMogball Value rightBound = 564*a54f4eaeSMogball builder.create<arith::CmpIOp>(arith::CmpIPredicate::sle, k, kMaxConst); 565*a54f4eaeSMogball Value leftBound = 566*a54f4eaeSMogball builder.create<arith::CmpIOp>(arith::CmpIPredicate::sge, k, kMaxNegConst); 567ea7f211bSAhmed Taei 568*a54f4eaeSMogball Value isNegInfinityX = builder.create<arith::CmpFOp>( 569*a54f4eaeSMogball arith::CmpFPredicate::OEQ, x, constNegIfinity); 570ea7f211bSAhmed Taei Value isPostiveX = 571*a54f4eaeSMogball builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, x, zerof32Const); 572*a54f4eaeSMogball Value isComputable = builder.create<arith::AndIOp>(rightBound, leftBound); 573ea7f211bSAhmed Taei 574ea7f211bSAhmed Taei expY = builder.create<SelectOp>( 575ea7f211bSAhmed Taei isComputable, expY, 576ea7f211bSAhmed Taei builder.create<SelectOp>( 577ea7f211bSAhmed Taei isPostiveX, constPosInfinity, 578ea7f211bSAhmed Taei builder.create<SelectOp>(isNegInfinityX, zerof32Const, underflow))); 579ea7f211bSAhmed Taei 580ea7f211bSAhmed Taei rewriter.replaceOp(op, expY); 581ea7f211bSAhmed Taei 582ea7f211bSAhmed Taei return success(); 583ea7f211bSAhmed Taei } 584ea7f211bSAhmed Taei 585ea7f211bSAhmed Taei //----------------------------------------------------------------------------// 5860edc4bc8SEmilio Cota // ExpM1 approximation. 5870edc4bc8SEmilio Cota //----------------------------------------------------------------------------// 5880edc4bc8SEmilio Cota 5890edc4bc8SEmilio Cota namespace { 5900edc4bc8SEmilio Cota 5910edc4bc8SEmilio Cota struct ExpM1Approximation : public OpRewritePattern<math::ExpM1Op> { 5920edc4bc8SEmilio Cota public: 5930edc4bc8SEmilio Cota using OpRewritePattern::OpRewritePattern; 5940edc4bc8SEmilio Cota 5950edc4bc8SEmilio Cota LogicalResult matchAndRewrite(math::ExpM1Op op, 5960edc4bc8SEmilio Cota PatternRewriter &rewriter) const final; 5970edc4bc8SEmilio Cota }; 5980edc4bc8SEmilio Cota } // namespace 5990edc4bc8SEmilio Cota 6000edc4bc8SEmilio Cota LogicalResult 6010edc4bc8SEmilio Cota ExpM1Approximation::matchAndRewrite(math::ExpM1Op op, 6020edc4bc8SEmilio Cota PatternRewriter &rewriter) const { 6030edc4bc8SEmilio Cota auto width = vectorWidth(op.operand().getType(), isF32); 6040edc4bc8SEmilio Cota if (!width.hasValue()) 6050edc4bc8SEmilio Cota return rewriter.notifyMatchFailure(op, "unsupported operand type"); 6060edc4bc8SEmilio Cota 6070edc4bc8SEmilio Cota ImplicitLocOpBuilder builder(op->getLoc(), rewriter); 6080edc4bc8SEmilio Cota auto bcast = [&](Value value) -> Value { 6090edc4bc8SEmilio Cota return broadcast(builder, value, *width); 6100edc4bc8SEmilio Cota }; 6110edc4bc8SEmilio Cota 6120edc4bc8SEmilio Cota // expm1(x) = exp(x) - 1 = u - 1. 6130edc4bc8SEmilio Cota // We have to handle it carefully when x is near 0, i.e. u ~= 1, 6140edc4bc8SEmilio Cota // and when the input is ~= -inf, i.e. u - 1 ~= -1. 6150edc4bc8SEmilio Cota Value cstOne = bcast(f32Cst(builder, 1.0f)); 6160edc4bc8SEmilio Cota Value cstNegOne = bcast(f32Cst(builder, -1.0f)); 6170edc4bc8SEmilio Cota Value x = op.operand(); 6180edc4bc8SEmilio Cota Value u = builder.create<math::ExpOp>(x); 619*a54f4eaeSMogball Value uEqOne = 620*a54f4eaeSMogball builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, u, cstOne); 621*a54f4eaeSMogball Value uMinusOne = builder.create<arith::SubFOp>(u, cstOne); 622*a54f4eaeSMogball Value uMinusOneEqNegOne = builder.create<arith::CmpFOp>( 623*a54f4eaeSMogball arith::CmpFPredicate::OEQ, uMinusOne, cstNegOne); 6240edc4bc8SEmilio Cota // logU = log(u) ~= x 6250edc4bc8SEmilio Cota Value logU = builder.create<math::LogOp>(u); 6260edc4bc8SEmilio Cota 6270edc4bc8SEmilio Cota // Detect exp(x) = +inf; written this way to avoid having to form +inf. 628*a54f4eaeSMogball Value isInf = 629*a54f4eaeSMogball builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, logU, u); 6300edc4bc8SEmilio Cota 6310edc4bc8SEmilio Cota // (u - 1) * (x / ~x) 632*a54f4eaeSMogball Value expm1 = builder.create<arith::MulFOp>( 633*a54f4eaeSMogball uMinusOne, builder.create<arith::DivFOp>(x, logU)); 6340edc4bc8SEmilio Cota expm1 = builder.create<SelectOp>(isInf, u, expm1); 6350edc4bc8SEmilio Cota Value approximation = builder.create<SelectOp>( 6360edc4bc8SEmilio Cota uEqOne, x, builder.create<SelectOp>(uMinusOneEqNegOne, cstNegOne, expm1)); 6370edc4bc8SEmilio Cota rewriter.replaceOp(op, approximation); 6380edc4bc8SEmilio Cota return success(); 6390edc4bc8SEmilio Cota } 6400edc4bc8SEmilio Cota 6410edc4bc8SEmilio Cota //----------------------------------------------------------------------------// 6427e2d672aSAhmed S. Taei // Sin and Cos approximation. 6437e2d672aSAhmed S. Taei //----------------------------------------------------------------------------// 6447e2d672aSAhmed S. Taei 6457e2d672aSAhmed S. Taei namespace { 6467e2d672aSAhmed S. Taei 6477e2d672aSAhmed S. Taei template <bool isSine, typename OpTy> 6487e2d672aSAhmed S. Taei struct SinAndCosApproximation : public OpRewritePattern<OpTy> { 6497e2d672aSAhmed S. Taei public: 6507e2d672aSAhmed S. Taei using OpRewritePattern<OpTy>::OpRewritePattern; 6517e2d672aSAhmed S. Taei 6527e2d672aSAhmed S. Taei LogicalResult matchAndRewrite(OpTy op, PatternRewriter &rewriter) const final; 6537e2d672aSAhmed S. Taei }; 6547e2d672aSAhmed S. Taei } // namespace 6557e2d672aSAhmed S. Taei 6567e2d672aSAhmed S. Taei #define TWO_OVER_PI \ 6577e2d672aSAhmed S. Taei 0.6366197723675813430755350534900574481378385829618257949906693762L 6587e2d672aSAhmed S. Taei #define PI_OVER_2 \ 6597e2d672aSAhmed S. Taei 1.5707963267948966192313216916397514420985846996875529104874722961L 6607e2d672aSAhmed S. Taei 6617e2d672aSAhmed S. Taei // Approximates sin(x) or cos(x) by finding the best approximation polynomial in 6627e2d672aSAhmed S. Taei // the reduced range [0, pi/2] for both sin(x) and cos(x). Then given y in the 6637e2d672aSAhmed S. Taei // reduced range sin(x) will be computed as sin(y), -sin(y), cos(y) or -cos(y). 6647e2d672aSAhmed S. Taei template <bool isSine, typename OpTy> 6657e2d672aSAhmed S. Taei LogicalResult SinAndCosApproximation<isSine, OpTy>::matchAndRewrite( 6667e2d672aSAhmed S. Taei OpTy op, PatternRewriter &rewriter) const { 6677e2d672aSAhmed S. Taei static_assert( 6687e2d672aSAhmed S. Taei llvm::is_one_of<OpTy, math::SinOp, math::CosOp>::value, 6697e2d672aSAhmed S. Taei "SinAndCosApproximation pattern expects math::SinOp or math::CosOp"); 6707e2d672aSAhmed S. Taei auto width = vectorWidth(op.operand().getType(), isF32); 6717e2d672aSAhmed S. Taei if (!width.hasValue()) 6727e2d672aSAhmed S. Taei return rewriter.notifyMatchFailure(op, "unsupported operand type"); 6737e2d672aSAhmed S. Taei 6747e2d672aSAhmed S. Taei ImplicitLocOpBuilder builder(op->getLoc(), rewriter); 6757e2d672aSAhmed S. Taei auto bcast = [&](Value value) -> Value { 6767e2d672aSAhmed S. Taei return broadcast(builder, value, *width); 6777e2d672aSAhmed S. Taei }; 6787e2d672aSAhmed S. Taei auto mul = [&](Value a, Value b) -> Value { 679*a54f4eaeSMogball return builder.create<arith::MulFOp>(a, b); 6807e2d672aSAhmed S. Taei }; 6817e2d672aSAhmed S. Taei auto sub = [&](Value a, Value b) -> Value { 682*a54f4eaeSMogball return builder.create<arith::SubFOp>(a, b); 6837e2d672aSAhmed S. Taei }; 684*a54f4eaeSMogball auto floor = [&](Value a) { return builder.create<math::FloorOp>(a); }; 6857e2d672aSAhmed S. Taei 6867e2d672aSAhmed S. Taei auto i32Vec = broadcast(builder.getI32Type(), *width); 6877e2d672aSAhmed S. Taei auto fPToSingedInteger = [&](Value a) -> Value { 688*a54f4eaeSMogball return builder.create<arith::FPToSIOp>(a, i32Vec); 6897e2d672aSAhmed S. Taei }; 6907e2d672aSAhmed S. Taei 6917e2d672aSAhmed S. Taei auto modulo4 = [&](Value a) -> Value { 692*a54f4eaeSMogball return builder.create<arith::AndIOp>(a, bcast(i32Cst(builder, 3))); 6937e2d672aSAhmed S. Taei }; 6947e2d672aSAhmed S. Taei 6957e2d672aSAhmed S. Taei auto isEqualTo = [&](Value a, Value b) -> Value { 696*a54f4eaeSMogball return builder.create<arith::CmpIOp>(arith::CmpIPredicate::eq, a, b); 6977e2d672aSAhmed S. Taei }; 6987e2d672aSAhmed S. Taei 6997e2d672aSAhmed S. Taei auto isGreaterThan = [&](Value a, Value b) -> Value { 700*a54f4eaeSMogball return builder.create<arith::CmpIOp>(arith::CmpIPredicate::sgt, a, b); 7017e2d672aSAhmed S. Taei }; 7027e2d672aSAhmed S. Taei 7037e2d672aSAhmed S. Taei auto select = [&](Value cond, Value t, Value f) -> Value { 7047e2d672aSAhmed S. Taei return builder.create<SelectOp>(cond, t, f); 7057e2d672aSAhmed S. Taei }; 7067e2d672aSAhmed S. Taei 7077e2d672aSAhmed S. Taei auto fmla = [&](Value a, Value b, Value c) { 708*a54f4eaeSMogball return builder.create<math::FmaOp>(a, b, c); 7097e2d672aSAhmed S. Taei }; 7107e2d672aSAhmed S. Taei 711*a54f4eaeSMogball auto bitwiseOr = [&](Value a, Value b) { 712*a54f4eaeSMogball return builder.create<arith::OrIOp>(a, b); 713*a54f4eaeSMogball }; 7147e2d672aSAhmed S. Taei 7157e2d672aSAhmed S. Taei Value twoOverPi = bcast(f32Cst(builder, TWO_OVER_PI)); 7167e2d672aSAhmed S. Taei Value piOverTwo = bcast(f32Cst(builder, PI_OVER_2)); 7177e2d672aSAhmed S. Taei 7187e2d672aSAhmed S. Taei Value x = op.operand(); 7197e2d672aSAhmed S. Taei 7207e2d672aSAhmed S. Taei Value k = floor(mul(x, twoOverPi)); 7217e2d672aSAhmed S. Taei 7227e2d672aSAhmed S. Taei Value y = sub(x, mul(k, piOverTwo)); 7237e2d672aSAhmed S. Taei 7247e2d672aSAhmed S. Taei Value cstOne = bcast(f32Cst(builder, 1.0)); 7257e2d672aSAhmed S. Taei Value cstNegativeOne = bcast(f32Cst(builder, -1.0)); 7267e2d672aSAhmed S. Taei 7277e2d672aSAhmed S. Taei Value cstSC2 = bcast(f32Cst(builder, -0.16666667163372039794921875f)); 7287e2d672aSAhmed S. Taei Value cstSC4 = bcast(f32Cst(builder, 8.333347737789154052734375e-3f)); 7297e2d672aSAhmed S. Taei Value cstSC6 = bcast(f32Cst(builder, -1.9842604524455964565277099609375e-4f)); 7307e2d672aSAhmed S. Taei Value cstSC8 = 7317e2d672aSAhmed S. Taei bcast(f32Cst(builder, 2.760012648650445044040679931640625e-6f)); 7327e2d672aSAhmed S. Taei Value cstSC10 = 7337e2d672aSAhmed S. Taei bcast(f32Cst(builder, -2.50293279435709337121807038784027099609375e-8f)); 7347e2d672aSAhmed S. Taei 7357e2d672aSAhmed S. Taei Value cstCC2 = bcast(f32Cst(builder, -0.5f)); 7367e2d672aSAhmed S. Taei Value cstCC4 = bcast(f32Cst(builder, 4.166664183139801025390625e-2f)); 7377e2d672aSAhmed S. Taei Value cstCC6 = bcast(f32Cst(builder, -1.388833043165504932403564453125e-3f)); 7387e2d672aSAhmed S. Taei Value cstCC8 = bcast(f32Cst(builder, 2.47562347794882953166961669921875e-5f)); 7397e2d672aSAhmed S. Taei Value cstCC10 = 7407e2d672aSAhmed S. Taei bcast(f32Cst(builder, -2.59630184018533327616751194000244140625e-7f)); 7417e2d672aSAhmed S. Taei 7427e2d672aSAhmed S. Taei Value kMod4 = modulo4(fPToSingedInteger(k)); 7437e2d672aSAhmed S. Taei 7447e2d672aSAhmed S. Taei Value kR0 = isEqualTo(kMod4, bcast(i32Cst(builder, 0))); 7457e2d672aSAhmed S. Taei Value kR1 = isEqualTo(kMod4, bcast(i32Cst(builder, 1))); 7467e2d672aSAhmed S. Taei Value kR2 = isEqualTo(kMod4, bcast(i32Cst(builder, 2))); 7477e2d672aSAhmed S. Taei Value kR3 = isEqualTo(kMod4, bcast(i32Cst(builder, 3))); 7487e2d672aSAhmed S. Taei 7497e2d672aSAhmed S. Taei Value sinuseCos = isSine ? bitwiseOr(kR1, kR3) : bitwiseOr(kR0, kR2); 7507e2d672aSAhmed S. Taei Value negativeRange = isSine ? isGreaterThan(kMod4, bcast(i32Cst(builder, 1))) 7517e2d672aSAhmed S. Taei : bitwiseOr(kR1, kR2); 7527e2d672aSAhmed S. Taei 7537e2d672aSAhmed S. Taei Value y2 = mul(y, y); 7547e2d672aSAhmed S. Taei 7557e2d672aSAhmed S. Taei Value base = select(sinuseCos, cstOne, y); 7567e2d672aSAhmed S. Taei Value cstC2 = select(sinuseCos, cstCC2, cstSC2); 7577e2d672aSAhmed S. Taei Value cstC4 = select(sinuseCos, cstCC4, cstSC4); 7587e2d672aSAhmed S. Taei Value cstC6 = select(sinuseCos, cstCC6, cstSC6); 7597e2d672aSAhmed S. Taei Value cstC8 = select(sinuseCos, cstCC8, cstSC8); 7607e2d672aSAhmed S. Taei Value cstC10 = select(sinuseCos, cstCC10, cstSC10); 7617e2d672aSAhmed S. Taei 7627e2d672aSAhmed S. Taei Value v1 = fmla(y2, cstC10, cstC8); 7637e2d672aSAhmed S. Taei Value v2 = fmla(y2, v1, cstC6); 7647e2d672aSAhmed S. Taei Value v3 = fmla(y2, v2, cstC4); 7657e2d672aSAhmed S. Taei Value v4 = fmla(y2, v3, cstC2); 7667e2d672aSAhmed S. Taei Value v5 = fmla(y2, v4, cstOne); 7677e2d672aSAhmed S. Taei Value v6 = mul(base, v5); 7687e2d672aSAhmed S. Taei 7697e2d672aSAhmed S. Taei Value approximation = select(negativeRange, mul(cstNegativeOne, v6), v6); 7707e2d672aSAhmed S. Taei 7717e2d672aSAhmed S. Taei rewriter.replaceOp(op, approximation); 7727e2d672aSAhmed S. Taei 7737e2d672aSAhmed S. Taei return success(); 7747e2d672aSAhmed S. Taei } 7757e2d672aSAhmed S. Taei 7767e2d672aSAhmed S. Taei //----------------------------------------------------------------------------// 777f99ccf65SEugene Zhulenev 778f99ccf65SEugene Zhulenev void mlir::populateMathPolynomialApproximationPatterns( 779dc4e913bSChris Lattner RewritePatternSet &patterns) { 780dc4e913bSChris Lattner patterns.add<TanhApproximation, LogApproximation, Log2Approximation, 7817e2d672aSAhmed S. Taei Log1pApproximation, ExpApproximation, ExpM1Approximation, 7827e2d672aSAhmed S. Taei SinAndCosApproximation<true, math::SinOp>, 7837e2d672aSAhmed S. Taei SinAndCosApproximation<false, math::CosOp>>( 7840edc4bc8SEmilio Cota patterns.getContext()); 785f99ccf65SEugene Zhulenev } 786