1 //===- LinalgTransforms.cpp - Linalg transformations as patterns ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements logic and helpers to expose Linalg transforms as rewrite 10 // patterns. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 15 #include "mlir/Dialect/Affine/Utils.h" 16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 17 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" 18 #include "mlir/Dialect/Linalg/IR/Linalg.h" 19 #include "mlir/Dialect/Linalg/Transforms/HoistPadding.h" 20 #include "mlir/Dialect/Linalg/Utils/Utils.h" 21 #include "mlir/Dialect/SCF/Transforms.h" 22 #include "mlir/Dialect/Tensor/IR/Tensor.h" 23 #include "mlir/Dialect/Utils/StaticValueUtils.h" 24 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 25 #include "mlir/Dialect/Vector/VectorOps.h" 26 #include "mlir/IR/AffineExpr.h" 27 #include "mlir/IR/Matchers.h" 28 #include "mlir/Pass/Pass.h" 29 #include "mlir/Support/LLVM.h" 30 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 31 #include "llvm/ADT/ScopeExit.h" 32 #include "llvm/ADT/TypeSwitch.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include <type_traits> 36 #include <utility> 37 38 #define DEBUG_TYPE "linalg-transforms" 39 40 using namespace mlir; 41 using namespace mlir::linalg; 42 43 #define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE << "]: ") 44 45 //===----------------------------------------------------------------------===// 46 // Transformations exposed as rewrite patterns. 47 //===----------------------------------------------------------------------===// 48 // Marker used as attribute name in generated Linalg rewriting transformations. 49 const StringLiteral mlir::linalg::LinalgTransforms::kLinalgTransformMarker = 50 "__internal_linalg_transform__"; 51 52 mlir::linalg::LinalgTransformationFilter::LinalgTransformationFilter( 53 ArrayRef<StringAttr> matchDisjunction, Optional<StringAttr> replacement) 54 : matchDisjunction(matchDisjunction.begin(), matchDisjunction.end()), 55 replacement(replacement), matchByDefault(false) {} 56 57 mlir::linalg::LinalgTransformationFilter::LinalgTransformationFilter( 58 const FilterFunction &f, ArrayRef<StringAttr> matchDisjunction, 59 Optional<StringAttr> replacement) 60 : filters(), 61 matchDisjunction(matchDisjunction.begin(), matchDisjunction.end()), 62 replacement(replacement), matchByDefault(false) { 63 if (f) 64 filters.push_back(f); 65 } 66 67 LogicalResult mlir::linalg::LinalgTransformationFilter::checkAndNotify( 68 PatternRewriter &rewriter, Operation *op) const { 69 if (llvm::any_of(filters, 70 [&](const FilterFunction &f) { return failed(f(op)); })) 71 return failure(); 72 73 auto attr = op->template getAttrOfType<StringAttr>( 74 LinalgTransforms::kLinalgTransformMarker); 75 76 if (!attr) { 77 // 1. Has no filter case and matchDisjunction is empty. 78 if (matchDisjunction.empty() || matchByDefault) 79 return success(); 80 81 // 2. Has no filter but was expecting a filter. 82 return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) { 83 diag << " does not have any filter from list: "; 84 interleaveComma(matchDisjunction, diag); 85 }); 86 } 87 88 // 4. Match explicit filter. 89 for (auto filter : matchDisjunction) 90 if (attr.getValue() == filter) 91 return success(); 92 93 // 5. Fail to match. 94 return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) { 95 diag << " does not have any filter from list: "; 96 interleaveComma(matchDisjunction, diag); 97 }); 98 } 99 100 void mlir::linalg::LinalgTransformationFilter:: 101 replaceLinalgTransformationFilter(PatternRewriter &rewriter, 102 Operation *op) const { 103 if (replacement.hasValue()) 104 op->setAttr(LinalgTransforms::kLinalgTransformMarker, 105 replacement.getValue()); 106 else 107 op->removeAttr( 108 rewriter.getStringAttr(LinalgTransforms::kLinalgTransformMarker)); 109 } 110 111 bool mlir::linalg::LinalgTransformationFilter::hasReplacementFilter( 112 Operation *op) const { 113 if (!replacement) 114 return false; 115 auto attr = op->getAttr(LinalgTransforms::kLinalgTransformMarker) 116 .dyn_cast<StringAttr>(); 117 return attr && attr == replacement.getValue(); 118 } 119 120 LinalgTilingOptions & 121 mlir::linalg::LinalgTilingOptions::setTileSizes(ArrayRef<int64_t> ts) { 122 assert(!tileSizeComputationFunction && "tile sizes already set"); 123 SmallVector<int64_t, 4> tileSizes(ts.begin(), ts.end()); 124 tileSizeComputationFunction = [tileSizes](OpBuilder &b, Operation *op) { 125 OpBuilder::InsertionGuard guard(b); 126 b.setInsertionPointToStart( 127 &op->getParentOfType<FuncOp>().getBody().front()); 128 return llvm::to_vector<4>(map_range(tileSizes, [&](int64_t s) { 129 Value v = b.create<arith::ConstantIndexOp>(op->getLoc(), s); 130 return v; 131 })); 132 }; 133 return *this; 134 } 135 136 LinalgTilingOptions &mlir::linalg::LinalgTilingOptions::scalarizeDynamicDims() { 137 assert(!tileSizeComputationFunction && "tile sizes already set"); 138 tileSizeComputationFunction = [](OpBuilder &b, Operation *op) { 139 SmallVector<Value, 4> tileSizes; 140 auto linalgOp = dyn_cast<LinalgOp>(op); 141 if (!linalgOp) 142 return tileSizes; 143 Location loc = linalgOp.getLoc(); 144 auto allShapeSizes = linalgOp.createFlatListOfOperandDims(b, loc); 145 AffineMap map = linalgOp.getShapesToLoopsMap(); 146 if (!map) 147 return tileSizes; 148 auto shapeSizes = applyMapToValues(b, loc, map, allShapeSizes); 149 // If the shape size is dynamic, tile by 1. Otherwise, do not tile (tile 150 // size 0). 151 for (Value shapeSize : shapeSizes) 152 tileSizes.push_back(getConstantIntValue(shapeSize).hasValue() 153 ? b.create<arith::ConstantIndexOp>(loc, 0) 154 : b.create<arith::ConstantIndexOp>(loc, 1)); 155 return tileSizes; 156 }; 157 return *this; 158 } 159 160 /// Helper function that tries to pad `opOperand`. Exit early for scalar 161 /// operands, if `paddingFunc` returns failure, or if `opOperand` is not defined 162 /// by an ExtractSliceOp. Otherwise, try to pad the operand even if it already 163 /// has a static shape. Set `result` to the result of the created PadTensorOp or 164 /// and return success if the operand either has been padded to a static shape 165 /// or already had a static shape and failure otherwise. 166 static LogicalResult padOperandToSmallestStaticBoundingBox( 167 OpBuilder &b, linalg::LinalgOp opToPad, OpOperand *opOperand, 168 const PaddingValueComputationFunction &paddingFunc, 169 const PaddingNoFoldComputationFunction &nofoldFunc, Value &result) { 170 // Get the shape of the operand and check if it has a dynamic shape. Only 171 // return failure if the operand is not a scalar and has a dynamic shape. 172 ArrayRef<int64_t> shape = opToPad.getShape(opOperand); 173 bool hasDynamicShape = llvm::is_contained(shape, ShapedType::kDynamicSize); 174 175 // Cannot pad scalar operands. 176 if (shape.empty()) 177 return success(); 178 179 // Cannot pad if the padding value is unknown. 180 FailureOr<Value> paddingValue = paddingFunc(b, *opOperand); 181 if (failed(paddingValue)) 182 return failure(hasDynamicShape); 183 184 // Cannot construct a static bounding box if the operand is not defined by an 185 // ExtractSliceOp. 186 auto sliceOp = opOperand->get().getDefiningOp<tensor::ExtractSliceOp>(); 187 if (!sliceOp) 188 return failure(hasDynamicShape); 189 190 // Compute the dropped dimensions if `sliceOp` is ranke-reducing. 191 llvm::SmallDenseSet<unsigned> droppedDims = sliceOp.getDroppedDims(); 192 193 // Upper bound the `sliceOp` sizes to obtain a static bounding box. 194 SmallVector<int64_t> staticSizes; 195 staticSizes.reserve(shape.size()); 196 auto shapedOp = cast<OffsetSizeAndStrideOpInterface>(sliceOp.getOperation()); 197 for (const auto &en : enumerate(shapedOp.getMixedSizes())) { 198 // Skip dropped dimensions. 199 if (droppedDims.contains(en.index())) 200 continue; 201 // If the size is an attribute add it directly to `staticSizes`. 202 if (en.value().is<Attribute>()) { 203 staticSizes.push_back( 204 en.value().get<Attribute>().dyn_cast<IntegerAttr>().getInt()); 205 continue; 206 } 207 // Otherwise, try to compute a constant upper bound for the size value. 208 FailureOr<int64_t> upperBound = 209 getConstantUpperBoundForIndex(en.value().get<Value>()); 210 if (failed(upperBound)) { 211 LLVM_DEBUG(DBGS() << "No constant bounding box can be found for padding"); 212 return failure(); 213 } 214 staticSizes.push_back(upperBound.getValue()); 215 } 216 assert(staticSizes.size() == shape.size() && 217 "expect the dynamic and static ranks to match"); 218 219 // Pad the operand to the bounding box defined by `staticSizes`. 220 auto staticTensorType = RankedTensorType::get( 221 staticSizes, getElementTypeOrSelf(opOperand->get())); 222 bool nofold = nofoldFunc ? nofoldFunc(*opOperand) : false; 223 result = 224 makeComposedPadHighOp(b, opToPad->getLoc(), staticTensorType, 225 opOperand->get(), paddingValue.getValue(), nofold); 226 return success(); 227 } 228 229 FailureOr<SmallVector<Value>> 230 linalg::rewriteAsPaddedOp(OpBuilder &b, LinalgOp opToPad, 231 const PaddingValueComputationFunction &paddingFunc, 232 const PaddingNoFoldComputationFunction &nofoldFunc, 233 LinalgOp &paddedOp) { 234 Location loc = opToPad->getLoc(); 235 236 // TODO: there are cases where we may still want to pad to larger sizes. 237 assert(opToPad.hasTensorSemantics() && 238 "expected operation to have tensor semantics"); 239 240 OpBuilder::InsertionGuard g(b); 241 // Set IP after op because we also take the dims of the original output. 242 b.setInsertionPointAfter(opToPad); 243 // Make a copy of the shaped operands and update it. 244 SmallVector<Value> newOperands; 245 newOperands.reserve(opToPad.getNumInputsAndOutputs()); 246 for (OpOperand *opOperand : opToPad.getInputAndOutputOperands()) { 247 Value paddedOperand; 248 // If padding was requested but the shape cannot be bounded statically then 249 // the pattern fails to apply. 250 if (failed(padOperandToSmallestStaticBoundingBox( 251 b, opToPad, opOperand, paddingFunc, nofoldFunc, paddedOperand))) 252 return failure(); 253 newOperands.push_back(paddedOperand ? paddedOperand : opOperand->get()); 254 } 255 256 SmallVector<SmallVector<Value>> reifiedResultShapes; 257 if (failed(cast<ReifyRankedShapedTypeOpInterface>(opToPad.getOperation()) 258 .reifyResultShapes(b, reifiedResultShapes))) 259 return failure(); 260 assert(reifiedResultShapes.size() == opToPad->getNumResults() && 261 "expected same number of results"); 262 263 // Clone `opToPad` to operate on the statically padded shapes. 264 auto resultTensorTypes = 265 ValueRange(newOperands).take_back(opToPad.getNumOutputs()).getTypes(); 266 paddedOp = opToPad.clone(b, loc, resultTensorTypes, newOperands); 267 268 // Recover the slice out of the new static results. This keeps the original 269 // linalg op around because it uses the dims of the original results. 270 SmallVector<Value> paddedSubviewResults; 271 paddedSubviewResults.reserve(opToPad->getNumResults()); 272 for (const auto &en : llvm::enumerate(paddedOp->getResults())) { 273 Value paddedResult = en.value(); 274 int64_t resultNumber = en.index(); 275 int64_t rank = paddedResult.getType().cast<RankedTensorType>().getRank(); 276 SmallVector<OpFoldResult> offsets(rank, b.getIndexAttr(0)); 277 SmallVector<OpFoldResult> sizes; 278 for (Value v : reifiedResultShapes[resultNumber]) 279 sizes.push_back(getAsOpFoldResult(v)); 280 SmallVector<OpFoldResult> strides(rank, b.getIndexAttr(1)); 281 paddedSubviewResults.push_back(b.create<tensor::ExtractSliceOp>( 282 loc, paddedResult, offsets, sizes, strides)); 283 } 284 return paddedSubviewResults; 285 } 286 287 /// Linalg base tiling pattern. 288 mlir::linalg::LinalgBaseTilingPattern::LinalgBaseTilingPattern( 289 StringRef opName, MLIRContext *context, LinalgTilingOptions options, 290 LinalgTransformationFilter filter, PatternBenefit benefit) 291 : RewritePattern(opName, benefit, context), filter(std::move(filter)), 292 options(std::move(options)) {} 293 294 mlir::linalg::LinalgBaseTilingPattern::LinalgBaseTilingPattern( 295 MLIRContext *context, LinalgTilingOptions options, 296 LinalgTransformationFilter filter, PatternBenefit benefit) 297 : RewritePattern(MatchAnyOpTypeTag(), benefit, context), 298 filter(std::move(filter)), options(std::move(options)) {} 299 300 /// Try to peel a loop `op` and return the new result. 301 // TODO: Add support for scf.parallel and affine.for loops. 302 static SmallVector<Value, 4> peelLoop(RewriterBase &rewriter, Operation *op) { 303 return llvm::TypeSwitch<Operation *, SmallVector<Value, 4>>(op) 304 .Case<scf::ForOp>([&](scf::ForOp forOp) { 305 scf::ForOp partialIteration; 306 if (succeeded(scf::peelAndCanonicalizeForLoop(rewriter, forOp, 307 partialIteration))) 308 return partialIteration->getResults(); 309 assert(!partialIteration && "expected that loop was not peeled"); 310 return forOp->getResults(); 311 }) 312 .Default([&](Operation *op) { return op->getResults(); }); 313 } 314 315 /// Try to peel a TiledLoopOp and return the new result. 316 static SmallVector<Value, 4> peelLoop(RewriterBase &rewriter, 317 TiledLoopOp tiledLoop, int64_t idx) { 318 assert(idx < static_cast<int64_t>(tiledLoop.iterator_types().size()) && 319 "requested peeling of non-existing loop"); 320 TiledLoopOp result; 321 if (succeeded(peelAndCanonicalizeTiledLoop(rewriter, tiledLoop, idx, result))) 322 return result->getResults(); 323 assert(!result && "expected that loop was not peeled"); 324 return tiledLoop->getResults(); 325 } 326 327 /// Peel loops after tiling. 328 static void peelLoops(RewriterBase &rewriter, TiledLinalgOp &res, 329 const LinalgTilingOptions &options) { 330 for (int64_t loop : options.peeledLoops) { 331 assert(loop < static_cast<int64_t>(res.loops.size()) && 332 "requested peeling of non-existing loop"); 333 SmallVector<Value, 4> loopResults; 334 Operation *loopOp = res.loops[loop]; 335 if (options.loopType == LinalgTilingLoopType::TiledLoops) { 336 assert(llvm::all_of( 337 res.loops, 338 [&](Operation *op) { return op == res.loops.front(); }) && 339 "expected that all loop ops are the same TiledLoopOp"); 340 auto tiledLoopOp = dyn_cast<TiledLoopOp>(loopOp); 341 assert(tiledLoopOp && "expected TiledLoopOp"); 342 loopResults = peelLoop(rewriter, tiledLoopOp, loop); 343 } else { 344 loopResults = peelLoop(rewriter, loopOp); 345 } 346 347 // The result of the loop nest may change with peeling. 348 if (res.tensorResults.size() == loopOp->getNumResults() && 349 std::equal(res.tensorResults.begin(), res.tensorResults.end(), 350 loopOp->getResults().begin())) 351 res.tensorResults = loopResults; 352 } 353 } 354 355 LogicalResult mlir::linalg::LinalgBaseTilingPattern::matchAndRewriteBase( 356 Operation *op, PatternRewriter &rewriter, TiledLinalgOp &result) const { 357 LinalgOp linalgOp = dyn_cast<LinalgOp>(op); 358 if (!linalgOp) 359 return failure(); 360 if (failed(filter.checkAndNotify(rewriter, linalgOp))) 361 return failure(); 362 363 Optional<TiledLinalgOp> res = tileLinalgOp(rewriter, linalgOp, options); 364 365 if (!res) 366 return failure(); 367 // Clear filter to stop recursive pattern application. 368 filter.replaceLinalgTransformationFilter(rewriter, res->op); 369 370 // Peel loops. 371 peelLoops(rewriter, *res, options); 372 373 result = *res; 374 return success(); 375 } 376 377 static ValueRange getTiledOpResult(TiledLinalgOp tiledOp) { 378 if (tiledOp.loops.empty()) 379 return tiledOp.op.getOperation()->getResults(); 380 return tiledOp.loops.front()->getResults(); 381 } 382 383 static ValueRange 384 getTiledAndFusedOpResult(TiledAndFusedLinalgOps tiledAndFusedOp) { 385 if (tiledAndFusedOp.fusedLoops.empty()) 386 return tiledAndFusedOp.op.getOperation()->getResults(); 387 return tiledAndFusedOp.fusedLoops.front()->getResults(); 388 } 389 390 mlir::linalg::LinalgBaseTileAndFusePattern::LinalgBaseTileAndFusePattern( 391 StringRef opName, MLIRContext *context, 392 const LinalgDependenceGraph &dependenceGraph, 393 LinalgTilingOptions tilingOptions, LinalgFusionOptions fusionOptions, 394 LinalgTransformationFilter filter, LinalgTransformationFilter fusedOpMarker, 395 LinalgTransformationFilter originalOpMarker, PatternBenefit benefit) 396 : RewritePattern(opName, benefit, context, {}), 397 dependenceGraph(dependenceGraph), tilingOptions(std::move(tilingOptions)), 398 fusionOptions(std::move(fusionOptions)), filter(std::move(filter)), 399 fusedOpMarker(std::move(fusedOpMarker)), 400 originalOpMarker(std::move(originalOpMarker)) {} 401 402 LogicalResult mlir::linalg::LinalgBaseTileAndFusePattern::matchAndRewrite( 403 Operation *op, PatternRewriter &rewriter) const { 404 LinalgOp linalgOp = dyn_cast<LinalgOp>(op); 405 // TODO: remove hasIndexSemantics check once index ops are supported. 406 if (!linalgOp || linalgOp.hasIndexSemantics()) 407 return failure(); 408 if (failed(filter.checkAndNotify(rewriter, linalgOp))) 409 return failure(); 410 411 DenseSet<Operation *> producers; 412 producers.insert(linalgOp); 413 for (auto dependence : dependenceGraph.getDependentOperationsInto(linalgOp)) { 414 Optional<unsigned> operandNumber = dependence.getIndexingOpViewOperandNum(); 415 // When looking at dependences into, indexingOp is always OpOperand. We 416 // could assert, but continue if this is not the case. 417 if (!operandNumber) 418 continue; 419 if (!fusionOptions.indicesToFuse.count(operandNumber.getValue())) 420 continue; 421 if (isa<LinalgOp>(dependence.getDependentOp())) 422 producers.insert(dependence.getDependentOp()); 423 } 424 425 SmallVector<LinalgOp, 1> fusionOps; 426 for (auto it = op->getBlock()->begin(), ie = Block::iterator(op); it != ie; 427 ++it) { 428 auto producerLinalgOp = dyn_cast<LinalgOp>(&(*it)); 429 if (producerLinalgOp && producers.count(producerLinalgOp)) 430 fusionOps.push_back(producerLinalgOp); 431 } 432 fusionOps.push_back(linalgOp); 433 434 SmallVector<Value, 4> tileSizes = 435 tilingOptions.tileSizeComputationFunction(rewriter, op); 436 LinalgTilingOptions instanceTilingOptions = tilingOptions; 437 instanceTilingOptions.setTileSizes(tileSizes); 438 Optional<TiledAndFusedLinalgOps> tiledAndFusedOps = tileAndFuseLinalgOps( 439 rewriter, fusionOps, dependenceGraph, instanceTilingOptions); 440 if (!tiledAndFusedOps) 441 return failure(); 442 443 // Tile the unfused loops; 444 SmallVector<Value, 4> unfusedLoopTileSizes; 445 Value zero = rewriter.create<arith::ConstantIndexOp>(op->getLoc(), 0); 446 for (const auto &tileSize : enumerate(tileSizes)) { 447 if (tiledAndFusedOps->fusedLoopDims.count(tileSize.index())) 448 unfusedLoopTileSizes.push_back(zero); 449 else 450 unfusedLoopTileSizes.push_back(tileSize.value()); 451 } 452 // Tile the loop only if there is a non-zero tile size. 453 if (unfusedLoopTileSizes.size() > linalgOp.getNumLoops()) 454 unfusedLoopTileSizes.resize(linalgOp.getNumLoops()); 455 if (llvm::any_of(unfusedLoopTileSizes, [](Value val) { 456 if (auto cst = val.getDefiningOp<arith::ConstantIndexOp>()) 457 return cst.value() != 0; 458 return true; 459 })) { 460 LinalgTilingOptions unfusedTilingOptions = tilingOptions; 461 unfusedTilingOptions.setTileSizes(unfusedLoopTileSizes); 462 Optional<TiledLinalgOp> unfusedTiledOp = 463 tileLinalgOp(rewriter, tiledAndFusedOps->op, unfusedTilingOptions); 464 if (!unfusedTiledOp) 465 return failure(); 466 rewriter.replaceOp(tiledAndFusedOps->op, 467 getTiledOpResult(unfusedTiledOp.getValue())); 468 tiledAndFusedOps->op = unfusedTiledOp->op; 469 } 470 op->replaceAllUsesWith(getTiledAndFusedOpResult(tiledAndFusedOps.getValue())); 471 472 filter.replaceLinalgTransformationFilter(rewriter, 473 tiledAndFusedOps->op.getOperation()); 474 for (auto fusedOp : tiledAndFusedOps->fusedProducers) { 475 fusedOpMarker.replaceLinalgTransformationFilter(rewriter, 476 fusedOp.getOperation()); 477 } 478 for (auto origProducerOp : ArrayRef<LinalgOp>(fusionOps).drop_back()) { 479 originalOpMarker.replaceLinalgTransformationFilter( 480 rewriter, origProducerOp.getOperation()); 481 } 482 rewriter.updateRootInPlace(op, [&]() { 483 originalOpMarker.replaceLinalgTransformationFilter(rewriter, op); 484 }); 485 return success(); 486 } 487 488 /// Linalg padding pattern. 489 mlir::linalg::LinalgPaddingPattern::LinalgPaddingPattern( 490 MLIRContext *context, LinalgPaddingOptions options, 491 LinalgTransformationFilter filter, PatternBenefit benefit) 492 : OpInterfaceRewritePattern<LinalgOp>(context, benefit), 493 filter(std::move(filter)), options(std::move(options)) {} 494 495 mlir::linalg::LinalgPaddingPattern::LinalgPaddingPattern( 496 StringRef opName, MLIRContext *context, LinalgPaddingOptions options, 497 LinalgTransformationFilter filter, PatternBenefit benefit) 498 : OpInterfaceRewritePattern<LinalgOp>(context, benefit), 499 filter(std::move(filter)), options(std::move(options)) { 500 this->filter.addFilter([opName](Operation *op) { 501 return success(op->getName().getStringRef() == opName); 502 }); 503 } 504 505 LogicalResult mlir::linalg::LinalgPaddingPattern::matchAndRewrite( 506 LinalgOp linalgOp, PatternRewriter &rewriter) const { 507 if (!linalgOp.hasTensorSemantics()) 508 return failure(); 509 if (failed(filter.checkAndNotify(rewriter, linalgOp))) 510 return failure(); 511 512 // Pad the operation. 513 LinalgOp paddedOp; 514 FailureOr<SmallVector<Value>> newResults = rewriteAsPaddedOp( 515 rewriter, linalgOp, options.paddingValueComputationFunction, 516 options.paddingNoFoldComputationFunction, paddedOp); 517 if (failed(newResults)) 518 return failure(); 519 520 // Compute the desired hoisting depths. 521 SmallVector<int64_t> depths; 522 if (options.paddingHoistComputationFunction) { 523 for (OpOperand *opOperand : linalgOp.getInputAndOutputOperands()) 524 depths.push_back(options.paddingHoistComputationFunction(*opOperand)); 525 } 526 527 // Hoist the padding. 528 for (const auto &en : enumerate(depths)) { 529 OpOperand &opOperand = paddedOp->getOpOperand(en.index()); 530 auto padTensorOp = opOperand.get().getDefiningOp<PadTensorOp>(); 531 if (!padTensorOp || en.value() == 0) 532 continue; 533 PadTensorOp hoistedOp; 534 FailureOr<Value> newResult = 535 hoistPaddingOnTensors(padTensorOp, en.value(), hoistedOp); 536 if (failed(newResult)) 537 continue; 538 rewriter.replaceOp(padTensorOp, newResult.getValue()); 539 } 540 541 // Replace the original operation to pad. 542 rewriter.replaceOp(linalgOp, newResults.getValue()); 543 filter.replaceLinalgTransformationFilter(rewriter, paddedOp); 544 return success(); 545 } 546 547 /// Linalg tile and fuse tensor ops pattern. 548 mlir::linalg::LinalgTileAndFuseTensorOpsPattern:: 549 LinalgTileAndFuseTensorOpsPattern(MLIRContext *context, 550 LinalgTilingAndFusionOptions options, 551 LinalgTransformationFilter filter, 552 PatternBenefit benefit) 553 : RewritePattern(MatchAnyOpTypeTag(), benefit, context), 554 filter(std::move(filter)), options(std::move(options)) {} 555 556 mlir::linalg::LinalgTileAndFuseTensorOpsPattern:: 557 LinalgTileAndFuseTensorOpsPattern(StringRef opName, MLIRContext *context, 558 LinalgTilingAndFusionOptions options, 559 LinalgTransformationFilter filter, 560 PatternBenefit benefit) 561 : RewritePattern(opName, benefit, context), filter(std::move(filter)), 562 options(std::move(options)) {} 563 564 LogicalResult mlir::linalg::LinalgTileAndFuseTensorOpsPattern::matchAndRewrite( 565 Operation *op, PatternRewriter &rewriter) const { 566 LinalgOp rootOp = dyn_cast<LinalgOp>(op); 567 if (!rootOp) 568 return failure(); 569 if (failed(filter.checkAndNotify(rewriter, op))) 570 return failure(); 571 572 // Check `tileSizes` contains a tile size for every `rootOp` loop dimension. 573 if (options.tileSizes.size() < rootOp.getNumLoops()) 574 return rewriter.notifyMatchFailure(op, "expect #tile sizes >= #loops"); 575 576 // Check `tileInterchange` contains no entries or as many as `tileSizes`. 577 if (!options.tileInterchange.empty() && 578 options.tileInterchange.size() != options.tileSizes.size()) 579 return rewriter.notifyMatchFailure( 580 op, "expect the number of tile sizes and interchange dims to match"); 581 582 // Copy the `tileSizes` and `tileInterchange` prefixes needed for `rootOp`. 583 SmallVector<int64_t> rootTileSizes(options.tileSizes.begin(), 584 options.tileSizes.begin() + 585 rootOp.getNumLoops()); 586 SmallVector<int64_t> rootInterchange = 587 options.tileInterchange.empty() 588 ? llvm::to_vector<6>(llvm::seq<int64_t>(0, rootOp.getNumLoops())) 589 : SmallVector<int64_t>(options.tileInterchange.begin(), 590 options.tileInterchange.begin() + 591 rootOp.getNumLoops()); 592 593 // Check `rootInterchange` is a permutation of the `rootOp` loop dimensions. 594 // It has to be a permutation since the tiling cannot tile the same loop 595 // dimension multiple times. 596 if (!isPermutation(rootInterchange)) 597 return rewriter.notifyMatchFailure( 598 op, "expect the tile interchange permutes the root loops"); 599 600 // Tile `rootOp` and fuse its producers. 601 FailureOr<TileLoopNest> tileLoopNest = tileConsumerAndFuseProducers( 602 rewriter, rootOp, rootTileSizes, rootInterchange); 603 if (failed(tileLoopNest)) 604 return rewriter.notifyMatchFailure( 605 op, "tileConsumerAndFuseProducers failed unexpectedly"); 606 607 // Replace all uses of the tiled loop operation. 608 rootOp->replaceAllUsesWith(tileLoopNest->getRootOpReplacementResults()); 609 610 // Apply the filter if specified. 611 for (LinalgOp linalgOp : tileLoopNest->getAllTiledAndFusedOps()) 612 filter.replaceLinalgTransformationFilter(rewriter, linalgOp); 613 return failure(); 614 } 615 616 /// Linalg generic interchange pattern. 617 mlir::linalg::GenericOpInterchangePattern::GenericOpInterchangePattern( 618 MLIRContext *context, ArrayRef<unsigned> interchangeVector, 619 LinalgTransformationFilter filter, PatternBenefit benefit) 620 : OpRewritePattern(context, benefit), filter(std::move(filter)), 621 interchangeVector(interchangeVector.begin(), interchangeVector.end()) {} 622 623 LogicalResult mlir::linalg::GenericOpInterchangePattern::matchAndRewrite( 624 GenericOp genericOp, PatternRewriter &rewriter) const { 625 if (failed(filter.checkAndNotify(rewriter, genericOp))) 626 return failure(); 627 628 FailureOr<GenericOp> transformedOp = 629 interchangeGenericOp(rewriter, genericOp, interchangeVector); 630 if (failed(transformedOp)) 631 return failure(); 632 633 // New filter if specified. 634 filter.replaceLinalgTransformationFilter(rewriter, genericOp); 635 return success(); 636 } 637 638 /// Linalg generalization pattern. 639 mlir::linalg::LinalgGeneralizationPattern::LinalgGeneralizationPattern( 640 MLIRContext *context, LinalgTransformationFilter filter, 641 PatternBenefit benefit) 642 : RewritePattern(MatchAnyOpTypeTag(), benefit, context), 643 filter(std::move(filter)) {} 644 645 mlir::linalg::LinalgGeneralizationPattern::LinalgGeneralizationPattern( 646 StringRef opName, MLIRContext *context, LinalgTransformationFilter filter, 647 PatternBenefit benefit) 648 : RewritePattern(opName, benefit, context, {}), filter(std::move(filter)) {} 649 650 LogicalResult mlir::linalg::LinalgGeneralizationPattern::matchAndRewrite( 651 Operation *op, PatternRewriter &rewriter) const { 652 // TODO: Interface pattern. 653 LinalgOp linalgOp = dyn_cast<LinalgOp>(op); 654 if (!linalgOp) 655 return failure(); 656 if (failed(filter.checkAndNotify(rewriter, op))) 657 return failure(); 658 FailureOr<GenericOp> genericOp = generalizeNamedOp(rewriter, linalgOp); 659 if (failed(genericOp)) 660 return failure(); 661 filter.replaceLinalgTransformationFilter(rewriter, *genericOp); 662 return success(); 663 } 664 665 mlir::linalg::LinalgBasePromotionPattern::LinalgBasePromotionPattern( 666 MLIRContext *context, LinalgTransformationFilter filter, 667 LinalgPromotionOptions options, PatternBenefit benefit) 668 : RewritePattern(MatchAnyOpTypeTag(), benefit, context), 669 filter(std::move(filter)), options(std::move(options)) {} 670 671 mlir::linalg::LinalgBasePromotionPattern::LinalgBasePromotionPattern( 672 StringRef opName, MLIRContext *context, LinalgPromotionOptions options, 673 LinalgTransformationFilter filter, PatternBenefit benefit) 674 : RewritePattern(opName, benefit, context, {}), filter(std::move(filter)), 675 options(std::move(options)) {} 676 677 LogicalResult mlir::linalg::LinalgBasePromotionPattern::matchAndRewrite( 678 Operation *op, PatternRewriter &rewriter) const { 679 if (failed(filter.checkAndNotify(rewriter, op))) 680 return failure(); 681 if (failed(promoteSubviewsPrecondition(op, options))) 682 return failure(); 683 684 // TODO: We cannot use root update here. This pattern is creating other ops, 685 // so if the promotion fails, those need to be cleaned up, which doesnt seem 686 // to be happening here. So to fail properly, we should be cloning the op and 687 // deleting the previous op. This needs more investigation. 688 rewriter.startRootUpdate(op); 689 Optional<LinalgOp> promotedOp = promoteSubViews(rewriter, op, options); 690 if (!promotedOp) { 691 rewriter.cancelRootUpdate(op); 692 return op->emitError("subview promotion failed"); 693 } 694 rewriter.finalizeRootUpdate(op); 695 filter.replaceLinalgTransformationFilter(rewriter, op); 696 return success(); 697 } 698 699 mlir::linalg::LinalgBaseVectorizationPattern::LinalgBaseVectorizationPattern( 700 MLIRContext *context, LinalgTransformationFilter filter, 701 PatternBenefit benefit) 702 : RewritePattern(MatchAnyOpTypeTag(), benefit, context), 703 filter(std::move(filter)) {} 704 705 mlir::linalg::LinalgBaseVectorizationPattern::LinalgBaseVectorizationPattern( 706 StringRef opName, MLIRContext *context, LinalgTransformationFilter filter, 707 PatternBenefit benefit) 708 : RewritePattern(opName, benefit, context, {}), filter(std::move(filter)) {} 709 710 LogicalResult mlir::linalg::LinalgBaseVectorizationPattern::matchAndRewrite( 711 Operation *op, PatternRewriter &rewriter) const { 712 // TODO: Interface-based rewrite. 713 LinalgOp linalgOp = dyn_cast<LinalgOp>(op); 714 if (!linalgOp) 715 return failure(); 716 if (failed(filter.checkAndNotify(rewriter, op))) 717 return failure(); 718 return vectorize(rewriter, linalgOp); 719 } 720 721 LogicalResult mlir::linalg::applyStagedPatterns( 722 Operation *op, ArrayRef<FrozenRewritePatternSet> stage1Patterns, 723 const FrozenRewritePatternSet &stage2Patterns, 724 function_ref<LogicalResult(Operation *)> stage3Lambda) { 725 unsigned iteration = 0; 726 (void)iteration; 727 for (const auto &patterns : stage1Patterns) { 728 LLVM_DEBUG(DBGS() << "Before 1st stage, iter: " << ++iteration << "\n" 729 << *op); 730 if (failed(applyPatternsAndFoldGreedily(op, patterns))) { 731 LLVM_DEBUG(DBGS() << "Underlying first stage rewrite did not converge"); 732 return failure(); 733 } 734 LLVM_DEBUG(DBGS() << "After 1st stage, iter: " << ++iteration << "\n" 735 << *op); 736 if (failed(applyPatternsAndFoldGreedily(op, stage2Patterns))) { 737 LLVM_DEBUG(DBGS() << "Underlying 2nd stage rewrite did not converge"); 738 return failure(); 739 } 740 LLVM_DEBUG(DBGS() << "After 2nd stage, iter : " << iteration << "\n" 741 << *op); 742 if (stage3Lambda) { 743 if (failed(stage3Lambda(op))) 744 return failure(); 745 LLVM_DEBUG(DBGS() << "After 3rd stage, iter : " << iteration << "\n" 746 << *op); 747 } 748 } 749 return success(); 750 } 751 752 static SmallVector<StringRef> getNParallelLoopsAttrs(unsigned nParallelLoops) { 753 return SmallVector<StringRef>(nParallelLoops, getParallelIteratorTypeName()); 754 } 755 756 /// Rewrite a PadTensorOp into a sequence of InitTensorOp, FillOp (to 757 /// initialize with pad_val) and GenericOp (to copy contents). 758 LogicalResult PadTensorOpTransformationPattern::matchAndRewrite( 759 linalg::PadTensorOp padOp, PatternRewriter &rewriter) const { 760 761 auto inputShapedType = padOp.source().getType().cast<ShapedType>(); 762 auto resultShapedType = padOp.result().getType().cast<ShapedType>(); 763 764 // Bail on non-static shapes. 765 if (!inputShapedType.hasStaticShape()) 766 return failure(); 767 if (!resultShapedType.hasStaticShape()) 768 return failure(); 769 770 // Only support padding with a constant for now, i.e. either: 771 // 1. A BBarg from a different block. 772 // 2. A value defined outside of the current block. 773 Block &block = padOp.region().front(); 774 auto yieldOp = cast<YieldOp>(block.getTerminator()); 775 assert(yieldOp.getNumOperands() == 1 && "expected single operand yield"); 776 Value padValue = yieldOp.values().front(); 777 Operation *definingOp = padValue.getDefiningOp(); 778 if (definingOp && definingOp->getBlock() == &block) 779 return failure(); 780 if (!definingOp && padValue.cast<BlockArgument>().getOwner() == &block) 781 return failure(); 782 783 // Create tensor with the padded shape 784 Location loc = padOp.getLoc(); 785 SmallVector<Value> indices(resultShapedType.getRank(), 786 rewriter.create<arith::ConstantIndexOp>(loc, 0)); 787 Value initTensor = rewriter.create<InitTensorOp>( 788 loc, resultShapedType.getShape(), resultShapedType.getElementType()); 789 790 // Initialize tensor with the pad value 791 Value tmpTensor = 792 rewriter.create<linalg::FillOp>(loc, padValue, initTensor).result(); 793 794 // Copy original contents into new tensor 795 // Uses linalg.generic, but could be done with tensor.insert_slice 796 SmallVector<AffineExpr, 4> outputExprs; 797 for (unsigned i = 0; i < resultShapedType.getRank(); ++i) { 798 outputExprs.push_back(getAffineDimExpr(i, rewriter.getContext()) + 799 padOp.static_low()[i].cast<IntegerAttr>().getInt()); 800 } 801 802 SmallVector<AffineMap, 2> transferMaps = { 803 rewriter.getMultiDimIdentityMap(inputShapedType.getRank()), 804 AffineMap::get(resultShapedType.getRank(), 805 /*symbolCount=*/0, outputExprs, rewriter.getContext())}; 806 807 rewriter.replaceOpWithNewOp<linalg::GenericOp>( 808 padOp, resultShapedType, padOp.source(), tmpTensor, transferMaps, 809 getNParallelLoopsAttrs(resultShapedType.getRank()), 810 [&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange args) { 811 nestedBuilder.create<linalg::YieldOp>(nestedLoc, args[0]); 812 }); 813 814 return success(); 815 } 816 817 /// Filling `dest` using FillOp constant padding value if possible. 818 /// Otherwise, generate a tensor::GenerateOp. 819 Value GeneralizePadTensorOpPattern::createFillOrGenerateOp( 820 PatternRewriter &rewriter, PadTensorOp padOp, Value dest, 821 const SmallVector<Value> &dynSizes) const { 822 auto padValue = padOp.getConstantPaddingValue(); 823 if (padValue) 824 return rewriter.create<FillOp>(padOp.getLoc(), padValue, dest).result(); 825 826 // Fill could not be optimized: Lower to tensor::GenerateOp with region. 827 auto generateOp = rewriter.create<tensor::GenerateOp>( 828 padOp.getLoc(), padOp.getResultType(), dynSizes); 829 // Copy region to new op. 830 BlockAndValueMapping bvm; 831 padOp.region().cloneInto(&generateOp.getRegion(), bvm); 832 // Rewrite linalg::YieldOp to tensor::YieldOp. 833 OpBuilder::InsertionGuard guard(rewriter); 834 auto yieldOp = 835 dyn_cast<linalg::YieldOp>(generateOp.getRegion().front().getTerminator()); 836 assert(yieldOp && "malformed PadTensorOp: expected YieldOp terminator"); 837 assert(yieldOp.values().size() == 1); 838 rewriter.setInsertionPoint(yieldOp); 839 rewriter.replaceOpWithNewOp<tensor::YieldOp>(yieldOp, yieldOp.values()[0]); 840 return generateOp; 841 } 842 843 LogicalResult 844 GeneralizePadTensorOpPattern::matchAndRewrite(PadTensorOp padOp, 845 PatternRewriter &rewriter) const { 846 // Given an OpFoldResult, return an index-typed value. 847 auto getIdxValue = [&](OpFoldResult ofr) { 848 if (auto val = ofr.dyn_cast<Value>()) 849 return val; 850 return rewriter 851 .create<arith::ConstantIndexOp>( 852 padOp.getLoc(), ofr.get<Attribute>().cast<IntegerAttr>().getInt()) 853 .getResult(); 854 }; 855 856 auto resultType = padOp.getResultType(); 857 // Compute size of InitTensorOp. Any combination of static/dynamic is 858 // supported. 859 SmallVector<Value> dynSizes; 860 SmallVector<int64_t> staticSizes; 861 for (unsigned dim = 0; dim < resultType.getRank(); ++dim) { 862 if (resultType.isDynamicDim(dim)) { 863 auto srcSize = rewriter.createOrFold<tensor::DimOp>(padOp.getLoc(), 864 padOp.source(), dim); 865 // Add low and high padding value. 866 auto plusLow = rewriter.createOrFold<arith::AddIOp>( 867 padOp.getLoc(), srcSize, getIdxValue(padOp.getMixedLowPad()[dim])); 868 auto plusHigh = rewriter.createOrFold<arith::AddIOp>( 869 padOp.getLoc(), plusLow, getIdxValue(padOp.getMixedHighPad()[dim])); 870 dynSizes.push_back(plusHigh); 871 } 872 staticSizes.push_back(resultType.getDimSize(dim)); 873 } 874 875 // Init tensor and fill it with padding. 876 Value init = rewriter.create<InitTensorOp>( 877 padOp.getLoc(), dynSizes, staticSizes, resultType.getElementType()); 878 Value fill = createFillOrGenerateOp(rewriter, padOp, init, dynSizes); 879 880 // Try optimize the copy of source. 881 if (optimizeCopyFn && optimizeCopyFn(rewriter, padOp, fill).succeeded()) 882 return success(); 883 884 // PadTensorOps cannot be optimized. Generate a InsertSliceOp instead 885 // for copying the PadOp source. 886 auto sourceType = padOp.getSourceType(); 887 // Compute size of source of PadTensorOp. 888 SmallVector<OpFoldResult> srcSizes; 889 for (unsigned dim = 0; dim < sourceType.getRank(); ++dim) { 890 if (sourceType.isDynamicDim(dim)) { 891 srcSizes.push_back(rewriter.createOrFold<tensor::DimOp>( 892 padOp.getLoc(), padOp.source(), dim)); 893 } else { 894 srcSizes.push_back(rewriter.getIndexAttr(sourceType.getDimSize(dim))); 895 } 896 } 897 // Strides of InsertSliceOp are all 1. 898 SmallVector<OpFoldResult> strides(sourceType.getRank(), 899 rewriter.getIndexAttr(1)); 900 rewriter.replaceOpWithNewOp<tensor::InsertSliceOp>( 901 padOp, padOp.source(), fill, padOp.getMixedLowPad(), srcSizes, strides); 902 903 return success(); 904 } 905 906 LogicalResult ExtractSliceOfPadTensorSwapPattern::matchAndRewrite( 907 tensor::ExtractSliceOp sliceOp, PatternRewriter &rewriter) const { 908 auto padOp = sliceOp.source().getDefiningOp<PadTensorOp>(); 909 if (!padOp) 910 return failure(); 911 // Only unit stride supported. 912 if (!sliceOp.hasUnitStride()) 913 return failure(); 914 915 Operation *tiledPadOp = 916 padOp 917 .getTiledImplementation( 918 rewriter, /*dest=*/ValueRange{}, sliceOp.getMixedOffsets(), 919 sliceOp.getMixedSizes(), /*tileDestOperands=*/false) 920 .front(); 921 // All shapes are static and the data source is actually used. Rewrite into 922 // pad_tensor(subtensor(x)). 923 rewriter.replaceOp(sliceOp, tiledPadOp->getResults()); 924 return success(); 925 } 926 927 namespace { 928 // The following are patterns for downscaling convolution ops with size-1 929 // window dimensions. 930 // 931 // Note that we'd eventually want to write such transformations in a generic 932 // way, e.g., converting to linalg.generic, removing the size-1 dimensions, 933 // and then turning back to named ops. But for now it's fine to have a few 934 // patterns matching special ops to get started. 935 936 /// Rewrites 2-D convolution ops with size-1 window dimensions into 1-D 937 /// convolution ops. 938 struct DownscaleSizeOneWindowed2DConvolution final 939 : public OpRewritePattern<Conv2DNhwcHwcfOp> { 940 DownscaleSizeOneWindowed2DConvolution( 941 MLIRContext *context, 942 LinalgTransformationFilter filter = LinalgTransformationFilter(), 943 PatternBenefit benefit = 1) 944 : OpRewritePattern<Conv2DNhwcHwcfOp>(context, benefit), 945 filter(std::move(filter)) {} 946 947 LogicalResult matchAndRewrite(linalg::Conv2DNhwcHwcfOp convOp, 948 PatternRewriter &rewriter) const override { 949 if (failed(filter.checkAndNotify(rewriter, convOp))) 950 return failure(); 951 if (convOp.hasBufferSemantics()) 952 return failure(); // To be implemented 953 954 Value input = convOp.inputs().front(); 955 Value kernel = convOp.inputs().back(); 956 Value output = convOp.outputs().front(); 957 958 auto inputType = input.getType().dyn_cast<RankedTensorType>(); 959 auto kernelType = kernel.getType().dyn_cast<RankedTensorType>(); 960 auto outputType = output.getType().dyn_cast<RankedTensorType>(); 961 962 auto kernelShape = kernelType.getShape(); 963 auto outputShape = outputType.getShape(); 964 965 // Only handle the case where at least one of the window dimensions is 966 // of size 1. Other cases can rely on tiling to reduce to such cases. 967 int64_t khSize = kernelShape[0], kwSize = kernelShape[1]; 968 int64_t ohSize = outputShape[1], owSize = outputShape[2]; 969 bool removeH = (khSize == 1 && ohSize == 1); 970 bool removeW = (kwSize == 1 && owSize == 1); 971 if (!removeH && !removeW) 972 return failure(); 973 974 // Get new shapes and types for all operands by removing the size-1 975 // dimension. 976 using RTTBuilder = RankedTensorType::Builder; 977 RankedTensorType newInputType = 978 RTTBuilder(inputType).dropDim((removeH ? 1 : 2)); 979 RankedTensorType newKernelType = 980 RTTBuilder(kernelType).dropDim((removeH ? 0 : 1)); 981 RankedTensorType newOutputType = 982 RTTBuilder(outputType).dropDim(removeH ? 1 : 2); 983 984 // Rank-reduce operands. 985 Location loc = convOp.getLoc(); 986 Value newInput = tensor::createCanonicalRankReducingExtractSliceOp( 987 rewriter, loc, input, newInputType); 988 Value newKernel = tensor::createCanonicalRankReducingExtractSliceOp( 989 rewriter, loc, kernel, newKernelType); 990 Value newOutput = tensor::createCanonicalRankReducingExtractSliceOp( 991 rewriter, loc, output, newOutputType); 992 993 // Rank-reduce strides and dilations too. 994 // TODO: dropDim 1-liner helper. 995 auto strides = llvm::to_vector<4>(convOp.strides().getValues<int64_t>()); 996 strides.erase(strides.begin() + (removeH ? 0 : 1)); 997 auto stridesAttr = rewriter.getI64VectorAttr(strides); 998 999 auto dilations = 1000 llvm::to_vector<4>(convOp.dilations().getValues<int64_t>()); 1001 dilations.erase(dilations.begin() + (removeH ? 0 : 1)); 1002 auto dilationsAttr = rewriter.getI64VectorAttr(dilations); 1003 1004 auto conv1DOp = rewriter.create<linalg::Conv1DNwcWcfOp>( 1005 loc, newOutputType, ValueRange{newInput, newKernel}, 1006 ValueRange{newOutput}, stridesAttr, dilationsAttr); 1007 1008 // Insert back. 1009 Value inserted = tensor::createCanonicalRankReducingInsertSliceOp( 1010 rewriter, loc, conv1DOp.getResult(0), output); 1011 rewriter.replaceOp(convOp, inserted); 1012 1013 filter.replaceLinalgTransformationFilter(rewriter, conv1DOp); 1014 return success(); 1015 }; 1016 1017 private: 1018 /// LinalgTransformMarker handles special attribute manipulations. 1019 LinalgTransformationFilter filter; 1020 }; 1021 1022 /// Rewrites 2-D depthwise convolution ops with size-1 (w, kw) or (h, kh) 1023 /// dimensions into 1-D depthwise convolution ops. 1024 struct DownscaleDepthwiseConv2DNhwcHwcOp final 1025 : public OpRewritePattern<DepthwiseConv2DNhwcHwcOp> { 1026 DownscaleDepthwiseConv2DNhwcHwcOp( 1027 MLIRContext *context, 1028 LinalgTransformationFilter filter = LinalgTransformationFilter(), 1029 PatternBenefit benefit = 1) 1030 : OpRewritePattern<DepthwiseConv2DNhwcHwcOp>(context, benefit), 1031 filter(std::move(filter)) {} 1032 1033 LogicalResult matchAndRewrite(DepthwiseConv2DNhwcHwcOp convOp, 1034 PatternRewriter &rewriter) const override { 1035 if (failed(filter.checkAndNotify(rewriter, convOp))) 1036 return failure(); 1037 if (convOp.hasBufferSemantics()) 1038 return failure(); // To be implemented 1039 1040 Value input = convOp.inputs().front(); 1041 Value kernel = convOp.inputs().back(); 1042 Value output = convOp.outputs().front(); 1043 1044 auto inputType = input.getType().dyn_cast<RankedTensorType>(); 1045 auto kernelType = kernel.getType().dyn_cast<RankedTensorType>(); 1046 auto outputType = output.getType().dyn_cast<RankedTensorType>(); 1047 1048 auto kernelShape = kernelType.getShape(); 1049 auto outputShape = outputType.getShape(); 1050 1051 // Only handle the case where at least one of the window dimensions is 1052 // of size 1. Other cases can rely on tiling to reduce to such cases. 1053 int64_t khSize = kernelShape[0], kwSize = kernelShape[1]; 1054 int64_t ohSize = outputShape[1], owSize = outputShape[2]; 1055 bool removeH = (khSize == 1 && ohSize == 1); 1056 bool removeW = (kwSize == 1 && owSize == 1); 1057 if (!removeH && !removeW) 1058 return failure(); 1059 1060 // Get new shapes and types for all operands by removing the size-1 1061 // dimension. 1062 using RTTBuilder = RankedTensorType::Builder; 1063 RankedTensorType newInputType = 1064 RTTBuilder(inputType).dropDim((removeH ? 1 : 2)); 1065 RankedTensorType newKernelType = 1066 RTTBuilder(kernelType).dropDim((removeH ? 0 : 1)); 1067 RankedTensorType newOutputType = 1068 RTTBuilder(outputType).dropDim(removeH ? 1 : 2); 1069 1070 // Rank-reduce operands. 1071 Location loc = convOp.getLoc(); 1072 Value newInput = tensor::createCanonicalRankReducingExtractSliceOp( 1073 rewriter, loc, input, newInputType); 1074 Value newKernel = tensor::createCanonicalRankReducingExtractSliceOp( 1075 rewriter, loc, kernel, newKernelType); 1076 Value newOutput = tensor::createCanonicalRankReducingExtractSliceOp( 1077 rewriter, loc, output, newOutputType); 1078 1079 // Rank-reduce strides and dilations too. 1080 // TODO: dropDim 1-liner helper. 1081 auto strides = llvm::to_vector<4>(convOp.strides().getValues<int64_t>()); 1082 strides.erase(strides.begin() + (removeH ? 0 : 1)); 1083 auto stridesAttr = rewriter.getI64VectorAttr(strides); 1084 1085 auto dilations = 1086 llvm::to_vector<4>(convOp.dilations().getValues<int64_t>()); 1087 dilations.erase(dilations.begin() + (removeH ? 0 : 1)); 1088 auto dilationsAttr = rewriter.getI64VectorAttr(dilations); 1089 1090 auto conv1DOp = rewriter.create<DepthwiseConv1DNwcWcOp>( 1091 loc, newOutputType, ValueRange{newInput, newKernel}, 1092 ValueRange{newOutput}, stridesAttr, dilationsAttr); 1093 1094 // Insert back. 1095 Value inserted = tensor::createCanonicalRankReducingInsertSliceOp( 1096 rewriter, loc, conv1DOp.getResult(0), output); 1097 rewriter.replaceOp(convOp, inserted); 1098 1099 filter.replaceLinalgTransformationFilter(rewriter, conv1DOp); 1100 return success(); 1101 }; 1102 1103 private: 1104 /// LinalgTransformMarker handles special attribute manipulations. 1105 LinalgTransformationFilter filter; 1106 }; 1107 1108 } // namespace 1109 1110 void linalg::populateDecomposeConvolutionPatterns( 1111 RewritePatternSet &patterns, const LinalgTransformationFilter &filter, 1112 PatternBenefit benefit) { 1113 patterns.add<DownscaleSizeOneWindowed2DConvolution, 1114 DownscaleDepthwiseConv2DNhwcHwcOp>(patterns.getContext(), filter, 1115 benefit); 1116 } 1117