1 //===- LinalgTransforms.cpp - Linalg transformations as patterns ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements logic and helpers to expose Linalg transforms as rewrite 10 // patterns. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 15 #include "mlir/Dialect/Affine/Utils.h" 16 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" 17 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 18 #include "mlir/Dialect/Linalg/Utils/Utils.h" 19 #include "mlir/Dialect/Tensor/IR/Tensor.h" 20 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 21 #include "mlir/Dialect/Vector/VectorOps.h" 22 #include "mlir/IR/AffineExpr.h" 23 #include "mlir/IR/Matchers.h" 24 #include "mlir/Pass/Pass.h" 25 #include "mlir/Support/LLVM.h" 26 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 27 #include "llvm/ADT/ScopeExit.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include <type_traits> 31 32 #define DEBUG_TYPE "linalg-transforms" 33 34 using namespace mlir; 35 using namespace mlir::linalg; 36 37 #define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE << "]: ") 38 39 //===----------------------------------------------------------------------===// 40 // Transformations exposed as rewrite patterns. 41 //===----------------------------------------------------------------------===// 42 // Marker used as attribute name in generated Linalg rewriting transformations. 43 const StringLiteral mlir::linalg::LinalgTransforms::kLinalgTransformMarker = 44 "__internal_linalg_transform__"; 45 46 mlir::linalg::LinalgTransformationFilter::LinalgTransformationFilter( 47 ArrayRef<Identifier> matchDisjunction, Optional<Identifier> replacement) 48 : matchDisjunction(matchDisjunction.begin(), matchDisjunction.end()), 49 replacement(replacement) {} 50 51 mlir::linalg::LinalgTransformationFilter::LinalgTransformationFilter( 52 FilterFunction f, ArrayRef<Identifier> matchDisjunction, 53 Optional<Identifier> replacement) 54 : filters(), 55 matchDisjunction(matchDisjunction.begin(), matchDisjunction.end()), 56 replacement(replacement) { 57 if (f) 58 filters.push_back(f); 59 } 60 61 LogicalResult mlir::linalg::LinalgTransformationFilter::checkAndNotify( 62 PatternRewriter &rewriter, Operation *op) const { 63 if (llvm::any_of(filters, 64 [&](const FilterFunction &f) { return failed(f(op)); })) 65 return failure(); 66 67 auto attr = op->template getAttrOfType<StringAttr>( 68 LinalgTransforms::kLinalgTransformMarker); 69 70 if (!attr) { 71 // 1. Has no filter case and matchDisjunction is empty. 72 if (matchDisjunction.empty()) 73 return success(); 74 75 // 2. Has no filter but was expecting a filter. 76 return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) { 77 diag << " does not have any filter from list: "; 78 interleaveComma(matchDisjunction, diag); 79 }); 80 } 81 82 // 4. Match explicit filter. 83 for (auto filter : matchDisjunction) 84 if (attr.getValue() == filter) 85 return success(); 86 87 // 5. Fail to match. 88 return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) { 89 diag << " does not have any filter from list: "; 90 interleaveComma(matchDisjunction, diag); 91 }); 92 } 93 94 void mlir::linalg::LinalgTransformationFilter:: 95 replaceLinalgTransformationFilter(PatternRewriter &rewriter, 96 Operation *op) const { 97 if (replacement.hasValue()) 98 op->setAttr(LinalgTransforms::kLinalgTransformMarker, 99 rewriter.getStringAttr(replacement.getValue().strref())); 100 else 101 op->removeAttr(Identifier::get(LinalgTransforms::kLinalgTransformMarker, 102 rewriter.getContext())); 103 } 104 105 LinalgTilingOptions & 106 mlir::linalg::LinalgTilingOptions::setTileSizes(ArrayRef<int64_t> ts) { 107 SmallVector<int64_t, 4> tileSizes(ts.begin(), ts.end()); 108 tileSizeComputationFunction = [tileSizes](OpBuilder &b, Operation *op) { 109 OpBuilder::InsertionGuard guard(b); 110 b.setInsertionPointToStart( 111 &op->getParentOfType<FuncOp>().getBody().front()); 112 return llvm::to_vector<4>(map_range(tileSizes, [&](int64_t s) { 113 Value v = b.create<ConstantIndexOp>(op->getLoc(), s); 114 return v; 115 })); 116 }; 117 return *this; 118 } 119 120 /// Try to compute a static bounding box for `operand` 121 /// Return success if either: 122 /// 1. The operand is already statically shaped, `result` is left unchanged. 123 /// 2. The operand is (partially) dynamic, `result` is the result of a freshly 124 /// created PadTensorOp. 125 /// Return failure if the operand cannot be padded to a static shape. 126 static LogicalResult padOperandToSmallestStaticBoundingBox( 127 PatternRewriter &rewriter, linalg::LinalgOp opToPad, OpOperand *opOperand, 128 const LinalgTilingOptions &options, Value &result) { 129 // Already static shape, no need to pad. 130 if (llvm::none_of(opToPad.getShape(opOperand), ShapedType::isDynamic)) 131 return success(); 132 auto sliceOp = opOperand->get().getDefiningOp<tensor::ExtractSliceOp>(); 133 // Not a slice op, cannot construct a static bounding box. 134 if (!sliceOp) 135 return failure(); 136 SmallVector<int64_t> staticSizes; 137 staticSizes.reserve(opToPad.getRank(opOperand)); 138 auto shapedOp = cast<OffsetSizeAndStrideOpInterface>(sliceOp.getOperation()); 139 for (auto size : shapedOp.getMixedSizes()) { 140 auto indexAttr = size.is<Attribute>() 141 ? size.get<Attribute>().dyn_cast<IntegerAttr>() 142 : linalg::getSmallestBoundingIndex(size.get<Value>()); 143 // SmallestBoundingIndex must exist for all sizes. 144 // For now return an error if we can't find it. 145 if (!indexAttr) 146 return rewriter.notifyMatchFailure( 147 opToPad, "No constant bounding box can be found for padding"); 148 staticSizes.push_back(indexAttr.getInt()); 149 } 150 Value pad = options.paddingValueComputationFunction(rewriter, *opOperand); 151 auto staticTensorType = RankedTensorType::get( 152 staticSizes, getElementTypeOrSelf(opOperand->get())); 153 result = linalg::PadTensorOp::createPadHighOp( 154 staticTensorType, opOperand->get(), pad, opToPad->getLoc(), rewriter); 155 return success(); 156 } 157 158 // Try to create a static bounding box around each operand of `res.op`. 159 // If successful, `res.op` is rewritten in static form with padded operands. 160 // `res.op` is updated to the cloned static form of the op on success. 161 static LogicalResult rewriteAsPaddedOp(PatternRewriter &rewriter, 162 TiledLinalgOp &res, 163 const LinalgTilingOptions &options) { 164 LinalgOp opToPad = res.op; 165 Location loc = opToPad->getLoc(); 166 167 // If the op is fully static, it does not need padding. 168 // TODO: there are cases where we may still want to pad to larger sizes. 169 assert(opToPad.hasTensorSemantics() && 170 "expected operation to have tensor semantics"); 171 if (!opToPad.hasDynamicShape()) 172 return success(); 173 174 OpBuilder::InsertionGuard g(rewriter); 175 // Set IP after op because we also take the dims of the original output. 176 rewriter.setInsertionPointAfter(opToPad); 177 // Make a copy of the shaped operands and update it. 178 SmallVector<Value> newOperands; 179 newOperands.reserve(opToPad.getNumInputsAndOutputs()); 180 for (OpOperand *opOperand : opToPad.getInputAndOutputOperands()) { 181 Value paddedOperand; 182 // If padding was requested but the shape cannot be bounded statically then 183 // the pattern fails to apply. 184 if (failed(padOperandToSmallestStaticBoundingBox( 185 rewriter, opToPad, opOperand, options, paddedOperand))) 186 return failure(); 187 newOperands.push_back(paddedOperand ? paddedOperand : opOperand->get()); 188 } 189 190 // Clone `opToPad` to operate on the statically padded shapes. 191 auto resultTensorTypes = 192 ValueRange(newOperands).take_back(opToPad.getNumOutputs()).getTypes(); 193 ValueRange otherOperands = opToPad.getAssumedNonShapedOperands(); 194 newOperands.append(otherOperands.begin(), otherOperands.end()); 195 linalg::LinalgOp paddedOp = 196 opToPad.clone(rewriter, loc, resultTensorTypes, newOperands); 197 198 // Recover the slice out of the new static results. This keeps the original 199 // linalg op around because it uses the dims of the original results. 200 // This later folds away. 201 SmallVector<Value> paddedSubviewResults; 202 paddedSubviewResults.reserve(opToPad->getNumResults()); 203 SetVector<Operation *> newUsersOfOpToPad; 204 for (auto it : llvm::zip(opToPad->getResults(), paddedOp->getResults())) { 205 auto rank = std::get<0>(it).getType().cast<RankedTensorType>().getRank(); 206 SmallVector<OpFoldResult> offsets(rank, rewriter.getIndexAttr(0)); 207 auto sizes = llvm::to_vector<4>(llvm::map_range( 208 llvm::seq<unsigned>(0, rank), [&](unsigned d) -> OpFoldResult { 209 auto dimOp = rewriter.create<memref::DimOp>(loc, std::get<0>(it), d); 210 newUsersOfOpToPad.insert(dimOp); 211 return dimOp.getResult(); 212 })); 213 SmallVector<OpFoldResult> strides(rank, rewriter.getIndexAttr(1)); 214 paddedSubviewResults.push_back(rewriter.create<tensor::ExtractSliceOp>( 215 loc, std::get<1>(it), offsets, sizes, strides)); 216 } 217 // Replace the transient `opToPad` locally, except for uses that we just 218 // created for the purpose of extracting the dims. 219 rewriter.replaceOpWithIf(opToPad, paddedSubviewResults, [&](OpOperand &opOp) { 220 return !newUsersOfOpToPad.contains(opOp.getOwner()); 221 }); 222 223 res = TiledLinalgOp{paddedOp, res.loops, res.tensorResults}; 224 return success(); 225 } 226 227 /// Linalg base tiling pattern. 228 mlir::linalg::LinalgBaseTilingPattern::LinalgBaseTilingPattern( 229 StringRef opName, MLIRContext *context, LinalgTilingOptions options, 230 LinalgTransformationFilter filter, PatternBenefit benefit) 231 : RewritePattern(opName, benefit, context), filter(filter), 232 options(options) {} 233 234 mlir::linalg::LinalgBaseTilingPattern::LinalgBaseTilingPattern( 235 MLIRContext *context, LinalgTilingOptions options, 236 LinalgTransformationFilter filter, PatternBenefit benefit) 237 : RewritePattern(MatchAnyOpTypeTag(), benefit, context), filter(filter), 238 options(options) {} 239 240 LogicalResult mlir::linalg::LinalgBaseTilingPattern::matchAndRewriteBase( 241 Operation *op, PatternRewriter &rewriter, TiledLinalgOp &result) const { 242 LinalgOp linalgOp = dyn_cast<LinalgOp>(op); 243 if (!linalgOp) 244 return failure(); 245 if (failed(filter.checkAndNotify(rewriter, linalgOp))) 246 return failure(); 247 248 Optional<TiledLinalgOp> res = tileLinalgOp(rewriter, linalgOp, options); 249 250 if (!res) 251 return failure(); 252 253 // Setup RAII guard to return properly. 254 LinalgOp tiledOp = res->op; 255 auto guard = llvm::make_scope_exit([&]() { 256 // Return relevant information to derived pattern. 257 result = *res; 258 // Replace filter on both tiledOp and tiledAndPaddedOp, if necessary. 259 filter.replaceLinalgTransformationFilter(rewriter, tiledOp); 260 if (tiledOp != res->op) 261 filter.replaceLinalgTransformationFilter(rewriter, res->op); 262 }); 263 264 // Consider padding on the fly only if the op has tensor semantics. 265 if (!options.paddingValueComputationFunction || 266 !linalgOp.hasTensorSemantics()) 267 return success(); 268 269 // Try to pad on the fly by rewriting res->op as a padded op. 270 if (failed(rewriteAsPaddedOp(rewriter, *res, options))) { 271 // Set so RAII guard does not propagate TiledLinalgOp to `result`. 272 return failure(); 273 } 274 275 // Do not perform replacement of `linalgOp`, let the derived patterns 276 // do this as they see fit, from the resulting TiledLinalgOp. 277 return success(); 278 } 279 280 static ValueRange getTiledOpResult(TiledLinalgOp tiledOp) { 281 if (tiledOp.loops.empty()) 282 return tiledOp.op.getOperation()->getResults(); 283 return tiledOp.loops.front()->getResults(); 284 } 285 286 static ValueRange 287 getTiledAndFusedOpResult(TiledAndFusedLinalgOps tiledAndFusedOp) { 288 if (tiledAndFusedOp.fusedLoops.empty()) 289 return tiledAndFusedOp.op.getOperation()->getResults(); 290 return tiledAndFusedOp.fusedLoops.front()->getResults(); 291 } 292 293 mlir::linalg::LinalgBaseTileAndFusePattern::LinalgBaseTileAndFusePattern( 294 StringRef opName, MLIRContext *context, 295 const LinalgDependenceGraph &dependenceGraph, 296 LinalgTilingOptions tilingOptions, LinalgFusionOptions fusionOptions, 297 LinalgTransformationFilter filter, LinalgTransformationFilter fusedOpMarker, 298 LinalgTransformationFilter originalOpMarker, PatternBenefit benefit) 299 : RewritePattern(opName, benefit, context, {}), 300 dependenceGraph(dependenceGraph), tilingOptions(tilingOptions), 301 fusionOptions(fusionOptions), filter(filter), 302 fusedOpMarker(fusedOpMarker), originalOpMarker(originalOpMarker) {} 303 304 LogicalResult mlir::linalg::LinalgBaseTileAndFusePattern::matchAndRewrite( 305 Operation *op, PatternRewriter &rewriter) const { 306 LinalgOp linalgOp = dyn_cast<LinalgOp>(op); 307 // TODO: remove hasIndexSemantics check once index ops are supported. 308 if (!linalgOp || linalgOp.hasIndexSemantics()) 309 return failure(); 310 if (failed(filter.checkAndNotify(rewriter, linalgOp))) 311 return failure(); 312 313 DenseSet<Operation *> producers; 314 producers.insert(linalgOp); 315 for (auto dependence : dependenceGraph.getDependentOperationsInto(linalgOp)) { 316 Optional<unsigned> operandNumber = dependence.getIndexingOpViewOperandNum(); 317 // When looking at dependences into, indexingOp is always OpOperand. We 318 // could assert, but continue if this is not the case. 319 if (!operandNumber) 320 continue; 321 if (!fusionOptions.indicesToFuse.count(operandNumber.getValue())) 322 continue; 323 if (isa<LinalgOp>(dependence.getDependentOp())) 324 producers.insert(dependence.getDependentOp()); 325 } 326 327 SmallVector<LinalgOp, 1> fusionOps; 328 for (auto it = op->getBlock()->begin(), ie = Block::iterator(op); it != ie; 329 ++it) { 330 auto producerLinalgOp = dyn_cast<LinalgOp>(&(*it)); 331 if (producerLinalgOp && producers.count(producerLinalgOp)) 332 fusionOps.push_back(producerLinalgOp); 333 } 334 fusionOps.push_back(linalgOp); 335 336 SmallVector<Value, 4> tileSizes = 337 tilingOptions.tileSizeComputationFunction(rewriter, op); 338 LinalgTilingOptions instanceTilingOptions = tilingOptions; 339 instanceTilingOptions.setTileSizes(tileSizes); 340 Optional<TiledAndFusedLinalgOps> tiledAndFusedOps = tileAndFuseLinalgOps( 341 rewriter, fusionOps, dependenceGraph, instanceTilingOptions); 342 if (!tiledAndFusedOps) 343 return failure(); 344 345 // Tile the unfused loops; 346 SmallVector<Value, 4> unfusedLoopTileSizes; 347 Value zero = rewriter.create<ConstantIndexOp>(op->getLoc(), 0); 348 for (auto tileSize : enumerate(tileSizes)) { 349 if (tiledAndFusedOps->fusedLoopDims.count(tileSize.index())) 350 unfusedLoopTileSizes.push_back(zero); 351 else 352 unfusedLoopTileSizes.push_back(tileSize.value()); 353 } 354 // Tile the loop only if there is a non-zero tile size. 355 if (unfusedLoopTileSizes.size() > linalgOp.getNumLoops()) 356 unfusedLoopTileSizes.resize(linalgOp.getNumLoops()); 357 if (llvm::any_of(unfusedLoopTileSizes, [](Value val) { 358 if (auto cst = val.getDefiningOp<ConstantIndexOp>()) 359 return cst.getValue() != 0; 360 return true; 361 })) { 362 LinalgTilingOptions unfusedTilingOptions = tilingOptions; 363 unfusedTilingOptions.setTileSizes(unfusedLoopTileSizes); 364 Optional<TiledLinalgOp> unfusedTiledOp = 365 tileLinalgOp(rewriter, tiledAndFusedOps->op, unfusedTilingOptions); 366 if (!unfusedTiledOp) 367 return failure(); 368 rewriter.replaceOp(tiledAndFusedOps->op, 369 getTiledOpResult(unfusedTiledOp.getValue())); 370 tiledAndFusedOps->op = unfusedTiledOp->op; 371 } 372 op->replaceAllUsesWith(getTiledAndFusedOpResult(tiledAndFusedOps.getValue())); 373 374 filter.replaceLinalgTransformationFilter(rewriter, 375 tiledAndFusedOps->op.getOperation()); 376 for (auto fusedOp : tiledAndFusedOps->fusedProducers) { 377 fusedOpMarker.replaceLinalgTransformationFilter(rewriter, 378 fusedOp.getOperation()); 379 } 380 for (auto origProducerOp : ArrayRef<LinalgOp>(fusionOps).drop_back()) { 381 originalOpMarker.replaceLinalgTransformationFilter( 382 rewriter, origProducerOp.getOperation()); 383 } 384 rewriter.updateRootInPlace(op, [&]() { 385 originalOpMarker.replaceLinalgTransformationFilter(rewriter, op); 386 }); 387 return success(); 388 } 389 390 /// Linalg generic interchange pattern. 391 mlir::linalg::GenericOpInterchangePattern::GenericOpInterchangePattern( 392 MLIRContext *context, ArrayRef<unsigned> interchangeVector, 393 LinalgTransformationFilter filter, PatternBenefit benefit) 394 : OpRewritePattern(context, benefit), filter(filter), 395 interchangeVector(interchangeVector.begin(), interchangeVector.end()) {} 396 397 LogicalResult mlir::linalg::GenericOpInterchangePattern::matchAndRewrite( 398 GenericOp genericOp, PatternRewriter &rewriter) const { 399 if (failed(filter.checkAndNotify(rewriter, genericOp))) 400 return failure(); 401 if (failed(interchangeGenericOpPrecondition(genericOp, interchangeVector))) 402 return failure(); 403 404 // TODO: figure out how this interplays with named ops. In particular this 405 // should break the named op property. 406 rewriter.updateRootInPlace(genericOp, [&]() { 407 interchangeGenericOp(rewriter, genericOp, interchangeVector); 408 // New filter if specified. 409 filter.replaceLinalgTransformationFilter(rewriter, genericOp); 410 }); 411 return success(); 412 } 413 414 mlir::linalg::LinalgBasePromotionPattern::LinalgBasePromotionPattern( 415 StringRef opName, MLIRContext *context, LinalgPromotionOptions options, 416 LinalgTransformationFilter filter, PatternBenefit benefit) 417 : RewritePattern(opName, benefit, context, {}), filter(filter), 418 options(options) {} 419 420 LogicalResult mlir::linalg::LinalgBasePromotionPattern::matchAndRewrite( 421 Operation *op, PatternRewriter &rewriter) const { 422 if (failed(filter.checkAndNotify(rewriter, op))) 423 return failure(); 424 if (failed(promoteSubviewsPrecondition(op, options))) 425 return failure(); 426 427 // TODO: We cannot use root update here. This pattern is creating other ops, 428 // so if the promotion fails, those need to be cleaned up, which doesnt seem 429 // to be happening here. So to fail properly, we should be cloning the op and 430 // deleting the previous op. This needs more investigation. 431 rewriter.startRootUpdate(op); 432 Optional<LinalgOp> promotedOp = promoteSubViews(rewriter, op, options); 433 if (!promotedOp) { 434 rewriter.cancelRootUpdate(op); 435 return op->emitError("subview promotion failed"); 436 } 437 rewriter.finalizeRootUpdate(op); 438 filter.replaceLinalgTransformationFilter(rewriter, op); 439 return success(); 440 } 441 442 mlir::linalg::LinalgBaseVectorizationPattern::LinalgBaseVectorizationPattern( 443 MLIRContext *context, LinalgTransformationFilter filter, 444 PatternBenefit benefit) 445 : RewritePattern(MatchAnyOpTypeTag(), benefit, context), filter(filter) {} 446 447 mlir::linalg::LinalgBaseVectorizationPattern::LinalgBaseVectorizationPattern( 448 StringRef opName, MLIRContext *context, LinalgTransformationFilter filter, 449 PatternBenefit benefit) 450 : RewritePattern(opName, benefit, context, {}), filter(filter) {} 451 452 LogicalResult mlir::linalg::LinalgBaseVectorizationPattern::matchAndRewrite( 453 Operation *op, PatternRewriter &rewriter) const { 454 LinalgOp linalgOp = dyn_cast<LinalgOp>(op); 455 if (!linalgOp) 456 return failure(); 457 if (failed(filter.checkAndNotify(rewriter, linalgOp))) 458 return failure(); 459 SmallVector<Value> newResults; 460 if (failed(vectorizeLinalgOp(rewriter, op, newResults))) 461 return failure(); 462 if (!newResults.empty()) 463 rewriter.replaceOp(op, newResults); 464 else 465 rewriter.eraseOp(op); 466 return success(); 467 } 468 469 LogicalResult mlir::linalg::applyStagedPatterns( 470 Operation *op, ArrayRef<FrozenRewritePatternSet> stage1Patterns, 471 const FrozenRewritePatternSet &stage2Patterns, 472 function_ref<LogicalResult(Operation *)> stage3Lambda) { 473 unsigned iteration = 0; 474 (void)iteration; 475 for (const auto &patterns : stage1Patterns) { 476 LLVM_DEBUG(DBGS() << "Before 1st stage, iter: " << ++iteration << "\n" 477 << *op); 478 if (failed(applyPatternsAndFoldGreedily(op, patterns))) { 479 LLVM_DEBUG(DBGS() << "Underlying first stage rewrite did not converge"); 480 return failure(); 481 } 482 LLVM_DEBUG(DBGS() << "After 1st stage, iter: " << ++iteration << "\n" 483 << *op); 484 if (failed(applyPatternsAndFoldGreedily(op, stage2Patterns))) { 485 LLVM_DEBUG(DBGS() << "Underlying 2nd stage rewrite did not converge"); 486 return failure(); 487 } 488 LLVM_DEBUG(DBGS() << "After 2nd stage, iter : " << iteration << "\n" 489 << *op); 490 if (stage3Lambda) { 491 if (failed(stage3Lambda(op))) 492 return failure(); 493 LLVM_DEBUG(DBGS() << "After 3rd stage, iter : " << iteration << "\n" 494 << *op); 495 } 496 } 497 return success(); 498 } 499 500 /// Traverse the `dims` and substitute known min or max expressions returned by 501 /// the lambda |getMinMaxExpr|. 502 static AffineMap substitute(AffineMap map, SmallVectorImpl<Value> &dims, 503 SmallVectorImpl<Value> &symbols, 504 GetMinMaxExprFn getMinMaxExpr) { 505 auto exprs = llvm::to_vector<4>(map.getResults()); 506 for (AffineExpr &expr : exprs) { 507 bool substituted = true; 508 while (substituted) { 509 substituted = false; 510 for (unsigned dimIdx = 0; dimIdx < dims.size(); ++dimIdx) { 511 Value dim = dims[dimIdx]; 512 auto minMax = getMinMaxExpr(dim, dims, symbols); 513 if (!minMax) 514 continue; 515 AffineExpr dimExpr = getAffineDimExpr(dimIdx, expr.getContext()); 516 LLVM_DEBUG(DBGS() << "Subst: " << dim << " @ " << dimExpr << "\n"); 517 LLVM_DEBUG(DBGS() << "Before: " << expr << "\n"); 518 // Substitute occurrences of `dimExpr` by either the min expression or 519 // the max expression depending on whether the value is used with a 520 // positive or negative coefficient. 521 AffineExpr substitutedExpr = 522 substWithMin(expr, dimExpr, minMax->first, minMax->second); 523 LLVM_DEBUG(DBGS() << "After: " << substitutedExpr << "\n"); 524 substituted = (substitutedExpr != expr); 525 expr = substitutedExpr; 526 } 527 } 528 529 // Cleanup and simplify the results. 530 // This needs to happen outside of the loop iterating on dims.size() since 531 // it modifies dims. 532 SmallVector<Value, 4> operands(dims.begin(), dims.end()); 533 operands.append(symbols.begin(), symbols.end()); 534 auto map = AffineMap::get(dims.size(), symbols.size(), exprs, 535 exprs.front().getContext()); 536 537 LLVM_DEBUG({ 538 DBGS() << "Map to simplify: " << map << "\n"; 539 DBGS() << "Operands:\n"; 540 for (Value v : operands) 541 DBGS() << v << "\n"; 542 }); 543 544 // Pull in affine.apply operations and compose them fully into the 545 // result. 546 fullyComposeAffineMapAndOperands(&map, &operands); 547 canonicalizeMapAndOperands(&map, &operands); 548 map = simplifyAffineMap(map); 549 // Assign the results. 550 exprs.assign(map.getResults().begin(), map.getResults().end()); 551 dims.assign(operands.begin(), operands.begin() + map.getNumDims()); 552 symbols.assign(operands.begin() + map.getNumDims(), operands.end()); 553 554 LLVM_DEBUG(DBGS() << "Map simplified: " << map << "\n"); 555 } 556 557 assert(!exprs.empty() && "Unexpected empty exprs"); 558 return AffineMap::get(dims.size(), symbols.size(), exprs, map.getContext()); 559 } 560 561 /// Traverse the dims of the AffineMap of `affineMinOp` and substitute 562 /// dimensions with known range by new expressions involving the min or max 563 /// expression: 564 /// - If the AffineDimExpr mapped to a known value has a positive sign, it 565 /// is replaced by the min expression. 566 /// - If the AffineDimExpr mapped to a known value has a negative sign, it is 567 /// replaced by the max expression. 568 /// All known values are iteratively replaced. 569 /// This is used as an intermediate step in computing bounding boxes and 570 /// canonicalize AffineMinOps. All dim and symbol operands are assumed to have 571 /// positive values (positive orthant assumptions). 572 /// Return a new AffineMap, dims and symbols that have been canonicalized and 573 /// simplified. 574 AffineMapAndOperands 575 mlir::linalg::substituteMin(AffineMinOp affineMinOp, 576 GetMinMaxExprFn getMinMaxExpr) { 577 AffineMapAndOperands res{affineMinOp.getAffineMap(), 578 SmallVector<Value>(affineMinOp.getDimOperands()), 579 SmallVector<Value>(affineMinOp.getSymbolOperands())}; 580 res.map = substitute(affineMinOp.getAffineMap(), res.dims, res.symbols, 581 getMinMaxExpr); 582 return res; 583 } 584 585 LogicalResult AffineMinRangeCanonicalizationPattern::matchAndRewrite( 586 AffineMinOp minOp, PatternRewriter &rewriter) const { 587 LLVM_DEBUG(DBGS() << "Canonicalize AffineMinSCF: " << *minOp.getOperation() 588 << "\n"); 589 590 auto affineMapAndOperands = substituteMin(minOp, getMinMaxFn); 591 AffineMap map = affineMapAndOperands.map; 592 593 LLVM_DEBUG(DBGS() << "Resulting map: " << map << "\n"); 594 595 // Check whether any of the expressions, when subtracted from all other 596 // expressions, produces only >= 0 constants. If so, it is the min. 597 for (auto e : minOp.getAffineMap().getResults()) { 598 LLVM_DEBUG(DBGS() << "Candidate min: " << e << "\n"); 599 if (!e.isSymbolicOrConstant()) 600 continue; 601 602 auto isNonPositive = [](AffineExpr e) { 603 if (auto cst = e.dyn_cast<AffineConstantExpr>()) 604 return cst.getValue() < 0; 605 return true; 606 }; 607 608 // Build the subMap and check everything is statically known to be 609 // positive. 610 SmallVector<AffineExpr, 4> subExprs; 611 subExprs.reserve(map.getNumResults()); 612 for (auto ee : map.getResults()) 613 subExprs.push_back(ee - e); 614 MLIRContext *ctx = minOp.getContext(); 615 AffineMap subMap = simplifyAffineMap( 616 AffineMap::get(map.getNumDims(), map.getNumSymbols(), subExprs, ctx)); 617 LLVM_DEBUG(DBGS() << "simplified subMap: " << subMap << "\n"); 618 if (llvm::any_of(subMap.getResults(), isNonPositive)) 619 continue; 620 621 // Static min found. 622 if (auto cst = e.dyn_cast<AffineConstantExpr>()) { 623 rewriter.replaceOpWithNewOp<ConstantIndexOp>(minOp, cst.getValue()); 624 } else { 625 auto resultMap = AffineMap::get(0, map.getNumSymbols(), {e}, ctx); 626 SmallVector<Value> resultOperands = affineMapAndOperands.dims; 627 llvm::append_range(resultOperands, affineMapAndOperands.symbols); 628 canonicalizeMapAndOperands(&resultMap, &resultOperands); 629 resultMap = simplifyAffineMap(resultMap); 630 rewriter.replaceOpWithNewOp<AffineApplyOp>(minOp, resultMap, 631 resultOperands); 632 } 633 return success(); 634 } 635 636 return failure(); 637 } 638 639 static SmallVector<StringRef> getNParallelLoopsAttrs(unsigned nParallelLoops) { 640 return SmallVector<StringRef>(nParallelLoops, getParallelIteratorTypeName()); 641 } 642 643 /// Rewrite a PadTensorOp into a sequence of InitTensorOp, FillOp (to initialize 644 /// with pad_val) and GenericOp (to copy contents). 645 LogicalResult PadTensorOpTransformationPattern::matchAndRewrite( 646 linalg::PadTensorOp padOp, PatternRewriter &rewriter) const { 647 648 auto inputShapedType = padOp.source().getType().cast<ShapedType>(); 649 auto resultShapedType = padOp.result().getType().cast<ShapedType>(); 650 651 // Bail on non-static shapes. 652 if (!inputShapedType.hasStaticShape()) 653 return failure(); 654 if (!resultShapedType.hasStaticShape()) 655 return failure(); 656 657 // Only support padding with a constant for now, i.e. either: 658 // 1. A BBarg from a different block. 659 // 2. A value defined outside of the current block. 660 Block &block = padOp.region().front(); 661 auto yieldOp = cast<YieldOp>(block.getTerminator()); 662 assert(yieldOp.getNumOperands() == 1 && "expected single operand yield"); 663 Value padValue = yieldOp.values().front(); 664 Operation *definingOp = padValue.getDefiningOp(); 665 if (definingOp && definingOp->getBlock() == &block) 666 return failure(); 667 if (!definingOp && padValue.cast<BlockArgument>().getOwner() == &block) 668 return failure(); 669 670 // Create tensor with the padded shape 671 Location loc = padOp.getLoc(); 672 SmallVector<Value> indices(resultShapedType.getRank(), 673 rewriter.create<ConstantIndexOp>(loc, 0)); 674 Value initTensor = rewriter.create<InitTensorOp>( 675 loc, resultShapedType.getShape(), resultShapedType.getElementType()); 676 677 // Initialize tensor with the pad value 678 Value tmpTensor = 679 rewriter.create<linalg::FillOp>(loc, padValue, initTensor).result(); 680 681 // Copy original contents into new tensor 682 // Uses linalg.generic, but could be done with tensor.insert_slice 683 SmallVector<AffineExpr, 4> outputExprs; 684 for (unsigned i = 0; i < resultShapedType.getRank(); ++i) { 685 outputExprs.push_back(getAffineDimExpr(i, rewriter.getContext()) + 686 padOp.static_low()[i].cast<IntegerAttr>().getInt()); 687 } 688 689 SmallVector<AffineMap, 2> transferMaps = { 690 rewriter.getMultiDimIdentityMap(inputShapedType.getRank()), 691 AffineMap::get(resultShapedType.getRank(), 692 /*symbolCount=*/0, outputExprs, rewriter.getContext())}; 693 694 rewriter.replaceOpWithNewOp<linalg::GenericOp>( 695 padOp, resultShapedType, padOp.source(), tmpTensor, transferMaps, 696 getNParallelLoopsAttrs(resultShapedType.getRank()), 697 [&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange args) { 698 nestedBuilder.create<linalg::YieldOp>(nestedLoc, args[0]); 699 }); 700 701 return success(); 702 } 703 704 /// Given an OpFoldResult, return a Value. If the OpFoldResult is an Attribute, 705 /// it must be of type Integer. 706 static Value asValue(OpBuilder &builder, Location loc, OpFoldResult ofr) { 707 if (auto val = ofr.dyn_cast<Value>()) 708 return val; 709 auto intVal = getConstantIntValue(ofr); 710 assert(intVal && "expected Value or IntegerAttr"); 711 return builder.create<ConstantIndexOp>(loc, *intVal); 712 } 713 714 /// Given a value, try to extract a constant index-type integer as an Attribute. 715 /// If this fails, return the original value. 716 static OpFoldResult asOpFoldResult(OpBuilder &builder, Value val) { 717 if (auto constInt = getConstantIntValue(val)) 718 return builder.getIndexAttr(*constInt); 719 return val; 720 } 721 722 LogicalResult ExtractSliceOfPadTensorSwapPattern::matchAndRewrite( 723 tensor::ExtractSliceOp sliceOp, PatternRewriter &rewriter) const { 724 auto padOp = sliceOp.source().getDefiningOp<PadTensorOp>(); 725 if (!padOp) 726 return failure(); 727 // Only unit stride supported. 728 if (!sliceOp.hasUnitStride()) 729 return failure(); 730 // Only constant padding value supported. 731 Value padValue = padOp.getConstantPaddingValue(); 732 if (!padValue) 733 return failure(); 734 735 // Helper variables and functions for various arithmetic operations. These are 736 // used extensively for computing new offset/length and padding values. 737 Location loc = sliceOp.getLoc(); 738 AffineExpr dim0, dim1; 739 bindDims(rewriter.getContext(), dim0, dim1); 740 // Add two integers. 741 auto addMap = AffineMap::get(2, 0, {dim0 + dim1}); 742 auto add = [&](Value v1, Value v2) { 743 return rewriter.createOrFold<AffineApplyOp>(loc, addMap, 744 ValueRange{v1, v2}); 745 }; 746 // Subtract two integers. 747 auto subMap = AffineMap::get(2, 0, {dim0 - dim1}); 748 auto sub = [&](Value v1, Value v2) { 749 return rewriter.createOrFold<AffineApplyOp>(loc, subMap, 750 ValueRange{v1, v2}); 751 }; 752 // Take the minimum of two integers. 753 auto idMap = AffineMap::getMultiDimIdentityMap(2, rewriter.getContext()); 754 auto min = [&](Value v1, Value v2) { 755 return rewriter.createOrFold<AffineMinOp>(loc, idMap, ValueRange{v1, v2}); 756 }; 757 // Take the maximum of two integers. 758 auto max = [&](Value v1, Value v2) { 759 return rewriter.createOrFold<AffineMaxOp>(loc, idMap, ValueRange{v1, v2}); 760 }; 761 // Zero index-typed integer. 762 auto zero = rewriter.create<ConstantIndexOp>(loc, 0); 763 764 // Helper function for filling static/dynamic low/high padding indices vectors 765 // of PadTensorOp. 766 auto appendIndex = [&](Value val, SmallVector<Value> &dynIndices, 767 SmallVector<int64_t> &staticIndices) { 768 if (auto constInt = getConstantIntValue(val)) { 769 staticIndices.push_back(*constInt); 770 } else { 771 staticIndices.push_back(ShapedType::kDynamicSize); 772 dynIndices.push_back(val); 773 } 774 }; 775 776 // Compute new offsets, lengths, low padding, high padding. 777 SmallVector<OpFoldResult> newOffsets, newLengths, newStrides; 778 SmallVector<Value> newLows, newHighs; 779 SmallVector<int64_t> staticNewLows, staticNewHighs; 780 // Set to true if the original data source is not read at all. 781 bool hasZeroLen = false; 782 // Same as hasZeroLen, but for dynamic dimension sizes. This condition 783 // is true if the original data source turns out to be unused at runtime. 784 Value dynHasZeroLenCond; 785 786 int64_t rank = padOp.getSourceType().getRank(); 787 for (unsigned dim = 0; dim < rank; ++dim) { 788 auto low = asValue(rewriter, loc, padOp.getMixedLowPad()[dim]); 789 auto offset = asValue(rewriter, loc, sliceOp.getMixedOffsets()[dim]); 790 auto length = asValue(rewriter, loc, sliceOp.getMixedSizes()[dim]); 791 auto srcSize = rewriter.createOrFold<memref::DimOp>( 792 loc, padOp.source(), dim); 793 794 // The new amount of low padding is `low - offset`. Except for the case 795 // where none of the low padding is read. In that case, the new amount of 796 // low padding is zero. 797 Value newLow = max(zero, sub(low, offset)); 798 appendIndex(newLow, newLows, staticNewLows); 799 800 // Start reading the data from position `offset - low`. Since the original 801 // read may have started in the low padding zone, this value could be 802 // negative. Therefore, start reading from: 803 // 804 // max(offset - low, 0) 805 // 806 // The original read could also have started in the high padding zone. 807 // In that case, set the offset to the end of source tensor. The new 808 // ExtractSliceOp length will be zero in that case. (Effectively reading no 809 // data from the source.) 810 Value newOffset = min(max(sub(offset, low), zero), srcSize); 811 newOffsets.push_back(asOpFoldResult(rewriter, newOffset)); 812 813 // The original ExtractSliceOp was reading until position `offset + length`. 814 // Therefore, the corresponding position within the source tensor is: 815 // 816 // offset + length - low 817 // 818 // In case the original ExtractSliceOp stopped reading within the low 819 // padding zone, this value can be negative. In that case, the end position 820 // of the read should be zero. (Similar to newOffset.) 821 // 822 // The original read could also have stopped in the high padding zone. 823 // In that case, set the end positition of the read should be the end of the 824 // source tensor. (Similar to newOffset.) 825 // 826 // endLoc = min(max(offset - low + length, 0), srcSize) 827 // 828 // The new ExtractSliceOp length is `endLoc - newOffset`. 829 Value endLoc = min(max(add(sub(offset, low), length), zero), srcSize); 830 Value newLength = sub(endLoc, newOffset); 831 newLengths.push_back(asOpFoldResult(rewriter, newLength)); 832 833 // Check if newLength is zero. In that case, no SubTensorOp should be 834 // executed. 835 if (auto newLengthInt = getConstantIntValue(newLength)) { 836 hasZeroLen |= *newLengthInt == 0; 837 } else { 838 Value check = rewriter.create<CmpIOp>( 839 loc, CmpIPredicate::eq, newLength, zero); 840 dynHasZeroLenCond = 841 dynHasZeroLenCond 842 ? rewriter.create<OrOp>(loc, check, dynHasZeroLenCond) 843 : check; 844 } 845 846 // The amount of high padding is simply the number of elements remaining, 847 // so that the result has the same length as the original ExtractSliceOp. 848 Value newHigh = sub(sub(length, newLength), newLow); 849 appendIndex(newHigh, newHighs, staticNewHighs); 850 851 // Only unit stride supported. 852 newStrides.push_back(rewriter.getIndexAttr(1)); 853 } 854 855 // Insert cast to ensure that types match. (May be folded away.) 856 auto castResult = [&](Value val) -> Value { 857 auto castOp = rewriter.create<tensor::CastOp>(loc, sliceOp.getType(), val); 858 return castOp; 859 }; 860 861 // In cases where the original data source is unused: Emit a GenerateOp and 862 // do not generate a SliceOp. (The result shape of the SliceOp would 863 // have a dimension of size 0, the semantics of which is unclear.) 864 auto createGenerateOp = [&]() { 865 // The shape of the GenerateOp is the same as the existing SliceOp. 866 RankedTensorType type = sliceOp.getType(); 867 SmallVector<Value> dynDims; 868 for (unsigned i = 0; i < type.getRank(); ++i) { 869 if (type.isDynamicDim(i)) 870 dynDims.push_back(asValue(rewriter, loc, sliceOp.getMixedOffsets()[i])); 871 } 872 873 // Create GenerateOp. 874 auto generateOp = rewriter.create<tensor::GenerateOp>(loc, type, dynDims); 875 876 // Copy region to new op. 877 BlockAndValueMapping bvm; 878 padOp.region().cloneInto(&generateOp.getRegion(), bvm); 879 // Rewrite linalg::YieldOp to tensor::YieldOp. 880 { 881 OpBuilder::InsertionGuard guard(rewriter); 882 auto yieldOp = dyn_cast<linalg::YieldOp>( 883 generateOp.getRegion().front().getTerminator()); 884 assert(yieldOp && "malformed PadTensorOp: expected YieldOp terminator"); 885 assert(yieldOp.values().size() == 1); 886 rewriter.setInsertionPoint(yieldOp); 887 rewriter.replaceOpWithNewOp<tensor::YieldOp>( 888 yieldOp, yieldOp.values()[0]); 889 } 890 891 return castResult(generateOp); 892 }; 893 894 // Emit a SliceOp and a PadTensorOp. Should not be used in cases where 895 // the result shape of the new SliceOp has a zero dimension. 896 auto createPadTensorOfSubTensor = [&]() { 897 // Create pad_tensor(subtensor(x)). 898 auto newSliceOp = rewriter.create<tensor::ExtractSliceOp>( 899 loc, padOp.source(), newOffsets, newLengths, newStrides); 900 auto newPadTensorOp = rewriter.create<PadTensorOp>( 901 loc, newSliceOp, staticNewLows, staticNewHighs, newLows, newHighs); 902 903 // Copy region to new PadTensorOp. 904 BlockAndValueMapping bvm; 905 padOp.region().cloneInto(&newPadTensorOp.getRegion(), bvm); 906 907 // Cast result and return. 908 return castResult(newPadTensorOp); 909 }; 910 911 // Rewrite subtensor(pad_tensor(x)) into a GenerateOp it is statically known 912 // that the original data source x is not used. 913 if (hasZeroLen) { 914 rewriter.replaceOp(sliceOp, createGenerateOp()); 915 return success(); 916 } 917 918 // If there are dynamic dimensions: Generate an scf.if check to avoid creating 919 // SliceOps with result dimensions of size 0 at runtime. 920 if (dynHasZeroLenCond) { 921 auto result = rewriter.create<scf::IfOp>( 922 loc, sliceOp.getType(), dynHasZeroLenCond, 923 /*thenBuilder=*/ 924 [&](OpBuilder &b, Location loc) { 925 b.create<scf::YieldOp>(loc, createGenerateOp()); 926 }, 927 /*elseBuilder=*/ 928 [&](OpBuilder &b, Location loc) { 929 b.create<scf::YieldOp>(loc, createPadTensorOfSubTensor()); 930 }); 931 rewriter.replaceOp(sliceOp, result.getResult(0)); 932 return success(); 933 } 934 935 // All shapes are static and the data source is actually used. Rewrite into 936 // pad_tensor(subtensor(x)). 937 rewriter.replaceOp(sliceOp, createPadTensorOfSubTensor()); 938 return success(); 939 } 940