1 //===- LinalgTransforms.cpp - Linalg transformations as patterns ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements logic and helpers to expose Linalg transforms as rewrite 10 // patterns. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 15 #include "mlir/Dialect/Affine/Utils.h" 16 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" 17 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 18 #include "mlir/Dialect/Linalg/Utils/Utils.h" 19 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 20 #include "mlir/Dialect/Vector/VectorOps.h" 21 #include "mlir/IR/AffineExpr.h" 22 #include "mlir/IR/Matchers.h" 23 #include "mlir/Pass/Pass.h" 24 #include "mlir/Support/LLVM.h" 25 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 26 #include "llvm/ADT/ScopeExit.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include <type_traits> 30 31 #define DEBUG_TYPE "linalg-transforms" 32 33 using namespace mlir; 34 using namespace mlir::linalg; 35 36 #define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE << "]: ") 37 38 //===----------------------------------------------------------------------===// 39 // Transformations exposed as rewrite patterns. 40 //===----------------------------------------------------------------------===// 41 // Marker used as attribute name in generated Linalg rewriting transformations. 42 const StringLiteral mlir::linalg::LinalgTransforms::kLinalgTransformMarker = 43 "__internal_linalg_transform__"; 44 45 mlir::linalg::LinalgTransformationFilter::LinalgTransformationFilter( 46 ArrayRef<Identifier> matchDisjunction, Optional<Identifier> replacement) 47 : matchDisjunction(matchDisjunction.begin(), matchDisjunction.end()), 48 replacement(replacement) {} 49 50 mlir::linalg::LinalgTransformationFilter::LinalgTransformationFilter( 51 FilterFunction f, ArrayRef<Identifier> matchDisjunction, 52 Optional<Identifier> replacement) 53 : filters(), 54 matchDisjunction(matchDisjunction.begin(), matchDisjunction.end()), 55 replacement(replacement) { 56 if (f) 57 filters.push_back(f); 58 } 59 60 LogicalResult mlir::linalg::LinalgTransformationFilter::checkAndNotify( 61 PatternRewriter &rewriter, Operation *op) const { 62 if (llvm::any_of(filters, 63 [&](const FilterFunction &f) { return failed(f(op)); })) 64 return failure(); 65 66 auto attr = op->template getAttrOfType<StringAttr>( 67 LinalgTransforms::kLinalgTransformMarker); 68 69 if (!attr) { 70 // 1. Has no filter case and matchDisjunction is empty. 71 if (matchDisjunction.empty()) 72 return success(); 73 74 // 2. Has no filter but was expecting a filter. 75 return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) { 76 diag << " does not have any filter from list: "; 77 interleaveComma(matchDisjunction, diag); 78 }); 79 } 80 81 // 4. Match explicit filter. 82 for (auto filter : matchDisjunction) 83 if (attr.getValue() == filter) 84 return success(); 85 86 // 5. Fail to match. 87 return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) { 88 diag << " does not have any filter from list: "; 89 interleaveComma(matchDisjunction, diag); 90 }); 91 } 92 93 void mlir::linalg::LinalgTransformationFilter:: 94 replaceLinalgTransformationFilter(PatternRewriter &rewriter, 95 Operation *op) const { 96 if (replacement.hasValue()) 97 op->setAttr(LinalgTransforms::kLinalgTransformMarker, 98 rewriter.getStringAttr(replacement.getValue().strref())); 99 else 100 op->removeAttr(Identifier::get(LinalgTransforms::kLinalgTransformMarker, 101 rewriter.getContext())); 102 } 103 104 LinalgTilingOptions & 105 mlir::linalg::LinalgTilingOptions::setTileSizes(ArrayRef<int64_t> ts) { 106 SmallVector<int64_t, 4> tileSizes(ts.begin(), ts.end()); 107 tileSizeComputationFunction = [tileSizes](OpBuilder &b, Operation *op) { 108 OpBuilder::InsertionGuard guard(b); 109 b.setInsertionPointToStart( 110 &op->getParentOfType<FuncOp>().getBody().front()); 111 return llvm::to_vector<4>(map_range(tileSizes, [&](int64_t s) { 112 Value v = b.create<ConstantIndexOp>(op->getLoc(), s); 113 return v; 114 })); 115 }; 116 return *this; 117 } 118 119 /// Try to compute a static bounding box for `operand` 120 /// Return success if either: 121 /// 1. The operand is already statically shaped, `result` is left unchanged. 122 /// 2. The operand is (partially) dynamic, `result` is the result of a freshly 123 /// created PadTensorOp. 124 /// Return failure if the operand cannot be padded to a static shape. 125 static LogicalResult padOperandToSmallestStaticBoundingBox( 126 PatternRewriter &rewriter, linalg::LinalgOp opToPad, OpOperand *opOperand, 127 const LinalgTilingOptions &options, Value &result) { 128 // Already static shape, no need to pad. 129 if (llvm::none_of(opToPad.getShape(opOperand), ShapedType::isDynamic)) 130 return success(); 131 auto subtensor = opOperand->get().getDefiningOp<SubTensorOp>(); 132 // Not a subtensor, cannot construct a static bounding box. 133 if (!subtensor) 134 return failure(); 135 SmallVector<int64_t> staticSizes; 136 staticSizes.reserve(opToPad.getRank(opOperand)); 137 auto shapedOp = 138 cast<OffsetSizeAndStrideOpInterface>(subtensor.getOperation()); 139 for (auto size : shapedOp.getMixedSizes()) { 140 auto indexAttr = size.is<Attribute>() 141 ? size.get<Attribute>().dyn_cast<IntegerAttr>() 142 : linalg::getSmallestBoundingIndex(size.get<Value>()); 143 // SmallestBoundingIndex must exist for all sizes. 144 // For now return an error if we can't find it. 145 if (!indexAttr) 146 return rewriter.notifyMatchFailure( 147 opToPad, "No constant bounding box can be found for padding"); 148 staticSizes.push_back(indexAttr.getInt()); 149 } 150 Value pad = options.paddingValueComputationFunction(rewriter, *opOperand); 151 auto staticTensorType = RankedTensorType::get( 152 staticSizes, getElementTypeOrSelf(opOperand->get().getType())); 153 result = linalg::PadTensorOp::createPadHighOp( 154 staticTensorType, opOperand->get(), pad, opToPad->getLoc(), rewriter); 155 return success(); 156 } 157 158 // Try to create a static bounding box around each operand of `res.op`. 159 // If successful, `res.op` is rewritten in static form with padded operands. 160 // `res.op` is updated to the cloned static form of the op on success. 161 static LogicalResult rewriteAsPaddedOp(PatternRewriter &rewriter, 162 TiledLinalgOp &res, 163 const LinalgTilingOptions &options) { 164 LinalgOp opToPad = res.op; 165 Location loc = opToPad->getLoc(); 166 167 // If the op is fully static, it does not need padding. 168 // TODO: there are cases where we may still want to pad to larger sizes. 169 assert(opToPad.hasTensorSemantics() && 170 "expected operation to have tensor semantics"); 171 if (!opToPad.hasDynamicShape()) 172 return success(); 173 174 OpBuilder::InsertionGuard g(rewriter); 175 // Set IP after op because we also take the dims of the original output. 176 rewriter.setInsertionPointAfter(opToPad); 177 // Make a copy of the shaped operands and update it. 178 SmallVector<Value> newOperands; 179 newOperands.reserve(opToPad.getNumInputsAndOutputs()); 180 for (OpOperand *opOperand : opToPad.getInputAndOutputOperands()) { 181 Value paddedOperand; 182 // If padding was requested but the shape cannot be bounded statically then 183 // the pattern fails to apply. 184 if (failed(padOperandToSmallestStaticBoundingBox( 185 rewriter, opToPad, opOperand, options, paddedOperand))) 186 return failure(); 187 newOperands.push_back(paddedOperand ? paddedOperand : opOperand->get()); 188 } 189 190 // Clone `opToPad` to operate on the statically padded shapes. 191 auto resultTensorTypes = 192 ValueRange(newOperands).take_back(opToPad.getNumOutputs()).getTypes(); 193 ValueRange otherOperands = opToPad.getAssumedNonShapedOperands(); 194 newOperands.append(otherOperands.begin(), otherOperands.end()); 195 linalg::LinalgOp paddedOp = 196 opToPad.clone(rewriter, loc, resultTensorTypes, newOperands); 197 198 // Recover the subtensor out of the new static results. This keeps the 199 // original linalg op around because it uses the dims of the original results. 200 // This later folds away. 201 SmallVector<Value> paddedSubviewResults; 202 paddedSubviewResults.reserve(opToPad->getNumResults()); 203 SetVector<Operation *> newUsersOfOpToPad; 204 for (auto it : llvm::zip(opToPad->getResults(), paddedOp->getResults())) { 205 auto rank = std::get<0>(it).getType().cast<RankedTensorType>().getRank(); 206 SmallVector<OpFoldResult> offsets(rank, rewriter.getIndexAttr(0)); 207 auto sizes = llvm::to_vector<4>(llvm::map_range( 208 llvm::seq<unsigned>(0, rank), [&](unsigned d) -> OpFoldResult { 209 auto dimOp = rewriter.create<memref::DimOp>(loc, std::get<0>(it), d); 210 newUsersOfOpToPad.insert(dimOp); 211 return dimOp.getResult(); 212 })); 213 SmallVector<OpFoldResult> strides(rank, rewriter.getIndexAttr(1)); 214 paddedSubviewResults.push_back(rewriter.create<SubTensorOp>( 215 loc, std::get<1>(it), offsets, sizes, strides)); 216 } 217 // Replace the transient `opToPad` locally, except for uses that we just 218 // created for the purpose of extracting the dims. 219 rewriter.replaceOpWithIf(opToPad, paddedSubviewResults, [&](OpOperand &opOp) { 220 return !newUsersOfOpToPad.contains(opOp.getOwner()); 221 }); 222 223 res = TiledLinalgOp{paddedOp, res.loops, res.tensorResults}; 224 return success(); 225 } 226 227 /// Linalg base tiling pattern. 228 mlir::linalg::LinalgBaseTilingPattern::LinalgBaseTilingPattern( 229 StringRef opName, MLIRContext *context, LinalgTilingOptions options, 230 LinalgTransformationFilter filter, PatternBenefit benefit) 231 : RewritePattern(opName, benefit, context), filter(filter), 232 options(options) {} 233 234 mlir::linalg::LinalgBaseTilingPattern::LinalgBaseTilingPattern( 235 MLIRContext *context, LinalgTilingOptions options, 236 LinalgTransformationFilter filter, PatternBenefit benefit) 237 : RewritePattern(MatchAnyOpTypeTag(), benefit, context), filter(filter), 238 options(options) {} 239 240 LogicalResult mlir::linalg::LinalgBaseTilingPattern::matchAndRewriteBase( 241 Operation *op, PatternRewriter &rewriter, TiledLinalgOp &result) const { 242 LinalgOp linalgOp = dyn_cast<LinalgOp>(op); 243 if (!linalgOp) 244 return failure(); 245 if (failed(filter.checkAndNotify(rewriter, linalgOp))) 246 return failure(); 247 248 Optional<TiledLinalgOp> res = tileLinalgOp(rewriter, linalgOp, options); 249 250 if (!res) 251 return failure(); 252 253 // Setup RAII guard to return properly. 254 LinalgOp tiledOp = res->op; 255 auto guard = llvm::make_scope_exit([&]() { 256 // Return relevant information to derived pattern. 257 result = *res; 258 // Replace filter on both tiledOp and tiledAndPaddedOp, if necessary. 259 filter.replaceLinalgTransformationFilter(rewriter, tiledOp); 260 if (tiledOp != res->op) 261 filter.replaceLinalgTransformationFilter(rewriter, res->op); 262 }); 263 264 // Consider padding on the fly only if the op has tensor semantics. 265 if (!options.paddingValueComputationFunction || 266 !linalgOp.hasTensorSemantics()) 267 return success(); 268 269 // Try to pad on the fly by rewriting res->op as a padded op. 270 if (failed(rewriteAsPaddedOp(rewriter, *res, options))) { 271 // Set so RAII guard does not propagate TiledLinalgOp to `result`. 272 return failure(); 273 } 274 275 // Do not perform replacement of `linalgOp`, let the derived patterns 276 // do this as they see fit, from the resulting TiledLinalgOp. 277 return success(); 278 } 279 280 static ValueRange getTiledOpResult(TiledLinalgOp tiledOp) { 281 if (tiledOp.loops.empty()) 282 return tiledOp.op.getOperation()->getResults(); 283 return tiledOp.loops.front()->getResults(); 284 } 285 286 static ValueRange 287 getTiledAndFusedOpResult(TiledAndFusedLinalgOps tiledAndFusedOp) { 288 if (tiledAndFusedOp.fusedLoops.empty()) 289 return tiledAndFusedOp.op.getOperation()->getResults(); 290 return tiledAndFusedOp.fusedLoops.front()->getResults(); 291 } 292 293 mlir::linalg::LinalgBaseTileAndFusePattern::LinalgBaseTileAndFusePattern( 294 StringRef opName, MLIRContext *context, 295 const LinalgDependenceGraph &dependenceGraph, 296 LinalgTilingOptions tilingOptions, LinalgFusionOptions fusionOptions, 297 LinalgTransformationFilter filter, LinalgTransformationFilter fusedOpMarker, 298 LinalgTransformationFilter originalOpMarker, PatternBenefit benefit) 299 : RewritePattern(opName, benefit, context, {}), 300 dependenceGraph(dependenceGraph), tilingOptions(tilingOptions), 301 fusionOptions(fusionOptions), filter(filter), 302 fusedOpMarker(fusedOpMarker), originalOpMarker(originalOpMarker) {} 303 304 LogicalResult mlir::linalg::LinalgBaseTileAndFusePattern::matchAndRewrite( 305 Operation *op, PatternRewriter &rewriter) const { 306 LinalgOp linalgOp = dyn_cast<LinalgOp>(op); 307 // TODO: remove hasIndexSemantics check once index ops are supported. 308 if (!linalgOp || linalgOp.hasIndexSemantics()) 309 return failure(); 310 if (failed(filter.checkAndNotify(rewriter, linalgOp))) 311 return failure(); 312 313 DenseSet<Operation *> producers; 314 producers.insert(linalgOp); 315 for (auto dependence : dependenceGraph.getDependentOperationsInto(linalgOp)) { 316 Optional<unsigned> operandNumber = dependence.getIndexingOpViewOperandNum(); 317 // When looking at dependences into, indexingOp is always OpOperand. We 318 // could assert, but continue if this is not the case. 319 if (!operandNumber) 320 continue; 321 if (!fusionOptions.indicesToFuse.count(operandNumber.getValue())) 322 continue; 323 if (isa<LinalgOp>(dependence.getDependentOp())) 324 producers.insert(dependence.getDependentOp()); 325 } 326 327 SmallVector<LinalgOp, 1> fusionOps; 328 for (auto it = op->getBlock()->begin(), ie = Block::iterator(op); it != ie; 329 ++it) { 330 auto producerLinalgOp = dyn_cast<LinalgOp>(&(*it)); 331 if (producerLinalgOp && producers.count(producerLinalgOp)) 332 fusionOps.push_back(producerLinalgOp); 333 } 334 fusionOps.push_back(linalgOp); 335 336 SmallVector<Value, 4> tileSizes = 337 tilingOptions.tileSizeComputationFunction(rewriter, op); 338 LinalgTilingOptions instanceTilingOptions = tilingOptions; 339 instanceTilingOptions.setTileSizes(tileSizes); 340 Optional<TiledAndFusedLinalgOps> tiledAndFusedOps = tileAndFuseLinalgOps( 341 rewriter, fusionOps, dependenceGraph, instanceTilingOptions); 342 if (!tiledAndFusedOps) 343 return failure(); 344 345 // Tile the unfused loops; 346 SmallVector<Value, 4> unfusedLoopTileSizes; 347 Value zero = rewriter.create<ConstantIndexOp>(op->getLoc(), 0); 348 for (auto tileSize : enumerate(tileSizes)) { 349 if (tiledAndFusedOps->fusedLoopDims.count(tileSize.index())) 350 unfusedLoopTileSizes.push_back(zero); 351 else 352 unfusedLoopTileSizes.push_back(tileSize.value()); 353 } 354 // Tile the loop only if there is a non-zero tile size. 355 if (unfusedLoopTileSizes.size() > linalgOp.getNumLoops()) 356 unfusedLoopTileSizes.resize(linalgOp.getNumLoops()); 357 if (llvm::any_of(unfusedLoopTileSizes, [](Value val) { 358 if (auto cst = val.getDefiningOp<ConstantIndexOp>()) 359 return cst.getValue() != 0; 360 return true; 361 })) { 362 LinalgTilingOptions unfusedTilingOptions = tilingOptions; 363 unfusedTilingOptions.setTileSizes(unfusedLoopTileSizes); 364 Optional<TiledLinalgOp> unfusedTiledOp = 365 tileLinalgOp(rewriter, tiledAndFusedOps->op, unfusedTilingOptions); 366 if (!unfusedTiledOp) 367 return failure(); 368 rewriter.replaceOp(tiledAndFusedOps->op, 369 getTiledOpResult(unfusedTiledOp.getValue())); 370 tiledAndFusedOps->op = unfusedTiledOp->op; 371 } 372 op->replaceAllUsesWith(getTiledAndFusedOpResult(tiledAndFusedOps.getValue())); 373 374 filter.replaceLinalgTransformationFilter(rewriter, 375 tiledAndFusedOps->op.getOperation()); 376 for (auto fusedOp : tiledAndFusedOps->fusedProducers) { 377 fusedOpMarker.replaceLinalgTransformationFilter(rewriter, 378 fusedOp.getOperation()); 379 } 380 for (auto origProducerOp : ArrayRef<LinalgOp>(fusionOps).drop_back()) { 381 originalOpMarker.replaceLinalgTransformationFilter( 382 rewriter, origProducerOp.getOperation()); 383 } 384 rewriter.updateRootInPlace(op, [&]() { 385 originalOpMarker.replaceLinalgTransformationFilter(rewriter, op); 386 }); 387 return success(); 388 } 389 390 /// Linalg generic interchange pattern. 391 mlir::linalg::GenericOpInterchangePattern::GenericOpInterchangePattern( 392 MLIRContext *context, ArrayRef<unsigned> interchangeVector, 393 LinalgTransformationFilter filter, PatternBenefit benefit) 394 : OpRewritePattern(context, benefit), filter(filter), 395 interchangeVector(interchangeVector.begin(), interchangeVector.end()) {} 396 397 LogicalResult mlir::linalg::GenericOpInterchangePattern::matchAndRewrite( 398 GenericOp genericOp, PatternRewriter &rewriter) const { 399 if (failed(filter.checkAndNotify(rewriter, genericOp))) 400 return failure(); 401 if (failed(interchangeGenericOpPrecondition(genericOp, interchangeVector))) 402 return failure(); 403 404 // TODO: figure out how this interplays with named ops. In particular this 405 // should break the named op property. 406 rewriter.updateRootInPlace(genericOp, [&]() { 407 interchangeGenericOp(rewriter, genericOp, interchangeVector); 408 // New filter if specified. 409 filter.replaceLinalgTransformationFilter(rewriter, genericOp); 410 }); 411 return success(); 412 } 413 414 mlir::linalg::LinalgBasePromotionPattern::LinalgBasePromotionPattern( 415 StringRef opName, MLIRContext *context, LinalgPromotionOptions options, 416 LinalgTransformationFilter filter, PatternBenefit benefit) 417 : RewritePattern(opName, benefit, context, {}), filter(filter), 418 options(options) {} 419 420 LogicalResult mlir::linalg::LinalgBasePromotionPattern::matchAndRewrite( 421 Operation *op, PatternRewriter &rewriter) const { 422 if (failed(filter.checkAndNotify(rewriter, op))) 423 return failure(); 424 if (failed(promoteSubviewsPrecondition(op, options))) 425 return failure(); 426 427 // TODO: We cannot use root update here. This pattern is creating other ops, 428 // so if the promotion fails, those need to be cleaned up, which doesnt seem 429 // to be happening here. So to fail properly, we should be cloning the op and 430 // deleting the previous op. This needs more investigation. 431 rewriter.startRootUpdate(op); 432 Optional<LinalgOp> promotedOp = promoteSubViews(rewriter, op, options); 433 if (!promotedOp) { 434 rewriter.cancelRootUpdate(op); 435 return op->emitError("subview promotion failed"); 436 } 437 rewriter.finalizeRootUpdate(op); 438 filter.replaceLinalgTransformationFilter(rewriter, op); 439 return success(); 440 } 441 442 mlir::linalg::LinalgBaseVectorizationPattern::LinalgBaseVectorizationPattern( 443 MLIRContext *context, LinalgTransformationFilter filter, 444 PatternBenefit benefit) 445 : RewritePattern(MatchAnyOpTypeTag(), benefit, context), filter(filter) {} 446 447 mlir::linalg::LinalgBaseVectorizationPattern::LinalgBaseVectorizationPattern( 448 StringRef opName, MLIRContext *context, LinalgTransformationFilter filter, 449 PatternBenefit benefit) 450 : RewritePattern(opName, benefit, context, {}), filter(filter) {} 451 452 LogicalResult mlir::linalg::LinalgBaseVectorizationPattern::matchAndRewrite( 453 Operation *op, PatternRewriter &rewriter) const { 454 LinalgOp linalgOp = dyn_cast<LinalgOp>(op); 455 if (!linalgOp) 456 return failure(); 457 if (failed(filter.checkAndNotify(rewriter, linalgOp))) 458 return failure(); 459 SmallVector<Value> newResults; 460 if (failed(vectorizeLinalgOp(rewriter, op, newResults))) 461 return failure(); 462 if (!newResults.empty()) 463 rewriter.replaceOp(op, newResults); 464 else 465 rewriter.eraseOp(op); 466 return success(); 467 } 468 469 LogicalResult mlir::linalg::applyStagedPatterns( 470 Operation *op, ArrayRef<FrozenRewritePatternSet> stage1Patterns, 471 const FrozenRewritePatternSet &stage2Patterns, 472 function_ref<LogicalResult(Operation *)> stage3Lambda) { 473 unsigned iteration = 0; 474 (void)iteration; 475 for (const auto &patterns : stage1Patterns) { 476 LLVM_DEBUG(DBGS() << "Before 1st stage, iter: " << ++iteration << "\n" 477 << *op); 478 if (failed(applyPatternsAndFoldGreedily(op, patterns))) { 479 LLVM_DEBUG(DBGS() << "Underlying first stage rewrite did not converge"); 480 return failure(); 481 } 482 LLVM_DEBUG(DBGS() << "After 1st stage, iter: " << ++iteration << "\n" 483 << *op); 484 if (failed(applyPatternsAndFoldGreedily(op, stage2Patterns))) { 485 LLVM_DEBUG(DBGS() << "Underlying 2nd stage rewrite did not converge"); 486 return failure(); 487 } 488 LLVM_DEBUG(DBGS() << "After 2nd stage, iter : " << iteration << "\n" 489 << *op); 490 if (stage3Lambda) { 491 if (failed(stage3Lambda(op))) 492 return failure(); 493 LLVM_DEBUG(DBGS() << "After 3rd stage, iter : " << iteration << "\n" 494 << *op); 495 } 496 } 497 return success(); 498 } 499 500 /// Traverse the `dims` and substitute known min or max expressions returned by 501 /// the lambda |getMinMaxExpr|. 502 static AffineMap substitute(AffineMap map, SmallVectorImpl<Value> &dims, 503 SmallVectorImpl<Value> &symbols, 504 GetMinMaxExprFn getMinMaxExpr) { 505 auto exprs = llvm::to_vector<4>(map.getResults()); 506 for (AffineExpr &expr : exprs) { 507 bool substituted = true; 508 while (substituted) { 509 substituted = false; 510 for (unsigned dimIdx = 0; dimIdx < dims.size(); ++dimIdx) { 511 Value dim = dims[dimIdx]; 512 auto minMax = getMinMaxExpr(dim, dims, symbols); 513 if (!minMax) 514 continue; 515 AffineExpr dimExpr = getAffineDimExpr(dimIdx, expr.getContext()); 516 LLVM_DEBUG(DBGS() << "Subst: " << dim << " @ " << dimExpr << "\n"); 517 LLVM_DEBUG(DBGS() << "Before: " << expr << "\n"); 518 // Substitute occurrences of `dimExpr` by either the min expression or 519 // the max expression depending on whether the value is used with a 520 // positive or negative coefficient. 521 AffineExpr substitutedExpr = 522 substWithMin(expr, dimExpr, minMax->first, minMax->second); 523 LLVM_DEBUG(DBGS() << "After: " << substitutedExpr << "\n"); 524 substituted = (substitutedExpr != expr); 525 expr = substitutedExpr; 526 } 527 } 528 529 // Cleanup and simplify the results. 530 // This needs to happen outside of the loop iterating on dims.size() since 531 // it modifies dims. 532 SmallVector<Value, 4> operands(dims.begin(), dims.end()); 533 operands.append(symbols.begin(), symbols.end()); 534 auto map = AffineMap::get(dims.size(), symbols.size(), exprs, 535 exprs.front().getContext()); 536 537 LLVM_DEBUG({ 538 DBGS() << "Map to simplify: " << map << "\n"; 539 DBGS() << "Operands:\n"; 540 for (Value v : operands) 541 DBGS() << v << "\n"; 542 }); 543 544 // Pull in affine.apply operations and compose them fully into the 545 // result. 546 fullyComposeAffineMapAndOperands(&map, &operands); 547 canonicalizeMapAndOperands(&map, &operands); 548 map = simplifyAffineMap(map); 549 // Assign the results. 550 exprs.assign(map.getResults().begin(), map.getResults().end()); 551 dims.assign(operands.begin(), operands.begin() + map.getNumDims()); 552 symbols.assign(operands.begin() + map.getNumDims(), operands.end()); 553 554 LLVM_DEBUG(DBGS() << "Map simplified: " << map << "\n"); 555 } 556 557 assert(!exprs.empty() && "Unexpected empty exprs"); 558 return AffineMap::get(dims.size(), symbols.size(), exprs, map.getContext()); 559 } 560 561 /// Traverse the dims of the AffineMap of `affineMinOp` and substitute 562 /// dimensions with known range by new expressions involving the min or max 563 /// expression: 564 /// - If the AffineDimExpr mapped to a known value has a positive sign, it 565 /// is replaced by the min expression. 566 /// - If the AffineDimExpr mapped to a known value has a negative sign, it is 567 /// replaced by the max expression. 568 /// All known values are iteratively replaced. 569 /// This is used as an intermediate step in computing bounding boxes and 570 /// canonicalize AffineMinOps. All dim and symbol operands are assumed to have 571 /// positive values (positive orthant assumptions). 572 /// Return a new AffineMap, dims and symbols that have been canonicalized and 573 /// simplified. 574 AffineMapAndOperands 575 mlir::linalg::substituteMin(AffineMinOp affineMinOp, 576 GetMinMaxExprFn getMinMaxExpr) { 577 AffineMapAndOperands res{affineMinOp.getAffineMap(), 578 SmallVector<Value>(affineMinOp.getDimOperands()), 579 SmallVector<Value>(affineMinOp.getSymbolOperands())}; 580 res.map = substitute(affineMinOp.getAffineMap(), res.dims, res.symbols, 581 getMinMaxExpr); 582 return res; 583 } 584 585 LogicalResult AffineMinRangeCanonicalizationPattern::matchAndRewrite( 586 AffineMinOp minOp, PatternRewriter &rewriter) const { 587 LLVM_DEBUG(DBGS() << "Canonicalize AffineMinSCF: " << *minOp.getOperation() 588 << "\n"); 589 590 auto affineMapAndOperands = substituteMin(minOp, getMinMaxFn); 591 AffineMap map = affineMapAndOperands.map; 592 593 LLVM_DEBUG(DBGS() << "Resulting map: " << map << "\n"); 594 595 // Check whether any of the expressions, when subtracted from all other 596 // expressions, produces only >= 0 constants. If so, it is the min. 597 for (auto e : minOp.getAffineMap().getResults()) { 598 LLVM_DEBUG(DBGS() << "Candidate min: " << e << "\n"); 599 if (!e.isSymbolicOrConstant()) 600 continue; 601 602 auto isNonPositive = [](AffineExpr e) { 603 if (auto cst = e.dyn_cast<AffineConstantExpr>()) 604 return cst.getValue() < 0; 605 return true; 606 }; 607 608 // Build the subMap and check everything is statically known to be 609 // positive. 610 SmallVector<AffineExpr, 4> subExprs; 611 subExprs.reserve(map.getNumResults()); 612 for (auto ee : map.getResults()) 613 subExprs.push_back(ee - e); 614 MLIRContext *ctx = minOp.getContext(); 615 AffineMap subMap = simplifyAffineMap( 616 AffineMap::get(map.getNumDims(), map.getNumSymbols(), subExprs, ctx)); 617 LLVM_DEBUG(DBGS() << "simplified subMap: " << subMap << "\n"); 618 if (llvm::any_of(subMap.getResults(), isNonPositive)) 619 continue; 620 621 // Static min found. 622 if (auto cst = e.dyn_cast<AffineConstantExpr>()) { 623 rewriter.replaceOpWithNewOp<ConstantIndexOp>(minOp, cst.getValue()); 624 } else { 625 auto resultMap = AffineMap::get(0, map.getNumSymbols(), {e}, ctx); 626 SmallVector<Value> resultOperands = affineMapAndOperands.dims; 627 llvm::append_range(resultOperands, affineMapAndOperands.symbols); 628 canonicalizeMapAndOperands(&resultMap, &resultOperands); 629 resultMap = simplifyAffineMap(resultMap); 630 rewriter.replaceOpWithNewOp<AffineApplyOp>(minOp, resultMap, 631 resultOperands); 632 } 633 return success(); 634 } 635 636 return failure(); 637 } 638 639 static SmallVector<StringRef> getNParallelLoopsAttrs(unsigned nParallelLoops) { 640 return SmallVector<StringRef>(nParallelLoops, getParallelIteratorTypeName()); 641 } 642 643 /// Rewrite a PadTensorOp into a sequence of InitTensorOp, FillOp (to initialize 644 /// with pad_val) and GenericOp (to copy contents). 645 LogicalResult PadTensorOpTransformationPattern::matchAndRewrite( 646 linalg::PadTensorOp padOp, PatternRewriter &rewriter) const { 647 648 auto inputShapedType = padOp.source().getType().cast<ShapedType>(); 649 auto resultShapedType = padOp.result().getType().cast<ShapedType>(); 650 651 // Bail on non-static shapes. 652 if (!inputShapedType.hasStaticShape()) 653 return failure(); 654 if (!resultShapedType.hasStaticShape()) 655 return failure(); 656 657 // Only support padding with a constant for now, i.e. either: 658 // 1. A BBarg from a different block. 659 // 2. A value defined outside of the current block. 660 Block &block = padOp.region().front(); 661 auto yieldOp = cast<YieldOp>(block.getTerminator()); 662 assert(yieldOp.getNumOperands() == 1 && "expected single operand yield"); 663 Value padValue = yieldOp.values().front(); 664 Operation *definingOp = padValue.getDefiningOp(); 665 if (definingOp && definingOp->getBlock() == &block) 666 return failure(); 667 if (!definingOp && padValue.cast<BlockArgument>().getOwner() == &block) 668 return failure(); 669 670 // Create tensor with the padded shape 671 Location loc = padOp.getLoc(); 672 SmallVector<Value> indices(resultShapedType.getRank(), 673 rewriter.create<ConstantIndexOp>(loc, 0)); 674 Value initTensor = rewriter.create<InitTensorOp>( 675 loc, resultShapedType.getShape(), resultShapedType.getElementType()); 676 677 // Initialize tensor with the pad value 678 Value tmpTensor = 679 rewriter.create<linalg::FillOp>(loc, initTensor, padValue).result(); 680 681 // Copy original contents into new tensor 682 // Uses linalg.generic, but could be done with std.subtensor_insert 683 SmallVector<AffineExpr, 4> outputExprs; 684 for (unsigned i = 0; i < resultShapedType.getRank(); ++i) { 685 outputExprs.push_back(getAffineDimExpr(i, rewriter.getContext()) + 686 padOp.static_low()[i].cast<IntegerAttr>().getInt()); 687 } 688 689 SmallVector<AffineMap, 2> transferMaps = { 690 rewriter.getMultiDimIdentityMap(inputShapedType.getRank()), 691 AffineMap::get(resultShapedType.getRank(), 692 /*symbolCount=*/0, outputExprs, rewriter.getContext())}; 693 694 rewriter.replaceOpWithNewOp<linalg::GenericOp>( 695 padOp, resultShapedType, padOp.source(), tmpTensor, transferMaps, 696 getNParallelLoopsAttrs(resultShapedType.getRank()), 697 [&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange args) { 698 nestedBuilder.create<linalg::YieldOp>(nestedLoc, args[0]); 699 }); 700 701 return success(); 702 } 703