1 //===- LinalgTransforms.cpp - Linalg transformations as patterns ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements logic and helpers to expose Linalg transforms as rewrite 10 // patterns. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 15 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" 16 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 17 #include "mlir/Dialect/Linalg/Utils/Utils.h" 18 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h" 19 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 20 #include "mlir/Dialect/Vector/EDSC/Intrinsics.h" 21 #include "mlir/Dialect/Vector/VectorOps.h" 22 #include "mlir/IR/AffineExpr.h" 23 #include "mlir/IR/Matchers.h" 24 #include "mlir/Pass/Pass.h" 25 #include "mlir/Support/LLVM.h" 26 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include <type_traits> 30 31 #define DEBUG_TYPE "linalg-transforms" 32 33 using namespace mlir; 34 using namespace mlir::edsc; 35 using namespace mlir::edsc::intrinsics; 36 using namespace mlir::linalg; 37 38 #define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE << "]: ") 39 40 //===----------------------------------------------------------------------===// 41 // Transformations exposed as rewrite patterns. 42 //===----------------------------------------------------------------------===// 43 // Marker used as attribute name in generated Linalg rewriting transformations. 44 const StringLiteral mlir::linalg::LinalgTransforms::kLinalgTransformMarker = 45 "__internal_linalg_transform__"; 46 47 mlir::linalg::LinalgMarker::LinalgMarker(ArrayRef<Identifier> matchDisjunction, 48 Optional<Identifier> replacement) 49 : matchDisjunction(matchDisjunction.begin(), matchDisjunction.end()), 50 replacement(replacement) {} 51 52 LogicalResult 53 mlir::linalg::LinalgMarker::checkAndNotify(PatternRewriter &rewriter, 54 Operation *op) const { 55 auto attr = op->template getAttrOfType<StringAttr>( 56 LinalgTransforms::kLinalgTransformMarker); 57 58 if (!attr) { 59 // 1. Has no marker case and matchDisjunction is empty. 60 if (matchDisjunction.empty()) 61 return success(); 62 63 // 2. Has no marker but was expecting a marker. 64 return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) { 65 diag << " does not have any marker from list: "; 66 interleaveComma(matchDisjunction, diag); 67 }); 68 } 69 70 // 4. Match explicit marker. 71 for (auto marker : matchDisjunction) 72 if (attr.getValue() == marker) 73 return success(); 74 75 // 5. Fail to match. 76 return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) { 77 diag << " does not have any marker from list: "; 78 interleaveComma(matchDisjunction, diag); 79 }); 80 } 81 82 void mlir::linalg::LinalgMarker::replaceLinalgMarker(PatternRewriter &rewriter, 83 Operation *op) const { 84 if (replacement.hasValue()) 85 op->setAttr(LinalgTransforms::kLinalgTransformMarker, 86 rewriter.getStringAttr(replacement.getValue())); 87 else 88 op->removeAttr(Identifier::get(LinalgTransforms::kLinalgTransformMarker, 89 rewriter.getContext())); 90 } 91 92 LinalgTilingOptions & 93 mlir::linalg::LinalgTilingOptions::setTileSizes(ArrayRef<int64_t> ts) { 94 SmallVector<int64_t, 4> tileSizes(ts.begin(), ts.end()); 95 tileSizeComputationFunction = [tileSizes](OpBuilder &b, Operation *op) { 96 OpBuilder::InsertionGuard guard(b); 97 b.setInsertionPointToStart( 98 &op->getParentOfType<FuncOp>().getBody().front()); 99 return llvm::to_vector<4>(map_range(tileSizes, [&](int64_t s) { 100 Value v = b.create<ConstantIndexOp>(op->getLoc(), s); 101 return v; 102 })); 103 }; 104 return *this; 105 } 106 107 /// Linalg base tiling pattern. 108 mlir::linalg::LinalgBaseTilingPattern::LinalgBaseTilingPattern( 109 StringRef opName, MLIRContext *context, LinalgTilingOptions options, 110 LinalgMarker marker, PatternBenefit benefit) 111 : RewritePattern(opName, {}, benefit, context), marker(marker), 112 options(options) {} 113 114 LogicalResult mlir::linalg::LinalgBaseTilingPattern::matchAndRewriteBase( 115 Operation *op, PatternRewriter &rewriter, 116 SmallVectorImpl<Value> &tensorResults) const { 117 LinalgOp linalgOp = dyn_cast<LinalgOp>(op); 118 if (!linalgOp) 119 return failure(); 120 if (failed(marker.checkAndNotify(rewriter, linalgOp))) 121 return failure(); 122 123 // If LinalgOp has results, they must all be tied to init tensors. 124 // We enforce this to ensure all tiled ops have been rewritten in 125 // "init tensor" form. This ensures tiling has anchor values into which to 126 // subtensor / subtensor_insert. Otherwise tiling would need to allocate which 127 // is not acceptable. 128 // This would not be the case with a special terminator op that generates the 129 // whole tensor (instead of inserting a subtensor). But the generator-based 130 // abstraction has other issues. 131 if (linalgOp.getNumInitTensors() != linalgOp.getOperation()->getNumResults()) 132 return failure(); 133 134 Optional<TiledLinalgOp> res = tileLinalgOp(rewriter, linalgOp, options); 135 136 if (!res) 137 return failure(); 138 139 // Return relevant information to derived pattern. 140 tensorResults = res->tensorResults; 141 142 // New marker if specified. 143 marker.replaceLinalgMarker(rewriter, res->op.getOperation()); 144 return success(); 145 } 146 147 mlir::linalg::LinalgBaseTileAndFusePattern::LinalgBaseTileAndFusePattern( 148 StringRef opName, MLIRContext *context, 149 const LinalgDependenceGraph &dependenceGraph, 150 LinalgTilingOptions tilingOptions, LinalgFusionOptions fusionOptions, 151 LinalgMarker marker, LinalgMarker fusedOpMarker, 152 LinalgMarker originalOpMarker, PatternBenefit benefit) 153 : RewritePattern(opName, {}, benefit, context), 154 dependenceGraph(dependenceGraph), tilingOptions(tilingOptions), 155 fusionOptions(fusionOptions), marker(marker), 156 fusedOpMarker(fusedOpMarker), originalOpMarker(originalOpMarker) {} 157 158 LogicalResult mlir::linalg::LinalgBaseTileAndFusePattern::matchAndRewrite( 159 Operation *op, PatternRewriter &rewriter) const { 160 LinalgOp linalgOp = dyn_cast<LinalgOp>(op); 161 if (!linalgOp) 162 return failure(); 163 if (failed(marker.checkAndNotify(rewriter, linalgOp))) 164 return failure(); 165 if (!linalgOp.hasBufferSemantics()) 166 return failure(); 167 168 DenseSet<Operation *> producers; 169 producers.insert(linalgOp); 170 for (auto dependence : dependenceGraph.getDependentOperations(linalgOp)) { 171 if (!fusionOptions.indicesToFuse.count( 172 dependence.indexingOpView.operandIndex)) 173 continue; 174 if (isa<LinalgOp>(dependence.dependentOpView.op)) 175 producers.insert(dependence.dependentOpView.op); 176 } 177 178 SmallVector<LinalgOp, 1> fusionOps; 179 for (auto it = op->getBlock()->begin(), ie = Block::iterator(op); it != ie; 180 ++it) { 181 auto producerLinalgOp = dyn_cast<LinalgOp>(&(*it)); 182 if (producerLinalgOp && producers.count(producerLinalgOp)) 183 fusionOps.push_back(producerLinalgOp); 184 } 185 fusionOps.push_back(linalgOp); 186 187 SmallVector<Value, 4> tileSizes = 188 tilingOptions.tileSizeComputationFunction(rewriter, op); 189 LinalgTilingOptions instanceTilingOptions = tilingOptions; 190 instanceTilingOptions.setTileSizes(tileSizes); 191 Optional<TiledAndFusedLinalgOps> tiledAndFusedOps = tileAndFuseLinalgOps( 192 rewriter, fusionOps, dependenceGraph, instanceTilingOptions); 193 if (!tiledAndFusedOps) 194 return failure(); 195 196 // Tile the unfused loops; 197 SmallVector<Value, 4> unfusedLoopTileSizes; 198 Value zero = rewriter.create<ConstantIndexOp>(op->getLoc(), 0); 199 for (auto tileSize : enumerate(tileSizes)) { 200 if (tiledAndFusedOps->fusedLoopDims.count(tileSize.index())) 201 unfusedLoopTileSizes.push_back(zero); 202 else 203 unfusedLoopTileSizes.push_back(tileSize.value()); 204 } 205 // Tile the loop only if there is a non-zero tile size. 206 if (unfusedLoopTileSizes.size() > linalgOp.getNumLoops()) 207 unfusedLoopTileSizes.resize(linalgOp.getNumLoops()); 208 if (llvm::any_of(unfusedLoopTileSizes, [](Value val) { 209 if (auto cst = val.getDefiningOp<ConstantIndexOp>()) 210 return cst.getValue() != 0; 211 return true; 212 })) { 213 LinalgTilingOptions unfusedTilingOptions = tilingOptions; 214 unfusedTilingOptions.setTileSizes(unfusedLoopTileSizes); 215 Optional<TiledLinalgOp> unfusedTiledOp = 216 tileLinalgOp(rewriter, tiledAndFusedOps->op, unfusedTilingOptions); 217 if (!unfusedTiledOp) 218 return failure(); 219 rewriter.eraseOp(tiledAndFusedOps->op); 220 tiledAndFusedOps->op = unfusedTiledOp->op; 221 } 222 223 marker.replaceLinalgMarker(rewriter, tiledAndFusedOps->op.getOperation()); 224 for (auto fusedOp : tiledAndFusedOps->fusedProducers) { 225 fusedOpMarker.replaceLinalgMarker(rewriter, fusedOp.getOperation()); 226 } 227 for (auto origProducerOp : ArrayRef<LinalgOp>(fusionOps).drop_back()) { 228 originalOpMarker.replaceLinalgMarker(rewriter, 229 origProducerOp.getOperation()); 230 } 231 rewriter.updateRootInPlace( 232 op, [&]() { originalOpMarker.replaceLinalgMarker(rewriter, op); }); 233 return success(); 234 } 235 236 /// Linalg base interchange pattern. 237 mlir::linalg::LinalgBaseInterchangePattern::LinalgBaseInterchangePattern( 238 StringRef opName, MLIRContext *context, 239 ArrayRef<unsigned> interchangeVector, LinalgMarker marker, 240 PatternBenefit benefit) 241 : RewritePattern(opName, {}, benefit, context), marker(marker), 242 interchangeVector(interchangeVector.begin(), interchangeVector.end()) {} 243 244 LogicalResult mlir::linalg::LinalgBaseInterchangePattern::matchAndRewrite( 245 Operation *op, PatternRewriter &rewriter) const { 246 LinalgOp linalgOp = dyn_cast<LinalgOp>(op); 247 if (!linalgOp) 248 return failure(); 249 if (failed(marker.checkAndNotify(rewriter, linalgOp))) 250 return failure(); 251 if (failed(interchangeGenericLinalgOpPrecondition(op, interchangeVector))) 252 return failure(); 253 254 // TODO: figure out how this interplays with named ops. In particular this 255 // should break the named op property. 256 rewriter.updateRootInPlace(op, [&]() { 257 interchange(linalgOp, interchangeVector); 258 // New marker if specified. 259 marker.replaceLinalgMarker(rewriter, op); 260 }); 261 return success(); 262 } 263 264 mlir::linalg::LinalgBasePromotionPattern::LinalgBasePromotionPattern( 265 StringRef opName, MLIRContext *context, LinalgPromotionOptions options, 266 LinalgMarker marker, PatternBenefit benefit) 267 : RewritePattern(opName, {}, benefit, context), marker(marker), 268 options(options) {} 269 270 LogicalResult mlir::linalg::LinalgBasePromotionPattern::matchAndRewrite( 271 Operation *op, PatternRewriter &rewriter) const { 272 if (failed(marker.checkAndNotify(rewriter, op))) 273 return failure(); 274 if (failed(promoteSubviewsPrecondition(op, options))) 275 return failure(); 276 277 // TODO: We cannot use root update here. This pattern is creating other ops, 278 // so if the promotion fails, those need to be cleaned up, which doesnt seem 279 // to be happening here. So to fail properly, we should be cloning the op and 280 // deleting the previous op. This needs more investigation. 281 rewriter.startRootUpdate(op); 282 Optional<LinalgOp> promotedOp = promoteSubViews(rewriter, op, options); 283 if (!promotedOp) { 284 rewriter.cancelRootUpdate(op); 285 return op->emitError("subview promotion failed"); 286 } 287 rewriter.finalizeRootUpdate(op); 288 marker.replaceLinalgMarker(rewriter, op); 289 return success(); 290 } 291 292 mlir::linalg::LinalgBaseVectorizationPattern::LinalgBaseVectorizationPattern( 293 StringRef opName, MLIRContext *context, LinalgMarker marker, 294 PatternBenefit benefit) 295 : RewritePattern(opName, {}, benefit, context), marker(marker) {} 296 297 LogicalResult mlir::linalg::LinalgBaseVectorizationPattern::matchAndRewrite( 298 Operation *op, PatternRewriter &rewriter) const { 299 LinalgOp linalgOp = dyn_cast<LinalgOp>(op); 300 if (!linalgOp) 301 return failure(); 302 if (failed(marker.checkAndNotify(rewriter, linalgOp))) 303 return failure(); 304 if (failed(vectorizeLinalgOpPrecondition(op))) 305 return failure(); 306 vectorizeLinalgOp(rewriter, op); 307 rewriter.eraseOp(op); 308 return success(); 309 } 310 311 LogicalResult mlir::linalg::applyStagedPatterns( 312 Operation *op, ArrayRef<FrozenRewritePatternList> stage1Patterns, 313 const FrozenRewritePatternList &stage2Patterns, 314 function_ref<LogicalResult(Operation *)> stage3Lambda) { 315 unsigned iteration = 0; 316 (void)iteration; 317 for (const auto &patterns : stage1Patterns) { 318 LLVM_DEBUG(DBGS() << "Before 1st stage, iter: " << ++iteration << "\n" 319 << *op); 320 if (failed(applyPatternsAndFoldGreedily(op, patterns))) { 321 LLVM_DEBUG(DBGS() << "Underlying first stage rewrite did not converge"); 322 return failure(); 323 } 324 LLVM_DEBUG(DBGS() << "After 1st stage, iter: " << ++iteration << "\n" 325 << *op); 326 if (failed(applyPatternsAndFoldGreedily(op, stage2Patterns))) { 327 LLVM_DEBUG(DBGS() << "Underlying 2nd stage rewrite did not converge"); 328 return failure(); 329 } 330 LLVM_DEBUG(DBGS() << "After 2nd stage, iter : " << iteration << "\n" 331 << *op); 332 if (stage3Lambda) { 333 if (failed(stage3Lambda(op))) 334 return failure(); 335 LLVM_DEBUG(DBGS() << "After 3rd stage, iter : " << iteration << "\n" 336 << *op); 337 } 338 } 339 return success(); 340 } 341 342 /// Traverse `e` and return an AffineExpr where all occurrences of `dim` have 343 /// been replaced by either: 344 /// - `min` if `positivePath` is true when we reach an occurrence of `dim` 345 /// - `max` if `positivePath` is true when we reach an occurrence of `dim` 346 /// `positivePath` is negated each time we hit a multiplicative or divisive 347 /// binary op with a constant negative coefficient. 348 static AffineExpr substWithMin(AffineExpr e, AffineExpr dim, AffineExpr min, 349 AffineExpr max, bool positivePath = true) { 350 if (e == dim) 351 return positivePath ? min : max; 352 if (auto bin = e.dyn_cast<AffineBinaryOpExpr>()) { 353 AffineExpr lhs = bin.getLHS(); 354 AffineExpr rhs = bin.getRHS(); 355 if (bin.getKind() == mlir::AffineExprKind::Add) 356 return substWithMin(lhs, dim, min, max, positivePath) + 357 substWithMin(rhs, dim, min, max, positivePath); 358 359 auto c1 = bin.getLHS().dyn_cast<AffineConstantExpr>(); 360 auto c2 = bin.getRHS().dyn_cast<AffineConstantExpr>(); 361 if (c1 && c1.getValue() < 0) 362 return getAffineBinaryOpExpr( 363 bin.getKind(), c1, substWithMin(rhs, dim, min, max, !positivePath)); 364 if (c2 && c2.getValue() < 0) 365 return getAffineBinaryOpExpr( 366 bin.getKind(), substWithMin(lhs, dim, min, max, !positivePath), c2); 367 return getAffineBinaryOpExpr( 368 bin.getKind(), substWithMin(lhs, dim, min, max, positivePath), 369 substWithMin(rhs, dim, min, max, positivePath)); 370 } 371 return e; 372 } 373 374 /// Given the `lbVal`, `ubVal` and `stepVal` of a loop, append `lbVal` and 375 /// `ubVal` to `dims` and `stepVal` to `symbols`. 376 /// Create new AffineDimExpr (`%lb` and `%ub`) and AffineSymbolExpr (`%step`) 377 /// with positions matching the newly appended values. Substitute occurrences of 378 /// `dimExpr` by either the min expression (i.e. `%lb`) or the max expression 379 /// (i.e. `%lb + %step * floordiv(%ub -1 - %lb, %step)`), depending on whether 380 /// the induction variable is used with a positive or negative coefficient. 381 static AffineExpr substituteLoopInExpr(AffineExpr expr, AffineExpr dimExpr, 382 Value lbVal, Value ubVal, Value stepVal, 383 SmallVectorImpl<Value> &dims, 384 SmallVectorImpl<Value> &symbols) { 385 MLIRContext *ctx = lbVal.getContext(); 386 AffineExpr lb = getAffineDimExpr(dims.size(), ctx); 387 dims.push_back(lbVal); 388 AffineExpr ub = getAffineDimExpr(dims.size(), ctx); 389 dims.push_back(ubVal); 390 AffineExpr step = getAffineSymbolExpr(symbols.size(), ctx); 391 symbols.push_back(stepVal); 392 LLVM_DEBUG(DBGS() << "Before: " << expr << "\n"); 393 AffineExpr ee = substWithMin(expr, dimExpr, lb, 394 lb + step * ((ub - 1) - lb).floorDiv(step)); 395 LLVM_DEBUG(DBGS() << "After: " << expr << "\n"); 396 return ee; 397 } 398 399 /// Traverse the `dims` and substitute known min or max expressions in place of 400 /// induction variables in `exprs`. 401 static AffineMap substitute(AffineMap map, SmallVectorImpl<Value> &dims, 402 SmallVectorImpl<Value> &symbols) { 403 auto exprs = llvm::to_vector<4>(map.getResults()); 404 for (AffineExpr &expr : exprs) { 405 bool substituted = true; 406 while (substituted) { 407 substituted = false; 408 for (unsigned dimIdx = 0; dimIdx < dims.size(); ++dimIdx) { 409 Value dim = dims[dimIdx]; 410 AffineExpr dimExpr = getAffineDimExpr(dimIdx, expr.getContext()); 411 LLVM_DEBUG(DBGS() << "Subst: " << dim << " @ " << dimExpr << "\n"); 412 AffineExpr substitutedExpr; 413 if (auto forOp = scf::getForInductionVarOwner(dim)) 414 substitutedExpr = substituteLoopInExpr( 415 expr, dimExpr, forOp.lowerBound(), forOp.upperBound(), 416 forOp.step(), dims, symbols); 417 418 if (auto parallelForOp = scf::getParallelForInductionVarOwner(dim)) 419 for (unsigned idx = 0, e = parallelForOp.getNumLoops(); idx < e; 420 ++idx) 421 substitutedExpr = substituteLoopInExpr( 422 expr, dimExpr, parallelForOp.lowerBound()[idx], 423 parallelForOp.upperBound()[idx], parallelForOp.step()[idx], 424 dims, symbols); 425 426 if (!substitutedExpr) 427 continue; 428 429 substituted = (substitutedExpr != expr); 430 expr = substitutedExpr; 431 } 432 } 433 434 // Cleanup and simplify the results. 435 // This needs to happen outside of the loop iterating on dims.size() since 436 // it modifies dims. 437 SmallVector<Value, 4> operands(dims.begin(), dims.end()); 438 operands.append(symbols.begin(), symbols.end()); 439 auto map = AffineMap::get(dims.size(), symbols.size(), exprs, 440 exprs.front().getContext()); 441 442 LLVM_DEBUG(DBGS() << "Map to simplify: " << map << "\n"); 443 444 // Pull in affine.apply operations and compose them fully into the 445 // result. 446 fullyComposeAffineMapAndOperands(&map, &operands); 447 canonicalizeMapAndOperands(&map, &operands); 448 map = simplifyAffineMap(map); 449 // Assign the results. 450 exprs.assign(map.getResults().begin(), map.getResults().end()); 451 dims.assign(operands.begin(), operands.begin() + map.getNumDims()); 452 symbols.assign(operands.begin() + map.getNumDims(), operands.end()); 453 454 LLVM_DEBUG(DBGS() << "Map simplified: " << map << "\n"); 455 } 456 457 assert(!exprs.empty() && "Unexpected empty exprs"); 458 return AffineMap::get(dims.size(), symbols.size(), exprs, map.getContext()); 459 } 460 461 LogicalResult AffineMinSCFCanonicalizationPattern::matchAndRewrite( 462 AffineMinOp minOp, PatternRewriter &rewriter) const { 463 LLVM_DEBUG(DBGS() << "Canonicalize AffineMinSCF: " << *minOp.getOperation() 464 << "\n"); 465 466 SmallVector<Value, 4> dims(minOp.getDimOperands()), 467 symbols(minOp.getSymbolOperands()); 468 AffineMap map = substitute(minOp.getAffineMap(), dims, symbols); 469 470 LLVM_DEBUG(DBGS() << "Resulting map: " << map << "\n"); 471 472 // Check whether any of the expressions, when subtracted from all other 473 // expressions, produces only >= 0 constants. If so, it is the min. 474 for (auto e : minOp.getAffineMap().getResults()) { 475 LLVM_DEBUG(DBGS() << "Candidate min: " << e << "\n"); 476 if (!e.isSymbolicOrConstant()) 477 continue; 478 479 auto isNonPositive = [](AffineExpr e) { 480 if (auto cst = e.dyn_cast<AffineConstantExpr>()) 481 return cst.getValue() < 0; 482 return true; 483 }; 484 485 // Build the subMap and check everything is statically known to be 486 // positive. 487 SmallVector<AffineExpr, 4> subExprs; 488 subExprs.reserve(map.getNumResults()); 489 for (auto ee : map.getResults()) 490 subExprs.push_back(ee - e); 491 MLIRContext *ctx = minOp.getContext(); 492 AffineMap subMap = simplifyAffineMap( 493 AffineMap::get(map.getNumDims(), map.getNumSymbols(), subExprs, ctx)); 494 LLVM_DEBUG(DBGS() << "simplified subMap: " << subMap << "\n"); 495 if (llvm::any_of(subMap.getResults(), isNonPositive)) 496 continue; 497 498 // Static min found. 499 if (auto cst = e.dyn_cast<AffineConstantExpr>()) { 500 rewriter.replaceOpWithNewOp<ConstantIndexOp>(minOp, cst.getValue()); 501 } else { 502 auto resultMap = AffineMap::get(0, map.getNumSymbols(), {e}, ctx); 503 SmallVector<Value, 4> resultOperands = dims; 504 resultOperands.append(symbols.begin(), symbols.end()); 505 canonicalizeMapAndOperands(&resultMap, &resultOperands); 506 resultMap = simplifyAffineMap(resultMap); 507 rewriter.replaceOpWithNewOp<AffineApplyOp>(minOp, resultMap, 508 resultOperands); 509 } 510 return success(); 511 } 512 513 return failure(); 514 } 515