1 //===- LinalgTransforms.cpp - Linalg transformations as patterns ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements logic and helpers to expose Linalg transforms as rewrite 10 // patterns. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 15 #include "mlir/Dialect/Affine/Utils.h" 16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 17 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" 18 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 19 #include "mlir/Dialect/Linalg/Transforms/HoistPadding.h" 20 #include "mlir/Dialect/Linalg/Utils/Utils.h" 21 #include "mlir/Dialect/SCF/Transforms.h" 22 #include "mlir/Dialect/Tensor/IR/Tensor.h" 23 #include "mlir/Dialect/Utils/StaticValueUtils.h" 24 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 25 #include "mlir/Dialect/Vector/VectorOps.h" 26 #include "mlir/IR/AffineExpr.h" 27 #include "mlir/IR/Matchers.h" 28 #include "mlir/Pass/Pass.h" 29 #include "mlir/Support/LLVM.h" 30 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 31 #include "llvm/ADT/ScopeExit.h" 32 #include "llvm/ADT/TypeSwitch.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include <type_traits> 36 37 #define DEBUG_TYPE "linalg-transforms" 38 39 using namespace mlir; 40 using namespace mlir::linalg; 41 42 #define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE << "]: ") 43 44 //===----------------------------------------------------------------------===// 45 // Transformations exposed as rewrite patterns. 46 //===----------------------------------------------------------------------===// 47 // Marker used as attribute name in generated Linalg rewriting transformations. 48 const StringLiteral mlir::linalg::LinalgTransforms::kLinalgTransformMarker = 49 "__internal_linalg_transform__"; 50 51 mlir::linalg::LinalgTransformationFilter::LinalgTransformationFilter( 52 ArrayRef<StringAttr> matchDisjunction, Optional<StringAttr> replacement) 53 : matchDisjunction(matchDisjunction.begin(), matchDisjunction.end()), 54 replacement(replacement), matchByDefault(false) {} 55 56 mlir::linalg::LinalgTransformationFilter::LinalgTransformationFilter( 57 FilterFunction f, ArrayRef<StringAttr> matchDisjunction, 58 Optional<StringAttr> replacement) 59 : filters(), 60 matchDisjunction(matchDisjunction.begin(), matchDisjunction.end()), 61 replacement(replacement), matchByDefault(false) { 62 if (f) 63 filters.push_back(f); 64 } 65 66 LogicalResult mlir::linalg::LinalgTransformationFilter::checkAndNotify( 67 PatternRewriter &rewriter, Operation *op) const { 68 if (llvm::any_of(filters, 69 [&](const FilterFunction &f) { return failed(f(op)); })) 70 return failure(); 71 72 auto attr = op->template getAttrOfType<StringAttr>( 73 LinalgTransforms::kLinalgTransformMarker); 74 75 if (!attr) { 76 // 1. Has no filter case and matchDisjunction is empty. 77 if (matchDisjunction.empty() || matchByDefault) 78 return success(); 79 80 // 2. Has no filter but was expecting a filter. 81 return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) { 82 diag << " does not have any filter from list: "; 83 interleaveComma(matchDisjunction, diag); 84 }); 85 } 86 87 // 4. Match explicit filter. 88 for (auto filter : matchDisjunction) 89 if (attr.getValue() == filter) 90 return success(); 91 92 // 5. Fail to match. 93 return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) { 94 diag << " does not have any filter from list: "; 95 interleaveComma(matchDisjunction, diag); 96 }); 97 } 98 99 void mlir::linalg::LinalgTransformationFilter:: 100 replaceLinalgTransformationFilter(PatternRewriter &rewriter, 101 Operation *op) const { 102 if (replacement.hasValue()) 103 op->setAttr(LinalgTransforms::kLinalgTransformMarker, 104 replacement.getValue()); 105 else 106 op->removeAttr( 107 rewriter.getStringAttr(LinalgTransforms::kLinalgTransformMarker)); 108 } 109 110 bool mlir::linalg::LinalgTransformationFilter::hasReplacementFilter( 111 Operation *op) const { 112 if (!replacement) 113 return false; 114 auto attr = op->getAttr(LinalgTransforms::kLinalgTransformMarker) 115 .dyn_cast<StringAttr>(); 116 return attr && attr == replacement.getValue(); 117 } 118 119 LinalgTilingOptions & 120 mlir::linalg::LinalgTilingOptions::setTileSizes(ArrayRef<int64_t> ts) { 121 assert(!tileSizeComputationFunction && "tile sizes already set"); 122 SmallVector<int64_t, 4> tileSizes(ts.begin(), ts.end()); 123 tileSizeComputationFunction = [tileSizes](OpBuilder &b, Operation *op) { 124 OpBuilder::InsertionGuard guard(b); 125 b.setInsertionPointToStart( 126 &op->getParentOfType<FuncOp>().getBody().front()); 127 return llvm::to_vector<4>(map_range(tileSizes, [&](int64_t s) { 128 Value v = b.create<arith::ConstantIndexOp>(op->getLoc(), s); 129 return v; 130 })); 131 }; 132 return *this; 133 } 134 135 LinalgTilingOptions &mlir::linalg::LinalgTilingOptions::scalarizeDynamicDims() { 136 assert(!tileSizeComputationFunction && "tile sizes already set"); 137 tileSizeComputationFunction = [](OpBuilder &b, Operation *op) { 138 SmallVector<Value, 4> tileSizes; 139 auto linalgOp = dyn_cast<LinalgOp>(op); 140 if (!linalgOp) 141 return tileSizes; 142 Location loc = linalgOp.getLoc(); 143 auto allShapeSizes = linalgOp.createFlatListOfOperandDims(b, loc); 144 AffineMap map = linalgOp.getShapesToLoopsMap(); 145 if (!map) 146 return tileSizes; 147 auto shapeSizes = applyMapToValues(b, loc, map, allShapeSizes); 148 // If the shape size is dynamic, tile by 1. Otherwise, do not tile (tile 149 // size 0). 150 for (Value shapeSize : shapeSizes) 151 tileSizes.push_back(getConstantIntValue(shapeSize).hasValue() 152 ? b.create<arith::ConstantIndexOp>(loc, 0) 153 : b.create<arith::ConstantIndexOp>(loc, 1)); 154 return tileSizes; 155 }; 156 return *this; 157 } 158 159 /// Helper function that tries to pad `opOperand`. Exit early and return success 160 /// for scalar operands or if `paddingFunc` returns failure. Otherwise, try to 161 /// pad the operand even if it already has a static shape. Set `result` to the 162 /// result of the created PadTensorOp or return failure if the operand cannot be 163 /// padded to a static shape. 164 static LogicalResult padOperandToSmallestStaticBoundingBox( 165 OpBuilder &b, linalg::LinalgOp opToPad, OpOperand *opOperand, 166 const PaddingValueComputationFunction &paddingFunc, 167 const PaddingNoFoldComputationFunction &nofoldFunc, Value &result) { 168 // Can't pad scalars. 169 if (opToPad.getShape(opOperand).empty()) 170 return success(); 171 // Can't pad if no padding value is known. 172 FailureOr<Value> paddingValue = paddingFunc(b, *opOperand); 173 if (failed(paddingValue)) 174 return success(); 175 auto sliceOp = opOperand->get().getDefiningOp<tensor::ExtractSliceOp>(); 176 // Not a slice op, cannot construct a static bounding box. 177 if (!sliceOp) 178 return failure(); 179 SmallVector<int64_t> staticSizes; 180 staticSizes.reserve(opToPad.getRank(opOperand)); 181 auto shapedOp = cast<OffsetSizeAndStrideOpInterface>(sliceOp.getOperation()); 182 for (auto size : shapedOp.getMixedSizes()) { 183 // If the size is an attribute add it directly to `staticSizes`. 184 if (size.is<Attribute>()) { 185 staticSizes.push_back( 186 size.get<Attribute>().dyn_cast<IntegerAttr>().getInt()); 187 continue; 188 } 189 // Otherwise, try to compute a constant upper bound for the size value. 190 FailureOr<int64_t> upperBound = 191 getConstantUpperBoundForIndex(size.get<Value>()); 192 if (failed(upperBound)) { 193 LLVM_DEBUG(DBGS() << "No constant bounding box can be found for padding"); 194 return failure(); 195 } 196 staticSizes.push_back(upperBound.getValue()); 197 } 198 auto staticTensorType = RankedTensorType::get( 199 staticSizes, getElementTypeOrSelf(opOperand->get())); 200 bool nofold = nofoldFunc ? nofoldFunc(*opOperand) : false; 201 result = linalg::PadTensorOp::createPadHighOp( 202 staticTensorType, opOperand->get(), paddingValue.getValue(), 203 /*nofold=*/nofold, opToPad->getLoc(), b); 204 return success(); 205 } 206 207 FailureOr<SmallVector<Value>> 208 linalg::rewriteAsPaddedOp(OpBuilder &b, LinalgOp opToPad, 209 const PaddingValueComputationFunction &paddingFunc, 210 const PaddingNoFoldComputationFunction &nofoldFunc, 211 LinalgOp &paddedOp) { 212 Location loc = opToPad->getLoc(); 213 214 // TODO: there are cases where we may still want to pad to larger sizes. 215 assert(opToPad.hasTensorSemantics() && 216 "expected operation to have tensor semantics"); 217 218 OpBuilder::InsertionGuard g(b); 219 // Set IP after op because we also take the dims of the original output. 220 b.setInsertionPointAfter(opToPad); 221 // Make a copy of the shaped operands and update it. 222 SmallVector<Value> newOperands; 223 newOperands.reserve(opToPad.getNumInputsAndOutputs()); 224 for (OpOperand *opOperand : opToPad.getInputAndOutputOperands()) { 225 Value paddedOperand; 226 // If padding was requested but the shape cannot be bounded statically then 227 // the pattern fails to apply. 228 if (failed(padOperandToSmallestStaticBoundingBox( 229 b, opToPad, opOperand, paddingFunc, nofoldFunc, paddedOperand))) 230 return failure(); 231 newOperands.push_back(paddedOperand ? paddedOperand : opOperand->get()); 232 } 233 234 SmallVector<SmallVector<Value>> reifiedResultShapes; 235 if (failed(cast<ReifyRankedShapedTypeOpInterface>(opToPad.getOperation()) 236 .reifyResultShapes(b, reifiedResultShapes))) 237 return failure(); 238 assert(reifiedResultShapes.size() == opToPad->getNumResults() && 239 "expected same number of results"); 240 241 // Clone `opToPad` to operate on the statically padded shapes. 242 auto resultTensorTypes = 243 ValueRange(newOperands).take_back(opToPad.getNumOutputs()).getTypes(); 244 paddedOp = opToPad.clone(b, loc, resultTensorTypes, newOperands); 245 246 // Recover the slice out of the new static results. This keeps the original 247 // linalg op around because it uses the dims of the original results. 248 SmallVector<Value> paddedSubviewResults; 249 paddedSubviewResults.reserve(opToPad->getNumResults()); 250 for (auto en : llvm::enumerate(paddedOp->getResults())) { 251 Value paddedResult = en.value(); 252 int64_t resultNumber = en.index(); 253 int64_t rank = paddedResult.getType().cast<RankedTensorType>().getRank(); 254 SmallVector<OpFoldResult> offsets(rank, b.getIndexAttr(0)); 255 SmallVector<OpFoldResult> sizes; 256 for (Value v : reifiedResultShapes[resultNumber]) 257 sizes.push_back(v); 258 SmallVector<OpFoldResult> strides(rank, b.getIndexAttr(1)); 259 paddedSubviewResults.push_back(b.create<tensor::ExtractSliceOp>( 260 loc, paddedResult, offsets, sizes, strides)); 261 } 262 return paddedSubviewResults; 263 } 264 265 /// Linalg base tiling pattern. 266 mlir::linalg::LinalgBaseTilingPattern::LinalgBaseTilingPattern( 267 StringRef opName, MLIRContext *context, LinalgTilingOptions options, 268 LinalgTransformationFilter filter, PatternBenefit benefit) 269 : RewritePattern(opName, benefit, context), filter(filter), 270 options(options) {} 271 272 mlir::linalg::LinalgBaseTilingPattern::LinalgBaseTilingPattern( 273 MLIRContext *context, LinalgTilingOptions options, 274 LinalgTransformationFilter filter, PatternBenefit benefit) 275 : RewritePattern(MatchAnyOpTypeTag(), benefit, context), filter(filter), 276 options(options) {} 277 278 /// Try to peel a loop `op` and return the new result. 279 // TODO: Add support for scf.parallel and affine.for loops. 280 static SmallVector<Value, 4> peelLoop(RewriterBase &rewriter, Operation *op) { 281 return llvm::TypeSwitch<Operation *, SmallVector<Value, 4>>(op) 282 .Case<scf::ForOp>([&](scf::ForOp forOp) { 283 scf::ForOp partialIteration; 284 if (succeeded(scf::peelAndCanonicalizeForLoop(rewriter, forOp, 285 partialIteration))) 286 return partialIteration->getResults(); 287 assert(!partialIteration && "expected that loop was not peeled"); 288 return forOp->getResults(); 289 }) 290 .Default([&](Operation *op) { return op->getResults(); }); 291 } 292 293 /// Try to peel a TiledLoopOp and return the new result. 294 static SmallVector<Value, 4> peelLoop(RewriterBase &rewriter, 295 TiledLoopOp tiledLoop, int64_t idx) { 296 assert(idx < static_cast<int64_t>(tiledLoop.iterator_types().size()) && 297 "requested peeling of non-existing loop"); 298 TiledLoopOp result; 299 if (succeeded(peelAndCanonicalizeTiledLoop(rewriter, tiledLoop, idx, result))) 300 return result->getResults(); 301 assert(!result && "expected that loop was not peeled"); 302 return tiledLoop->getResults(); 303 } 304 305 /// Peel loops after tiling. 306 static void peelLoops(RewriterBase &rewriter, TiledLinalgOp &res, 307 const LinalgTilingOptions &options) { 308 for (int64_t loop : options.peeledLoops) { 309 assert(loop < static_cast<int64_t>(res.loops.size()) && 310 "requested peeling of non-existing loop"); 311 SmallVector<Value, 4> loopResults; 312 Operation *loopOp = res.loops[loop]; 313 if (options.loopType == LinalgTilingLoopType::TiledLoops) { 314 assert(llvm::all_of( 315 res.loops, 316 [&](Operation *op) { return op == res.loops.front(); }) && 317 "expected that all loop ops are the same TiledLoopOp"); 318 auto tiledLoopOp = dyn_cast<TiledLoopOp>(loopOp); 319 assert(tiledLoopOp && "expected TiledLoopOp"); 320 loopResults = peelLoop(rewriter, tiledLoopOp, loop); 321 } else { 322 loopResults = peelLoop(rewriter, loopOp); 323 } 324 325 // The result of the loop nest may change with peeling. 326 if (res.tensorResults.size() == loopOp->getNumResults() && 327 std::equal(res.tensorResults.begin(), res.tensorResults.end(), 328 loopOp->getResults().begin())) 329 res.tensorResults = loopResults; 330 } 331 } 332 333 LogicalResult mlir::linalg::LinalgBaseTilingPattern::matchAndRewriteBase( 334 Operation *op, PatternRewriter &rewriter, TiledLinalgOp &result) const { 335 LinalgOp linalgOp = dyn_cast<LinalgOp>(op); 336 if (!linalgOp) 337 return failure(); 338 if (failed(filter.checkAndNotify(rewriter, linalgOp))) 339 return failure(); 340 341 Optional<TiledLinalgOp> res = tileLinalgOp(rewriter, linalgOp, options); 342 343 if (!res) 344 return failure(); 345 // Clear filter to stop recursive pattern application. 346 filter.replaceLinalgTransformationFilter(rewriter, res->op); 347 348 // Peel loops. 349 peelLoops(rewriter, *res, options); 350 351 result = *res; 352 return success(); 353 } 354 355 static ValueRange getTiledOpResult(TiledLinalgOp tiledOp) { 356 if (tiledOp.loops.empty()) 357 return tiledOp.op.getOperation()->getResults(); 358 return tiledOp.loops.front()->getResults(); 359 } 360 361 static ValueRange 362 getTiledAndFusedOpResult(TiledAndFusedLinalgOps tiledAndFusedOp) { 363 if (tiledAndFusedOp.fusedLoops.empty()) 364 return tiledAndFusedOp.op.getOperation()->getResults(); 365 return tiledAndFusedOp.fusedLoops.front()->getResults(); 366 } 367 368 mlir::linalg::LinalgBaseTileAndFusePattern::LinalgBaseTileAndFusePattern( 369 StringRef opName, MLIRContext *context, 370 const LinalgDependenceGraph &dependenceGraph, 371 LinalgTilingOptions tilingOptions, LinalgFusionOptions fusionOptions, 372 LinalgTransformationFilter filter, LinalgTransformationFilter fusedOpMarker, 373 LinalgTransformationFilter originalOpMarker, PatternBenefit benefit) 374 : RewritePattern(opName, benefit, context, {}), 375 dependenceGraph(dependenceGraph), tilingOptions(tilingOptions), 376 fusionOptions(fusionOptions), filter(filter), 377 fusedOpMarker(fusedOpMarker), originalOpMarker(originalOpMarker) {} 378 379 LogicalResult mlir::linalg::LinalgBaseTileAndFusePattern::matchAndRewrite( 380 Operation *op, PatternRewriter &rewriter) const { 381 LinalgOp linalgOp = dyn_cast<LinalgOp>(op); 382 // TODO: remove hasIndexSemantics check once index ops are supported. 383 if (!linalgOp || linalgOp.hasIndexSemantics()) 384 return failure(); 385 if (failed(filter.checkAndNotify(rewriter, linalgOp))) 386 return failure(); 387 388 DenseSet<Operation *> producers; 389 producers.insert(linalgOp); 390 for (auto dependence : dependenceGraph.getDependentOperationsInto(linalgOp)) { 391 Optional<unsigned> operandNumber = dependence.getIndexingOpViewOperandNum(); 392 // When looking at dependences into, indexingOp is always OpOperand. We 393 // could assert, but continue if this is not the case. 394 if (!operandNumber) 395 continue; 396 if (!fusionOptions.indicesToFuse.count(operandNumber.getValue())) 397 continue; 398 if (isa<LinalgOp>(dependence.getDependentOp())) 399 producers.insert(dependence.getDependentOp()); 400 } 401 402 SmallVector<LinalgOp, 1> fusionOps; 403 for (auto it = op->getBlock()->begin(), ie = Block::iterator(op); it != ie; 404 ++it) { 405 auto producerLinalgOp = dyn_cast<LinalgOp>(&(*it)); 406 if (producerLinalgOp && producers.count(producerLinalgOp)) 407 fusionOps.push_back(producerLinalgOp); 408 } 409 fusionOps.push_back(linalgOp); 410 411 SmallVector<Value, 4> tileSizes = 412 tilingOptions.tileSizeComputationFunction(rewriter, op); 413 LinalgTilingOptions instanceTilingOptions = tilingOptions; 414 instanceTilingOptions.setTileSizes(tileSizes); 415 Optional<TiledAndFusedLinalgOps> tiledAndFusedOps = tileAndFuseLinalgOps( 416 rewriter, fusionOps, dependenceGraph, instanceTilingOptions); 417 if (!tiledAndFusedOps) 418 return failure(); 419 420 // Tile the unfused loops; 421 SmallVector<Value, 4> unfusedLoopTileSizes; 422 Value zero = rewriter.create<arith::ConstantIndexOp>(op->getLoc(), 0); 423 for (auto tileSize : enumerate(tileSizes)) { 424 if (tiledAndFusedOps->fusedLoopDims.count(tileSize.index())) 425 unfusedLoopTileSizes.push_back(zero); 426 else 427 unfusedLoopTileSizes.push_back(tileSize.value()); 428 } 429 // Tile the loop only if there is a non-zero tile size. 430 if (unfusedLoopTileSizes.size() > linalgOp.getNumLoops()) 431 unfusedLoopTileSizes.resize(linalgOp.getNumLoops()); 432 if (llvm::any_of(unfusedLoopTileSizes, [](Value val) { 433 if (auto cst = val.getDefiningOp<arith::ConstantIndexOp>()) 434 return cst.value() != 0; 435 return true; 436 })) { 437 LinalgTilingOptions unfusedTilingOptions = tilingOptions; 438 unfusedTilingOptions.setTileSizes(unfusedLoopTileSizes); 439 Optional<TiledLinalgOp> unfusedTiledOp = 440 tileLinalgOp(rewriter, tiledAndFusedOps->op, unfusedTilingOptions); 441 if (!unfusedTiledOp) 442 return failure(); 443 rewriter.replaceOp(tiledAndFusedOps->op, 444 getTiledOpResult(unfusedTiledOp.getValue())); 445 tiledAndFusedOps->op = unfusedTiledOp->op; 446 } 447 op->replaceAllUsesWith(getTiledAndFusedOpResult(tiledAndFusedOps.getValue())); 448 449 filter.replaceLinalgTransformationFilter(rewriter, 450 tiledAndFusedOps->op.getOperation()); 451 for (auto fusedOp : tiledAndFusedOps->fusedProducers) { 452 fusedOpMarker.replaceLinalgTransformationFilter(rewriter, 453 fusedOp.getOperation()); 454 } 455 for (auto origProducerOp : ArrayRef<LinalgOp>(fusionOps).drop_back()) { 456 originalOpMarker.replaceLinalgTransformationFilter( 457 rewriter, origProducerOp.getOperation()); 458 } 459 rewriter.updateRootInPlace(op, [&]() { 460 originalOpMarker.replaceLinalgTransformationFilter(rewriter, op); 461 }); 462 return success(); 463 } 464 465 /// Linalg padding pattern. 466 mlir::linalg::LinalgPaddingPattern::LinalgPaddingPattern( 467 MLIRContext *context, LinalgPaddingOptions options, 468 LinalgTransformationFilter filter, PatternBenefit benefit) 469 : RewritePattern(MatchAnyOpTypeTag(), benefit, context), filter(filter), 470 options(options) {} 471 472 mlir::linalg::LinalgPaddingPattern::LinalgPaddingPattern( 473 StringRef opName, MLIRContext *context, LinalgPaddingOptions options, 474 LinalgTransformationFilter filter, PatternBenefit benefit) 475 : RewritePattern(opName, benefit, context, {}), filter(filter), 476 options(options) {} 477 478 LogicalResult mlir::linalg::LinalgPaddingPattern::matchAndRewrite( 479 Operation *op, PatternRewriter &rewriter) const { 480 LinalgOp linalgOp = dyn_cast<LinalgOp>(op); 481 if (!linalgOp) 482 return failure(); 483 if (!linalgOp.hasTensorSemantics()) 484 return failure(); 485 if (failed(filter.checkAndNotify(rewriter, op))) 486 return failure(); 487 488 // Pad the operation. 489 LinalgOp paddedOp; 490 FailureOr<SmallVector<Value>> newResults = rewriteAsPaddedOp( 491 rewriter, linalgOp, options.paddingValueComputationFunction, 492 options.paddingNoFoldComputationFunction, paddedOp); 493 if (failed(newResults)) 494 return failure(); 495 496 // Compute the desired hoisting depths. 497 SmallVector<int64_t> depths; 498 if (options.paddingHoistComputationFunction) { 499 for (OpOperand *opOperand : linalgOp.getInputAndOutputOperands()) 500 depths.push_back(options.paddingHoistComputationFunction(*opOperand)); 501 } 502 503 // Hoist the padding. 504 for (auto en : enumerate(depths)) { 505 OpOperand &opOperand = paddedOp->getOpOperand(en.index()); 506 auto padTensorOp = opOperand.get().getDefiningOp<PadTensorOp>(); 507 if (!padTensorOp || en.value() == 0) 508 continue; 509 PadTensorOp hoistedOp; 510 FailureOr<Value> newResult = 511 hoistPaddingOnTensors(padTensorOp, en.value(), hoistedOp); 512 if (failed(newResult)) 513 continue; 514 rewriter.replaceOp(padTensorOp, newResult.getValue()); 515 } 516 517 // Replace the original operation to pad. 518 rewriter.replaceOp(op, newResults.getValue()); 519 filter.replaceLinalgTransformationFilter(rewriter, paddedOp); 520 return success(); 521 } 522 523 /// Linalg generic interchange pattern. 524 mlir::linalg::GenericOpInterchangePattern::GenericOpInterchangePattern( 525 MLIRContext *context, ArrayRef<unsigned> interchangeVector, 526 LinalgTransformationFilter filter, PatternBenefit benefit) 527 : OpRewritePattern(context, benefit), filter(filter), 528 interchangeVector(interchangeVector.begin(), interchangeVector.end()) {} 529 530 LogicalResult mlir::linalg::GenericOpInterchangePattern::matchAndRewrite( 531 GenericOp genericOp, PatternRewriter &rewriter) const { 532 if (failed(filter.checkAndNotify(rewriter, genericOp))) 533 return failure(); 534 if (failed(interchangeGenericOpPrecondition(genericOp, interchangeVector))) 535 return failure(); 536 537 // TODO: figure out how this interplays with named ops. In particular this 538 // should break the named op property. 539 rewriter.updateRootInPlace(genericOp, [&]() { 540 interchangeGenericOp(rewriter, genericOp, interchangeVector); 541 // New filter if specified. 542 filter.replaceLinalgTransformationFilter(rewriter, genericOp); 543 }); 544 return success(); 545 } 546 547 /// Linalg generalization pattern. 548 mlir::linalg::LinalgGeneralizationPattern::LinalgGeneralizationPattern( 549 MLIRContext *context, LinalgTransformationFilter filter, 550 PatternBenefit benefit) 551 : RewritePattern(MatchAnyOpTypeTag(), benefit, context), filter(filter) {} 552 553 mlir::linalg::LinalgGeneralizationPattern::LinalgGeneralizationPattern( 554 StringRef opName, MLIRContext *context, LinalgTransformationFilter filter, 555 PatternBenefit benefit) 556 : RewritePattern(opName, benefit, context, {}), filter(filter) {} 557 558 LogicalResult mlir::linalg::LinalgGeneralizationPattern::matchAndRewrite( 559 Operation *op, PatternRewriter &rewriter) const { 560 if (failed(filter.checkAndNotify(rewriter, op))) 561 return failure(); 562 if (failed(generalizeNamedOpPrecondition(op))) 563 return failure(); 564 565 GenericOp genericOp = generalizeNamedOp(rewriter, op); 566 rewriter.replaceOp(op, genericOp.getResults()); 567 filter.replaceLinalgTransformationFilter(rewriter, genericOp); 568 return success(); 569 } 570 571 mlir::linalg::LinalgBasePromotionPattern::LinalgBasePromotionPattern( 572 MLIRContext *context, LinalgTransformationFilter filter, 573 LinalgPromotionOptions options, PatternBenefit benefit) 574 : RewritePattern(MatchAnyOpTypeTag(), benefit, context), filter(filter), 575 options(options) {} 576 577 mlir::linalg::LinalgBasePromotionPattern::LinalgBasePromotionPattern( 578 StringRef opName, MLIRContext *context, LinalgPromotionOptions options, 579 LinalgTransformationFilter filter, PatternBenefit benefit) 580 : RewritePattern(opName, benefit, context, {}), filter(filter), 581 options(options) {} 582 583 LogicalResult mlir::linalg::LinalgBasePromotionPattern::matchAndRewrite( 584 Operation *op, PatternRewriter &rewriter) const { 585 if (failed(filter.checkAndNotify(rewriter, op))) 586 return failure(); 587 if (failed(promoteSubviewsPrecondition(op, options))) 588 return failure(); 589 590 // TODO: We cannot use root update here. This pattern is creating other ops, 591 // so if the promotion fails, those need to be cleaned up, which doesnt seem 592 // to be happening here. So to fail properly, we should be cloning the op and 593 // deleting the previous op. This needs more investigation. 594 rewriter.startRootUpdate(op); 595 Optional<LinalgOp> promotedOp = promoteSubViews(rewriter, op, options); 596 if (!promotedOp) { 597 rewriter.cancelRootUpdate(op); 598 return op->emitError("subview promotion failed"); 599 } 600 rewriter.finalizeRootUpdate(op); 601 filter.replaceLinalgTransformationFilter(rewriter, op); 602 return success(); 603 } 604 605 mlir::linalg::LinalgBaseVectorizationPattern::LinalgBaseVectorizationPattern( 606 MLIRContext *context, LinalgTransformationFilter filter, 607 PatternBenefit benefit) 608 : RewritePattern(MatchAnyOpTypeTag(), benefit, context), filter(filter) {} 609 610 mlir::linalg::LinalgBaseVectorizationPattern::LinalgBaseVectorizationPattern( 611 StringRef opName, MLIRContext *context, LinalgTransformationFilter filter, 612 PatternBenefit benefit) 613 : RewritePattern(opName, benefit, context, {}), filter(filter) {} 614 615 LogicalResult mlir::linalg::LinalgBaseVectorizationPattern::matchAndRewrite( 616 Operation *op, PatternRewriter &rewriter) const { 617 LinalgOp linalgOp = dyn_cast<LinalgOp>(op); 618 if (!linalgOp) 619 return failure(); 620 if (failed(filter.checkAndNotify(rewriter, linalgOp))) 621 return failure(); 622 SmallVector<Value> newResults; 623 if (failed(vectorizeLinalgOp(rewriter, op, newResults))) 624 return failure(); 625 if (!newResults.empty()) 626 rewriter.replaceOp(op, newResults); 627 else 628 rewriter.eraseOp(op); 629 return success(); 630 } 631 632 LogicalResult mlir::linalg::applyStagedPatterns( 633 Operation *op, ArrayRef<FrozenRewritePatternSet> stage1Patterns, 634 const FrozenRewritePatternSet &stage2Patterns, 635 function_ref<LogicalResult(Operation *)> stage3Lambda) { 636 unsigned iteration = 0; 637 (void)iteration; 638 for (const auto &patterns : stage1Patterns) { 639 LLVM_DEBUG(DBGS() << "Before 1st stage, iter: " << ++iteration << "\n" 640 << *op); 641 if (failed(applyPatternsAndFoldGreedily(op, patterns))) { 642 LLVM_DEBUG(DBGS() << "Underlying first stage rewrite did not converge"); 643 return failure(); 644 } 645 LLVM_DEBUG(DBGS() << "After 1st stage, iter: " << ++iteration << "\n" 646 << *op); 647 if (failed(applyPatternsAndFoldGreedily(op, stage2Patterns))) { 648 LLVM_DEBUG(DBGS() << "Underlying 2nd stage rewrite did not converge"); 649 return failure(); 650 } 651 LLVM_DEBUG(DBGS() << "After 2nd stage, iter : " << iteration << "\n" 652 << *op); 653 if (stage3Lambda) { 654 if (failed(stage3Lambda(op))) 655 return failure(); 656 LLVM_DEBUG(DBGS() << "After 3rd stage, iter : " << iteration << "\n" 657 << *op); 658 } 659 } 660 return success(); 661 } 662 663 static SmallVector<StringRef> getNParallelLoopsAttrs(unsigned nParallelLoops) { 664 return SmallVector<StringRef>(nParallelLoops, getParallelIteratorTypeName()); 665 } 666 667 /// Rewrite a PadTensorOp into a sequence of InitTensorOp, FillOp (to initialize 668 /// with pad_val) and GenericOp (to copy contents). 669 LogicalResult PadTensorOpTransformationPattern::matchAndRewrite( 670 linalg::PadTensorOp padOp, PatternRewriter &rewriter) const { 671 672 auto inputShapedType = padOp.source().getType().cast<ShapedType>(); 673 auto resultShapedType = padOp.result().getType().cast<ShapedType>(); 674 675 // Bail on non-static shapes. 676 if (!inputShapedType.hasStaticShape()) 677 return failure(); 678 if (!resultShapedType.hasStaticShape()) 679 return failure(); 680 681 // Only support padding with a constant for now, i.e. either: 682 // 1. A BBarg from a different block. 683 // 2. A value defined outside of the current block. 684 Block &block = padOp.region().front(); 685 auto yieldOp = cast<YieldOp>(block.getTerminator()); 686 assert(yieldOp.getNumOperands() == 1 && "expected single operand yield"); 687 Value padValue = yieldOp.values().front(); 688 Operation *definingOp = padValue.getDefiningOp(); 689 if (definingOp && definingOp->getBlock() == &block) 690 return failure(); 691 if (!definingOp && padValue.cast<BlockArgument>().getOwner() == &block) 692 return failure(); 693 694 // Create tensor with the padded shape 695 Location loc = padOp.getLoc(); 696 SmallVector<Value> indices(resultShapedType.getRank(), 697 rewriter.create<arith::ConstantIndexOp>(loc, 0)); 698 Value initTensor = rewriter.create<InitTensorOp>( 699 loc, resultShapedType.getShape(), resultShapedType.getElementType()); 700 701 // Initialize tensor with the pad value 702 Value tmpTensor = 703 rewriter.create<linalg::FillOp>(loc, padValue, initTensor).result(); 704 705 // Copy original contents into new tensor 706 // Uses linalg.generic, but could be done with tensor.insert_slice 707 SmallVector<AffineExpr, 4> outputExprs; 708 for (unsigned i = 0; i < resultShapedType.getRank(); ++i) { 709 outputExprs.push_back(getAffineDimExpr(i, rewriter.getContext()) + 710 padOp.static_low()[i].cast<IntegerAttr>().getInt()); 711 } 712 713 SmallVector<AffineMap, 2> transferMaps = { 714 rewriter.getMultiDimIdentityMap(inputShapedType.getRank()), 715 AffineMap::get(resultShapedType.getRank(), 716 /*symbolCount=*/0, outputExprs, rewriter.getContext())}; 717 718 rewriter.replaceOpWithNewOp<linalg::GenericOp>( 719 padOp, resultShapedType, padOp.source(), tmpTensor, transferMaps, 720 getNParallelLoopsAttrs(resultShapedType.getRank()), 721 [&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange args) { 722 nestedBuilder.create<linalg::YieldOp>(nestedLoc, args[0]); 723 }); 724 725 return success(); 726 } 727 728 /// Filling `dest` using FillOp constant padding value if possible. 729 /// Otherwise, generate a tensor::GenerateOp. 730 Value GeneralizePadTensorOpPattern::createFillOrGenerateOp( 731 PatternRewriter &rewriter, PadTensorOp padOp, Value dest, 732 const SmallVector<Value> &dynSizes) const { 733 auto padValue = padOp.getConstantPaddingValue(); 734 if (padValue) 735 return rewriter.create<FillOp>(padOp.getLoc(), padValue, dest).result(); 736 737 // Fill could not be optimized: Lower to tensor::GenerateOp with region. 738 auto generateOp = rewriter.create<tensor::GenerateOp>( 739 padOp.getLoc(), padOp.getResultType(), dynSizes); 740 // Copy region to new op. 741 BlockAndValueMapping bvm; 742 padOp.region().cloneInto(&generateOp.getRegion(), bvm); 743 // Rewrite linalg::YieldOp to tensor::YieldOp. 744 OpBuilder::InsertionGuard guard(rewriter); 745 auto yieldOp = 746 dyn_cast<linalg::YieldOp>(generateOp.getRegion().front().getTerminator()); 747 assert(yieldOp && "malformed PadTensorOp: expected YieldOp terminator"); 748 assert(yieldOp.values().size() == 1); 749 rewriter.setInsertionPoint(yieldOp); 750 rewriter.replaceOpWithNewOp<tensor::YieldOp>(yieldOp, yieldOp.values()[0]); 751 return generateOp; 752 } 753 754 LogicalResult 755 GeneralizePadTensorOpPattern::matchAndRewrite(PadTensorOp padOp, 756 PatternRewriter &rewriter) const { 757 // Given an OpFoldResult, return an index-typed value. 758 auto getIdxValue = [&](OpFoldResult ofr) { 759 if (auto val = ofr.dyn_cast<Value>()) 760 return val; 761 return rewriter 762 .create<arith::ConstantIndexOp>( 763 padOp.getLoc(), ofr.get<Attribute>().cast<IntegerAttr>().getInt()) 764 .getResult(); 765 }; 766 767 auto resultType = padOp.getResultType(); 768 // Compute size of InitTensorOp. Any combination of static/dynamic is 769 // supported. 770 SmallVector<Value> dynSizes; 771 SmallVector<int64_t> staticSizes; 772 for (unsigned dim = 0; dim < resultType.getRank(); ++dim) { 773 if (resultType.isDynamicDim(dim)) { 774 auto srcSize = rewriter.createOrFold<tensor::DimOp>(padOp.getLoc(), 775 padOp.source(), dim); 776 // Add low and high padding value. 777 auto plusLow = rewriter.createOrFold<arith::AddIOp>( 778 padOp.getLoc(), srcSize, getIdxValue(padOp.getMixedLowPad()[dim])); 779 auto plusHigh = rewriter.createOrFold<arith::AddIOp>( 780 padOp.getLoc(), plusLow, getIdxValue(padOp.getMixedHighPad()[dim])); 781 dynSizes.push_back(plusHigh); 782 } 783 staticSizes.push_back(resultType.getDimSize(dim)); 784 } 785 786 // Init tensor and fill it with padding. 787 Value init = rewriter.create<InitTensorOp>( 788 padOp.getLoc(), dynSizes, staticSizes, resultType.getElementType()); 789 Value fill = createFillOrGenerateOp(rewriter, padOp, init, dynSizes); 790 791 // Try optimize the copy of source. 792 if (optimizeCopyFn && optimizeCopyFn(rewriter, padOp, fill).succeeded()) 793 return success(); 794 795 // PadTensorOps cannot be optimized. Generate a InsertSliceOp instead 796 // for copying the PadOp source. 797 auto sourceType = padOp.getSourceType(); 798 // Compute size of source of PadTensorOp. 799 SmallVector<OpFoldResult> srcSizes; 800 for (unsigned dim = 0; dim < sourceType.getRank(); ++dim) { 801 if (sourceType.isDynamicDim(dim)) { 802 srcSizes.push_back(rewriter.createOrFold<tensor::DimOp>( 803 padOp.getLoc(), padOp.source(), dim)); 804 } else { 805 srcSizes.push_back(rewriter.getIndexAttr(sourceType.getDimSize(dim))); 806 } 807 } 808 // Strides of InsertSliceOp are all 1. 809 SmallVector<OpFoldResult> strides(sourceType.getRank(), 810 rewriter.getIndexAttr(1)); 811 rewriter.replaceOpWithNewOp<tensor::InsertSliceOp>( 812 padOp, padOp.source(), fill, padOp.getMixedLowPad(), srcSizes, strides); 813 814 return success(); 815 } 816 817 LogicalResult ExtractSliceOfPadTensorSwapPattern::matchAndRewrite( 818 tensor::ExtractSliceOp sliceOp, PatternRewriter &rewriter) const { 819 auto padOp = sliceOp.source().getDefiningOp<PadTensorOp>(); 820 if (!padOp) 821 return failure(); 822 // Only unit stride supported. 823 if (!sliceOp.hasUnitStride()) 824 return failure(); 825 826 Operation *tiledPadOp = padOp.getTiledImplementation( 827 rewriter, /*dest=*/ValueRange{}, sliceOp.getMixedOffsets(), 828 sliceOp.getMixedSizes()); 829 // All shapes are static and the data source is actually used. Rewrite into 830 // pad_tensor(subtensor(x)). 831 rewriter.replaceOp(sliceOp, tiledPadOp->getResults()); 832 return success(); 833 } 834 835 namespace { 836 // The following are patterns for downscaling convolution ops with size-1 837 // window dimensions. 838 // 839 // Note that we'd eventually want to write such transformations in a generic 840 // way, e.g., converting to linalg.generic, removing the size-1 dimensions, 841 // and then turning back to named ops. But for now it's fine to have a few 842 // patterns matching special ops to get started. 843 844 /// Rewrites 2-D convolution ops with size-1 window dimensions into 1-D 845 /// convolution ops. 846 struct DownscaleSizeOneWindowed2DConvolution final 847 : public OpRewritePattern<Conv2DNhwcHwcfOp> { 848 using OpRewritePattern::OpRewritePattern; 849 850 LogicalResult matchAndRewrite(linalg::Conv2DNhwcHwcfOp convOp, 851 PatternRewriter &rewriter) const override { 852 auto linalgOp = cast<linalg::LinalgOp>(*convOp); 853 if (linalgOp.hasBufferSemantics()) 854 return failure(); // To be implemented 855 856 Value input = convOp.inputs().front(); 857 Value filter = convOp.inputs().back(); 858 Value output = convOp.outputs().front(); 859 860 auto inputType = input.getType().dyn_cast<RankedTensorType>(); 861 auto filterType = filter.getType().dyn_cast<RankedTensorType>(); 862 auto outputType = output.getType().dyn_cast<RankedTensorType>(); 863 864 auto filterShape = filterType.getShape(); 865 auto outputShape = outputType.getShape(); 866 867 // Only handle the case where at least one of the window dimensions is 868 // of size 1. Other cases can rely on tiling to reduce to such cases. 869 int64_t fhSize = filterShape[0], fwSize = filterShape[1]; 870 int64_t ohSize = outputShape[1], owSize = outputShape[2]; 871 bool removeH = (fhSize == 1 && ohSize == 1); 872 bool removeW = (fwSize == 1 && owSize == 1); 873 if (!removeH && !removeW) 874 return failure(); 875 876 // Get new shapes and types for all operands by removing the size-1 877 // dimension. 878 using RTTBuilder = RankedTensorType::Builder; 879 auto newInputType = RTTBuilder(inputType).dropDim((removeH ? 1 : 2)); 880 auto newFilterType = RTTBuilder(filterType).dropDim((removeH ? 0 : 1)); 881 auto newOutputType = RTTBuilder(outputType).dropDim(removeH ? 1 : 2); 882 883 // Rank-reduce operands. 884 Location loc = convOp.getLoc(); 885 Value newInput = tensor::createCanonicalRankReducingExtractSliceOp( 886 rewriter, loc, input, newInputType); 887 Value newFilter = tensor::createCanonicalRankReducingExtractSliceOp( 888 rewriter, loc, filter, newFilterType); 889 Value newOutput = tensor::createCanonicalRankReducingExtractSliceOp( 890 rewriter, loc, output, newOutputType); 891 892 // Rank-reduce strides and dilations too. 893 // TODO: dropDim 1-liner helper. 894 auto strides = llvm::to_vector<4>(convOp.strides().getValues<int64_t>()); 895 strides.erase(strides.begin() + (removeH ? 0 : 1)); 896 auto stridesAttr = rewriter.getI64VectorAttr(strides); 897 898 auto dilations = 899 llvm::to_vector<4>(convOp.dilations().getValues<int64_t>()); 900 dilations.erase(dilations.begin() + (removeH ? 0 : 1)); 901 auto dilationsAttr = rewriter.getI64VectorAttr(dilations); 902 903 auto conv1DOp = rewriter.create<linalg::Conv1DNwcWcfOp>( 904 loc, newOutputType, ValueRange{newInput, newFilter}, 905 ValueRange{newOutput}, stridesAttr, dilationsAttr); 906 907 // Insert back. 908 Value inserted = tensor::createCanonicalRankReducingInsertSliceOp( 909 rewriter, loc, conv1DOp.getResult(0), output); 910 rewriter.replaceOp(convOp, inserted); 911 912 return success(); 913 }; 914 }; 915 916 /// Rewrites 2-D depthwise convolution ops with size-1 (w, kw) or (h, kh) 917 /// dimensions into 1-D depthwise convolution ops. 918 struct DownscaleDepthwiseConv2DNhwcHwcOp final 919 : public OpRewritePattern<DepthwiseConv2DNhwcHwcOp> { 920 using OpRewritePattern::OpRewritePattern; 921 922 LogicalResult matchAndRewrite(DepthwiseConv2DNhwcHwcOp convOp, 923 PatternRewriter &rewriter) const override { 924 auto linalgOp = cast<linalg::LinalgOp>(*convOp); 925 if (linalgOp.hasBufferSemantics()) 926 return failure(); // To be implemented 927 928 Value input = convOp.inputs().front(); 929 Value kernel = convOp.inputs().back(); 930 Value output = convOp.outputs().front(); 931 932 auto inputType = input.getType().dyn_cast<RankedTensorType>(); 933 auto kernelType = kernel.getType().dyn_cast<RankedTensorType>(); 934 auto outputType = output.getType().dyn_cast<RankedTensorType>(); 935 936 auto kernelShape = kernelType.getShape(); 937 auto outputShape = outputType.getShape(); 938 939 // Only handle the case where at least one of the window dimensions is 940 // of size 1. Other cases can rely on tiling to reduce to such cases. 941 int64_t khSize = kernelShape[0], kwSize = kernelShape[1]; 942 int64_t ohSize = outputShape[1], owSize = outputShape[2]; 943 bool removeH = (khSize == 1 && ohSize == 1); 944 bool removeW = (kwSize == 1 && owSize == 1); 945 if (!removeH && !removeW) 946 return failure(); 947 948 // Get new shapes and types for all operands by removing the size-1 949 // dimension. 950 using RTTBuilder = RankedTensorType::Builder; 951 auto newInputType = RTTBuilder(inputType).dropDim((removeH ? 1 : 2)); 952 auto newKernelType = RTTBuilder(kernelType).dropDim((removeH ? 0 : 1)); 953 auto newOutputType = RTTBuilder(outputType).dropDim(removeH ? 1 : 2); 954 955 // Rank-reduce operands. 956 Location loc = convOp.getLoc(); 957 Value newInput = tensor::createCanonicalRankReducingExtractSliceOp( 958 rewriter, loc, input, newInputType); 959 Value newKernel = tensor::createCanonicalRankReducingExtractSliceOp( 960 rewriter, loc, kernel, newKernelType); 961 Value newOutput = tensor::createCanonicalRankReducingExtractSliceOp( 962 rewriter, loc, output, newOutputType); 963 964 // Rank-reduce strides and dilations too. 965 // TODO: dropDim 1-liner helper. 966 auto strides = llvm::to_vector<4>(convOp.strides().getValues<int64_t>()); 967 strides.erase(strides.begin() + (removeH ? 0 : 1)); 968 auto stridesAttr = rewriter.getI64VectorAttr(strides); 969 970 auto dilations = 971 llvm::to_vector<4>(convOp.dilations().getValues<int64_t>()); 972 dilations.erase(dilations.begin() + (removeH ? 0 : 1)); 973 auto dilationsAttr = rewriter.getI64VectorAttr(dilations); 974 975 auto conv1DOp = rewriter.create<DepthwiseConv1DNwcWcOp>( 976 loc, newOutputType, ValueRange{newInput, newKernel}, 977 ValueRange{newOutput}, stridesAttr, dilationsAttr); 978 979 // Insert back. 980 Value inserted = tensor::createCanonicalRankReducingInsertSliceOp( 981 rewriter, loc, conv1DOp.getResult(0), output); 982 rewriter.replaceOp(convOp, inserted); 983 984 return success(); 985 }; 986 }; 987 988 } // namespace 989 990 void linalg::populateDecomposeConvolutionPatterns(RewritePatternSet &patterns, 991 PatternBenefit benefit) { 992 patterns.add<DownscaleSizeOneWindowed2DConvolution, 993 DownscaleDepthwiseConv2DNhwcHwcOp>(patterns.getContext(), 994 benefit); 995 } 996