1 //===- Transforms.cpp - Linalg transformations as patterns ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements logic and helpers to expose Linalg transforms as rewrite 10 // patterns. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 15 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 16 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" 17 #include "mlir/Dialect/Linalg/IR/Linalg.h" 18 #include "mlir/Dialect/Linalg/Transforms/HoistPadding.h" 19 #include "mlir/Dialect/Linalg/Utils/Utils.h" 20 #include "mlir/Dialect/SCF/Transforms.h" 21 #include "mlir/Dialect/Tensor/IR/Tensor.h" 22 #include "mlir/Dialect/Tensor/IR/TensorTilingInterfaceImpl.h" 23 #include "mlir/Dialect/Utils/StaticValueUtils.h" 24 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 25 #include "mlir/Dialect/Vector/IR/VectorOps.h" 26 #include "mlir/IR/AffineExpr.h" 27 #include "mlir/IR/Matchers.h" 28 #include "mlir/Pass/Pass.h" 29 #include "mlir/Support/LLVM.h" 30 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 31 #include "llvm/ADT/ScopeExit.h" 32 #include "llvm/ADT/TypeSwitch.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include <type_traits> 36 #include <utility> 37 38 #define DEBUG_TYPE "linalg-transforms" 39 40 using namespace mlir; 41 using namespace mlir::linalg; 42 43 #define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE << "]: ") 44 45 //===----------------------------------------------------------------------===// 46 // Transformations exposed as rewrite patterns. 47 //===----------------------------------------------------------------------===// 48 // Marker used as attribute name in generated Linalg rewriting transformations. 49 const StringLiteral mlir::linalg::LinalgTransforms::kLinalgTransformMarker = 50 "__internal_linalg_transform__"; 51 52 mlir::linalg::LinalgTransformationFilter::LinalgTransformationFilter( 53 ArrayRef<StringAttr> matchDisjunction, Optional<StringAttr> replacement) 54 : matchDisjunction(matchDisjunction.begin(), matchDisjunction.end()), 55 replacement(replacement), matchByDefault(false) {} 56 57 mlir::linalg::LinalgTransformationFilter::LinalgTransformationFilter( 58 const FilterFunction &f, ArrayRef<StringAttr> matchDisjunction, 59 Optional<StringAttr> replacement) 60 : filters(), 61 matchDisjunction(matchDisjunction.begin(), matchDisjunction.end()), 62 replacement(replacement), matchByDefault(false) { 63 if (f) 64 filters.push_back(f); 65 } 66 67 LogicalResult mlir::linalg::LinalgTransformationFilter::checkAndNotify( 68 PatternRewriter &rewriter, Operation *op) const { 69 if (llvm::any_of(filters, 70 [&](const FilterFunction &f) { return failed(f(op)); })) 71 return failure(); 72 73 auto attr = op->template getAttrOfType<StringAttr>( 74 LinalgTransforms::kLinalgTransformMarker); 75 76 if (!attr) { 77 // 1. Has no filter case and matchDisjunction is empty. 78 if (matchDisjunction.empty() || matchByDefault) 79 return success(); 80 81 // 2. Has no filter but was expecting a filter. 82 return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) { 83 diag << " does not have any filter from list: "; 84 interleaveComma(matchDisjunction, diag); 85 }); 86 } 87 88 // 4. Match explicit filter. 89 for (auto filter : matchDisjunction) 90 if (attr.getValue() == filter) 91 return success(); 92 93 // 5. Fail to match. 94 return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) { 95 diag << " does not have any filter from list: "; 96 interleaveComma(matchDisjunction, diag); 97 }); 98 } 99 100 void mlir::linalg::LinalgTransformationFilter:: 101 replaceLinalgTransformationFilter(PatternRewriter &rewriter, 102 Operation *op) const { 103 if (replacement.hasValue()) 104 op->setAttr(LinalgTransforms::kLinalgTransformMarker, 105 replacement.getValue()); 106 else 107 op->removeAttr( 108 rewriter.getStringAttr(LinalgTransforms::kLinalgTransformMarker)); 109 } 110 111 bool mlir::linalg::LinalgTransformationFilter::hasReplacementFilter( 112 Operation *op) const { 113 if (!replacement) 114 return false; 115 auto attr = op->getAttr(LinalgTransforms::kLinalgTransformMarker) 116 .dyn_cast<StringAttr>(); 117 return attr && attr == replacement.getValue(); 118 } 119 120 LinalgTilingOptions & 121 mlir::linalg::LinalgTilingOptions::setTileSizes(ArrayRef<int64_t> ts) { 122 assert(!tileSizeComputationFunction && "tile sizes already set"); 123 SmallVector<int64_t, 4> tileSizes(ts.begin(), ts.end()); 124 tileSizeComputationFunction = [tileSizes](OpBuilder &b, Operation *op) { 125 OpBuilder::InsertionGuard guard(b); 126 b.setInsertionPointToStart( 127 &op->getParentOfType<FuncOp>().getBody().front()); 128 return llvm::to_vector<4>(map_range(tileSizes, [&](int64_t s) { 129 Value v = b.create<arith::ConstantIndexOp>(op->getLoc(), s); 130 return v; 131 })); 132 }; 133 return *this; 134 } 135 136 LinalgTilingOptions &mlir::linalg::LinalgTilingOptions::scalarizeDynamicDims() { 137 assert(!tileSizeComputationFunction && "tile sizes already set"); 138 tileSizeComputationFunction = [](OpBuilder &b, Operation *op) { 139 SmallVector<Value, 4> tileSizes; 140 auto linalgOp = dyn_cast<LinalgOp>(op); 141 if (!linalgOp) 142 return tileSizes; 143 Location loc = linalgOp.getLoc(); 144 auto allShapeSizes = linalgOp.createFlatListOfOperandDims(b, loc); 145 AffineMap map = linalgOp.getShapesToLoopsMap(); 146 if (!map) 147 return tileSizes; 148 auto shapeSizes = applyMapToValues(b, loc, map, allShapeSizes); 149 // If the shape size is dynamic, tile by 1. Otherwise, do not tile (tile 150 // size 0). 151 for (Value shapeSize : shapeSizes) 152 tileSizes.push_back(getConstantIntValue(shapeSize).hasValue() 153 ? b.create<arith::ConstantIndexOp>(loc, 0) 154 : b.create<arith::ConstantIndexOp>(loc, 1)); 155 return tileSizes; 156 }; 157 return *this; 158 } 159 160 /// Helper function that tries to pad `opOperand`. Exit early for scalar 161 /// operands, if `paddingFunc` returns failure, or if `opOperand` is not defined 162 /// by an ExtractSliceOp. Otherwise, try to pad the operand even if it already 163 /// has a static shape. Set `result` to the result of the created tensor::PadOp 164 /// or and return success if the operand either has been padded to a static 165 /// shape or already had a static shape and failure otherwise. 166 static LogicalResult padOperandToSmallestStaticBoundingBox( 167 OpBuilder &b, linalg::LinalgOp opToPad, OpOperand *opOperand, 168 const PaddingValueComputationFunction &paddingFunc, 169 const PaddingNoFoldComputationFunction &nofoldFunc, Value &result) { 170 // Get the shape of the operand and check if it has a dynamic shape. Only 171 // return failure if the operand is not a scalar and has a dynamic shape. 172 ArrayRef<int64_t> shape = opToPad.getShape(opOperand); 173 bool hasDynamicShape = llvm::is_contained(shape, ShapedType::kDynamicSize); 174 175 // Cannot pad scalar operands. 176 if (shape.empty()) 177 return success(); 178 179 // Cannot pad if the padding value is unknown. 180 FailureOr<Value> paddingValue = paddingFunc(b, *opOperand); 181 if (failed(paddingValue)) 182 return failure(hasDynamicShape); 183 184 // Cannot construct a static bounding box if the operand is not defined by an 185 // ExtractSliceOp. 186 auto sliceOp = opOperand->get().getDefiningOp<tensor::ExtractSliceOp>(); 187 if (!sliceOp) 188 return failure(hasDynamicShape); 189 190 // Compute the dropped dimensions if `sliceOp` is ranke-reducing. 191 llvm::SmallBitVector droppedDims = sliceOp.getDroppedDims(); 192 193 // Upper bound the `sliceOp` sizes to obtain a static bounding box. 194 SmallVector<int64_t> staticSizes; 195 staticSizes.reserve(shape.size()); 196 auto shapedOp = cast<OffsetSizeAndStrideOpInterface>(sliceOp.getOperation()); 197 for (const auto &en : enumerate(shapedOp.getMixedSizes())) { 198 // Skip dropped dimensions. 199 if (droppedDims.test(en.index())) 200 continue; 201 // If the size is an attribute add it directly to `staticSizes`. 202 if (en.value().is<Attribute>()) { 203 staticSizes.push_back( 204 en.value().get<Attribute>().dyn_cast<IntegerAttr>().getInt()); 205 continue; 206 } 207 // Otherwise, try to compute a constant upper bound for the size value. 208 FailureOr<int64_t> upperBound = 209 getConstantUpperBoundForIndex(en.value().get<Value>()); 210 if (failed(upperBound)) { 211 LLVM_DEBUG(DBGS() << "No constant bounding box can be found for padding"); 212 return failure(); 213 } 214 staticSizes.push_back(upperBound.getValue()); 215 } 216 assert(staticSizes.size() == shape.size() && 217 "expect the dynamic and static ranks to match"); 218 219 // Pad the operand to the bounding box defined by `staticSizes`. 220 auto staticTensorType = RankedTensorType::get( 221 staticSizes, getElementTypeOrSelf(opOperand->get())); 222 bool nofold = nofoldFunc ? nofoldFunc(*opOperand) : false; 223 result = 224 makeComposedPadHighOp(b, opToPad->getLoc(), staticTensorType, 225 opOperand->get(), paddingValue.getValue(), nofold); 226 return success(); 227 } 228 229 FailureOr<SmallVector<Value>> 230 linalg::rewriteAsPaddedOp(OpBuilder &b, LinalgOp opToPad, 231 const PaddingValueComputationFunction &paddingFunc, 232 const PaddingNoFoldComputationFunction &nofoldFunc, 233 LinalgOp &paddedOp) { 234 Location loc = opToPad->getLoc(); 235 236 // TODO: there are cases where we may still want to pad to larger sizes. 237 assert(opToPad.hasTensorSemantics() && 238 "expected operation to have tensor semantics"); 239 240 OpBuilder::InsertionGuard g(b); 241 // Set IP after op because we also take the dims of the original output. 242 b.setInsertionPointAfter(opToPad); 243 // Make a copy of the shaped operands and update it. 244 SmallVector<Value> newOperands; 245 newOperands.reserve(opToPad.getNumInputsAndOutputs()); 246 for (OpOperand *opOperand : opToPad.getInputAndOutputOperands()) { 247 Value paddedOperand; 248 // If padding was requested but the shape cannot be bounded statically then 249 // the pattern fails to apply. 250 if (failed(padOperandToSmallestStaticBoundingBox( 251 b, opToPad, opOperand, paddingFunc, nofoldFunc, paddedOperand))) 252 return failure(); 253 newOperands.push_back(paddedOperand ? paddedOperand : opOperand->get()); 254 } 255 256 SmallVector<SmallVector<Value>> reifiedResultShapes; 257 if (failed(cast<ReifyRankedShapedTypeOpInterface>(opToPad.getOperation()) 258 .reifyResultShapes(b, reifiedResultShapes))) 259 return failure(); 260 assert(reifiedResultShapes.size() == opToPad->getNumResults() && 261 "expected same number of results"); 262 263 // Clone `opToPad` to operate on the statically padded shapes. 264 auto resultTensorTypes = 265 ValueRange(newOperands).take_back(opToPad.getNumOutputs()).getTypes(); 266 paddedOp = opToPad.clone(b, loc, resultTensorTypes, newOperands); 267 268 // Recover the slice out of the new static results. This keeps the original 269 // linalg op around because it uses the dims of the original results. 270 SmallVector<Value> paddedSubviewResults; 271 paddedSubviewResults.reserve(opToPad->getNumResults()); 272 for (const auto &en : llvm::enumerate(paddedOp->getResults())) { 273 Value paddedResult = en.value(); 274 int64_t resultNumber = en.index(); 275 int64_t rank = paddedResult.getType().cast<RankedTensorType>().getRank(); 276 SmallVector<OpFoldResult> offsets(rank, b.getIndexAttr(0)); 277 SmallVector<OpFoldResult> sizes; 278 for (Value v : reifiedResultShapes[resultNumber]) 279 sizes.push_back(getAsOpFoldResult(v)); 280 SmallVector<OpFoldResult> strides(rank, b.getIndexAttr(1)); 281 paddedSubviewResults.push_back(b.create<tensor::ExtractSliceOp>( 282 loc, paddedResult, offsets, sizes, strides)); 283 } 284 return paddedSubviewResults; 285 } 286 287 /// Try to peel a loop `op` and return the new result. 288 // TODO: Add support for scf.parallel and affine.for loops. 289 static SmallVector<Value, 4> peelLoop(RewriterBase &rewriter, Operation *op) { 290 return llvm::TypeSwitch<Operation *, SmallVector<Value, 4>>(op) 291 .Case<scf::ForOp>([&](scf::ForOp forOp) { 292 scf::ForOp partialIteration; 293 if (succeeded(scf::peelAndCanonicalizeForLoop(rewriter, forOp, 294 partialIteration))) 295 return partialIteration->getResults(); 296 assert(!partialIteration && "expected that loop was not peeled"); 297 return forOp->getResults(); 298 }) 299 .Default([&](Operation *op) { return op->getResults(); }); 300 } 301 302 /// Peel loops after tiling. 303 void mlir::linalg::peelTiledLinalgOp(RewriterBase &rewriter, TiledLinalgOp &res, 304 ArrayRef<int64_t> peeledLoops, 305 LinalgTilingLoopType loopType) { 306 for (int64_t loop : peeledLoops) { 307 assert(loop < static_cast<int64_t>(res.loops.size()) && 308 "requested peeling of non-existing loop"); 309 SmallVector<Value, 4> loopResults; 310 Operation *loopOp = res.loops[loop]; 311 loopResults = peelLoop(rewriter, loopOp); 312 313 // The result of the loop nest may change with peeling. 314 if (res.tensorResults.size() == loopOp->getNumResults() && 315 std::equal(res.tensorResults.begin(), res.tensorResults.end(), 316 loopOp->getResults().begin())) 317 res.tensorResults = loopResults; 318 } 319 } 320 321 static ValueRange getTiledOpResult(TiledLinalgOp tiledOp) { 322 if (tiledOp.loops.empty()) 323 return tiledOp.op.getOperation()->getResults(); 324 return tiledOp.loops.front()->getResults(); 325 } 326 327 static ValueRange 328 getTiledAndFusedOpResult(TiledAndFusedLinalgOps tiledAndFusedOp) { 329 if (tiledAndFusedOp.fusedLoops.empty()) 330 return tiledAndFusedOp.op.getOperation()->getResults(); 331 return tiledAndFusedOp.fusedLoops.front()->getResults(); 332 } 333 334 mlir::linalg::LinalgBaseTileAndFusePattern::LinalgBaseTileAndFusePattern( 335 StringRef opName, MLIRContext *context, 336 const LinalgDependenceGraph &dependenceGraph, 337 LinalgTilingOptions tilingOptions, LinalgFusionOptions fusionOptions, 338 LinalgTransformationFilter f, LinalgTransformationFilter fusedOpMarker, 339 LinalgTransformationFilter originalOpMarker, PatternBenefit benefit) 340 : RewritePattern(opName, benefit, context, {}), 341 dependenceGraph(dependenceGraph), tilingOptions(std::move(tilingOptions)), 342 fusionOptions(std::move(fusionOptions)), filter(std::move(f)), 343 fusedOpMarker(std::move(fusedOpMarker)), 344 originalOpMarker(std::move(originalOpMarker)) {} 345 346 LogicalResult mlir::linalg::LinalgBaseTileAndFusePattern::matchAndRewrite( 347 Operation *op, PatternRewriter &rewriter) const { 348 LinalgOp linalgOp = dyn_cast<LinalgOp>(op); 349 // TODO: remove hasIndexSemantics check once index ops are supported. 350 if (!linalgOp || linalgOp.hasIndexSemantics()) 351 return failure(); 352 if (failed(filter.checkAndNotify(rewriter, linalgOp))) 353 return failure(); 354 355 DenseSet<Operation *> producers; 356 producers.insert(linalgOp); 357 for (auto dependence : dependenceGraph.getDependentOperationsInto(linalgOp)) { 358 Optional<unsigned> operandNumber = dependence.getIndexingOpViewOperandNum(); 359 // When looking at dependences into, indexingOp is always OpOperand. We 360 // could assert, but continue if this is not the case. 361 if (!operandNumber) 362 continue; 363 if (!fusionOptions.indicesToFuse.count(operandNumber.getValue())) 364 continue; 365 if (isa<LinalgOp>(dependence.getDependentOp())) 366 producers.insert(dependence.getDependentOp()); 367 } 368 369 SmallVector<LinalgOp, 1> fusionOps; 370 for (auto it = op->getBlock()->begin(), ie = Block::iterator(op); it != ie; 371 ++it) { 372 auto producerLinalgOp = dyn_cast<LinalgOp>(&(*it)); 373 if (producerLinalgOp && producers.count(producerLinalgOp)) 374 fusionOps.push_back(producerLinalgOp); 375 } 376 fusionOps.push_back(linalgOp); 377 378 SmallVector<Value, 4> tileSizes = 379 tilingOptions.tileSizeComputationFunction(rewriter, op); 380 LinalgTilingOptions instanceTilingOptions = tilingOptions; 381 instanceTilingOptions.setTileSizes(tileSizes); 382 Optional<TiledAndFusedLinalgOps> tiledAndFusedOps = tileAndFuseLinalgOps( 383 rewriter, fusionOps, dependenceGraph, instanceTilingOptions); 384 if (!tiledAndFusedOps) 385 return failure(); 386 387 // Tile the unfused loops; 388 SmallVector<Value, 4> unfusedLoopTileSizes; 389 Value zero = rewriter.create<arith::ConstantIndexOp>(op->getLoc(), 0); 390 for (const auto &tileSize : enumerate(tileSizes)) { 391 if (tiledAndFusedOps->fusedLoopDims.count(tileSize.index())) 392 unfusedLoopTileSizes.push_back(zero); 393 else 394 unfusedLoopTileSizes.push_back(tileSize.value()); 395 } 396 // Tile the loop only if there is a non-zero tile size. 397 if (unfusedLoopTileSizes.size() > linalgOp.getNumLoops()) 398 unfusedLoopTileSizes.resize(linalgOp.getNumLoops()); 399 if (llvm::any_of(unfusedLoopTileSizes, [](Value val) { 400 if (auto cst = val.getDefiningOp<arith::ConstantIndexOp>()) 401 return cst.value() != 0; 402 return true; 403 })) { 404 LinalgTilingOptions unfusedTilingOptions = tilingOptions; 405 unfusedTilingOptions.setTileSizes(unfusedLoopTileSizes); 406 FailureOr<TiledLinalgOp> unfusedTiledOp = 407 tileLinalgOp(rewriter, tiledAndFusedOps->op, unfusedTilingOptions); 408 if (failed(unfusedTiledOp)) 409 return failure(); 410 rewriter.replaceOp(tiledAndFusedOps->op, 411 getTiledOpResult(unfusedTiledOp.getValue())); 412 tiledAndFusedOps->op = unfusedTiledOp->op; 413 } 414 op->replaceAllUsesWith(getTiledAndFusedOpResult(tiledAndFusedOps.getValue())); 415 416 filter.replaceLinalgTransformationFilter(rewriter, 417 tiledAndFusedOps->op.getOperation()); 418 for (auto fusedOp : tiledAndFusedOps->fusedProducers) { 419 fusedOpMarker.replaceLinalgTransformationFilter(rewriter, 420 fusedOp.getOperation()); 421 } 422 for (auto origProducerOp : ArrayRef<LinalgOp>(fusionOps).drop_back()) { 423 originalOpMarker.replaceLinalgTransformationFilter( 424 rewriter, origProducerOp.getOperation()); 425 } 426 rewriter.updateRootInPlace(op, [&]() { 427 originalOpMarker.replaceLinalgTransformationFilter(rewriter, op); 428 }); 429 return success(); 430 } 431 432 /// Linalg tiling pattern. 433 mlir::linalg::LinalgTilingPattern::LinalgTilingPattern( 434 MLIRContext *context, LinalgTilingOptions options, 435 LinalgTransformationFilter f, PatternBenefit benefit) 436 : OpInterfaceRewritePattern<LinalgOp>(context, benefit), 437 filter(std::move(f)), options(std::move(options)) {} 438 439 mlir::linalg::LinalgTilingPattern::LinalgTilingPattern( 440 StringRef opName, MLIRContext *context, LinalgTilingOptions options, 441 LinalgTransformationFilter f, PatternBenefit benefit) 442 : OpInterfaceRewritePattern<LinalgOp>(context, benefit), 443 filter(f.addOpNameFilter(opName)), options(std::move(options)) {} 444 445 FailureOr<TiledLinalgOp> 446 mlir::linalg::LinalgTilingPattern::returningMatchAndRewrite( 447 LinalgOp op, PatternRewriter &rewriter) const { 448 if (failed(filter.checkAndNotify(rewriter, op))) 449 return failure(); 450 451 FailureOr<TiledLinalgOp> res = tileLinalgOp(rewriter, op, options); 452 if (failed(res)) 453 return failure(); 454 455 // Clear filter to stop recursive pattern application. 456 // This must be done here to properly propagate to peeling branches. 457 filter.replaceLinalgTransformationFilter(rewriter, res->op); 458 459 // Peel the loops of the TiledLinalgOp. 460 peelTiledLinalgOp(rewriter, *res, options.peeledLoops, options.loopType); 461 462 if (res->tensorResults.empty()) 463 rewriter.eraseOp(op); 464 else 465 rewriter.replaceOp(op, res->tensorResults); 466 467 return res; 468 } 469 470 /// Linalg padding pattern. 471 mlir::linalg::LinalgPaddingPattern::LinalgPaddingPattern( 472 MLIRContext *context, LinalgPaddingOptions options, 473 LinalgTransformationFilter f, PatternBenefit benefit) 474 : OpInterfaceRewritePattern<LinalgOp>(context, benefit), 475 filter(std::move(f)), options(std::move(options)) {} 476 477 mlir::linalg::LinalgPaddingPattern::LinalgPaddingPattern( 478 StringRef opName, MLIRContext *context, LinalgPaddingOptions options, 479 LinalgTransformationFilter f, PatternBenefit benefit) 480 : OpInterfaceRewritePattern<LinalgOp>(context, benefit), 481 filter(f.addOpNameFilter(opName)), options(std::move(options)) {} 482 483 FailureOr<LinalgOp> 484 mlir::linalg::LinalgPaddingPattern::returningMatchAndRewrite( 485 LinalgOp linalgOp, PatternRewriter &rewriter) const { 486 if (!linalgOp.hasTensorSemantics()) 487 return failure(); 488 if (failed(filter.checkAndNotify(rewriter, linalgOp))) 489 return failure(); 490 491 // Pad the operation. 492 LinalgOp paddedOp; 493 FailureOr<SmallVector<Value>> newResults = rewriteAsPaddedOp( 494 rewriter, linalgOp, options.paddingValueComputationFunction, 495 options.paddingNoFoldComputationFunction, paddedOp); 496 if (failed(newResults)) 497 return failure(); 498 499 // Compute the desired hoisting depths. 500 SmallVector<int64_t> depths; 501 if (options.paddingHoistComputationFunction) { 502 for (OpOperand *opOperand : linalgOp.getInputAndOutputOperands()) 503 depths.push_back(options.paddingHoistComputationFunction(*opOperand)); 504 } 505 506 // Hoist the padding. 507 for (const auto &en : enumerate(depths)) { 508 OpOperand &opOperand = paddedOp->getOpOperand(en.index()); 509 auto padOp = opOperand.get().getDefiningOp<tensor::PadOp>(); 510 if (!padOp || en.value() == 0) 511 continue; 512 tensor::PadOp hoistedOp; 513 SmallVector<GenericOp> transposeOps; 514 SmallVector<int64_t> transposeVector = 515 options.paddingTransposeComputationFunction(opOperand); 516 517 FailureOr<Value> newResult = hoistPaddingOnTensors( 518 padOp, en.value(), transposeVector, hoistedOp, transposeOps); 519 if (failed(newResult)) 520 continue; 521 rewriter.replaceOp(padOp, newResult.getValue()); 522 523 // Do not apply hoist padding to the newly introduced transpose operations. 524 for (GenericOp transposeOp : transposeOps) 525 filter.replaceLinalgTransformationFilter(rewriter, transposeOp); 526 } 527 528 // Replace the original operation to pad. 529 rewriter.replaceOp(linalgOp, newResults.getValue()); 530 filter.replaceLinalgTransformationFilter(rewriter, paddedOp); 531 532 return paddedOp; 533 } 534 535 /// Linalg tile and fuse tensor ops pattern. 536 mlir::linalg::LinalgTileAndFuseTensorOpsPattern:: 537 LinalgTileAndFuseTensorOpsPattern(MLIRContext *context, 538 LinalgTilingAndFusionOptions options, 539 LinalgTransformationFilter f, 540 PatternBenefit benefit) 541 : RewritePattern(MatchAnyOpTypeTag(), benefit, context), 542 filter(std::move(f)), options(std::move(options)) {} 543 544 mlir::linalg::LinalgTileAndFuseTensorOpsPattern:: 545 LinalgTileAndFuseTensorOpsPattern(StringRef opName, MLIRContext *context, 546 LinalgTilingAndFusionOptions options, 547 LinalgTransformationFilter f, 548 PatternBenefit benefit) 549 : RewritePattern(opName, benefit, context), filter(std::move(f)), 550 options(std::move(options)) {} 551 552 FailureOr<mlir::linalg::TileLoopNest> 553 mlir::linalg::LinalgTileAndFuseTensorOpsPattern::returningMatchAndRewrite( 554 Operation *op, PatternRewriter &rewriter) const { 555 LinalgOp rootOp = dyn_cast<LinalgOp>(op); 556 if (!rootOp) 557 return failure(); 558 if (failed(filter.checkAndNotify(rewriter, op))) 559 return failure(); 560 561 // Check `tileSizes` contains a tile size for every `rootOp` loop dimension. 562 if (options.tileSizes.size() < rootOp.getNumLoops()) 563 return rewriter.notifyMatchFailure(op, "expect #tile sizes >= #loops"); 564 565 // Check `tileInterchange` contains no entries or as many as `tileSizes`. 566 if (!options.tileInterchange.empty() && 567 options.tileInterchange.size() != options.tileSizes.size()) 568 return rewriter.notifyMatchFailure( 569 op, "expect the number of tile sizes and interchange dims to match"); 570 571 // Copy the `tileSizes` and `tileInterchange` prefixes needed for `rootOp`. 572 SmallVector<int64_t> rootTileSizes(options.tileSizes.begin(), 573 options.tileSizes.begin() + 574 rootOp.getNumLoops()); 575 SmallVector<int64_t> rootInterchange = 576 options.tileInterchange.empty() 577 ? llvm::to_vector<6>(llvm::seq<int64_t>(0, rootOp.getNumLoops())) 578 : SmallVector<int64_t>(options.tileInterchange.begin(), 579 options.tileInterchange.begin() + 580 rootOp.getNumLoops()); 581 582 // Check `rootTileSizes` contains non-zero tile sizes. 583 if (llvm::count(rootTileSizes, 0) == static_cast<long>(rootTileSizes.size())) 584 return rewriter.notifyMatchFailure( 585 op, "expect at least one non-zero tile size"); 586 587 // Check `rootInterchange` is a permutation of the `rootOp` loop dimensions. 588 // It has to be a permutation since the tiling cannot tile the same loop 589 // dimension multiple times. 590 if (!isPermutation(rootInterchange)) 591 return rewriter.notifyMatchFailure( 592 op, "expect the tile interchange permutes the root loops"); 593 594 // Tile `rootOp` and fuse its producers. 595 FailureOr<TileLoopNest> tileLoopNest = 596 tileConsumerAndFuseProducers(rewriter, rootOp, rootTileSizes, 597 rootInterchange, options.tileDistribution); 598 if (failed(tileLoopNest)) 599 return rewriter.notifyMatchFailure( 600 op, "tileConsumerAndFuseProducers failed unexpectedly"); 601 602 // Replace all uses of the tiled loop operation. 603 rootOp->replaceAllUsesWith(tileLoopNest->getRootOpReplacementResults()); 604 605 // Apply the filter if specified. 606 for (LinalgOp linalgOp : tileLoopNest->getAllTiledAndFusedOps()) 607 filter.replaceLinalgTransformationFilter(rewriter, linalgOp); 608 return tileLoopNest; 609 } 610 611 /// Linalg generic interchange pattern. 612 mlir::linalg::GenericOpInterchangePattern::GenericOpInterchangePattern( 613 MLIRContext *context, ArrayRef<unsigned> interchangeVector, 614 LinalgTransformationFilter f, PatternBenefit benefit) 615 : OpRewritePattern(context, benefit), filter(std::move(f)), 616 interchangeVector(interchangeVector.begin(), interchangeVector.end()) {} 617 618 FailureOr<GenericOp> 619 mlir::linalg::GenericOpInterchangePattern::returningMatchAndRewrite( 620 GenericOp genericOp, PatternRewriter &rewriter) const { 621 if (failed(filter.checkAndNotify(rewriter, genericOp))) 622 return failure(); 623 624 FailureOr<GenericOp> transformedOp = 625 interchangeGenericOp(rewriter, genericOp, interchangeVector); 626 if (failed(transformedOp)) 627 return failure(); 628 629 // New filter if specified. 630 filter.replaceLinalgTransformationFilter(rewriter, genericOp); 631 return transformedOp; 632 } 633 634 /// Linalg generalization pattern. 635 mlir::linalg::LinalgGeneralizationPattern::LinalgGeneralizationPattern( 636 MLIRContext *context, LinalgTransformationFilter f, PatternBenefit benefit) 637 : OpInterfaceRewritePattern<LinalgOp>(context, benefit), 638 filter(std::move(f)) {} 639 640 mlir::linalg::LinalgGeneralizationPattern::LinalgGeneralizationPattern( 641 StringRef opName, MLIRContext *context, LinalgTransformationFilter f, 642 PatternBenefit benefit) 643 : OpInterfaceRewritePattern<LinalgOp>(context, benefit), 644 filter(f.addOpNameFilter(opName)) {} 645 646 FailureOr<GenericOp> 647 mlir::linalg::LinalgGeneralizationPattern::returningMatchAndRewrite( 648 LinalgOp linalgOp, PatternRewriter &rewriter) const { 649 if (failed(filter.checkAndNotify(rewriter, linalgOp))) 650 return failure(); 651 FailureOr<GenericOp> genericOp = generalizeNamedOp(rewriter, linalgOp); 652 if (failed(genericOp)) 653 return failure(); 654 filter.replaceLinalgTransformationFilter(rewriter, *genericOp); 655 return genericOp; 656 } 657 658 mlir::linalg::LinalgBasePromotionPattern::LinalgBasePromotionPattern( 659 MLIRContext *context, LinalgTransformationFilter f, 660 LinalgPromotionOptions options, PatternBenefit benefit) 661 : RewritePattern(MatchAnyOpTypeTag(), benefit, context), 662 filter(std::move(f)), options(std::move(options)) {} 663 664 mlir::linalg::LinalgBasePromotionPattern::LinalgBasePromotionPattern( 665 StringRef opName, MLIRContext *context, LinalgPromotionOptions options, 666 LinalgTransformationFilter f, PatternBenefit benefit) 667 : RewritePattern(opName, benefit, context, {}), filter(std::move(f)), 668 options(std::move(options)) {} 669 670 LogicalResult mlir::linalg::LinalgBasePromotionPattern::matchAndRewrite( 671 Operation *op, PatternRewriter &rewriter) const { 672 if (failed(filter.checkAndNotify(rewriter, op))) 673 return failure(); 674 if (failed(promoteSubviewsPrecondition(op, options))) 675 return failure(); 676 677 // TODO: We cannot use root update here. This pattern is creating other ops, 678 // so if the promotion fails, those need to be cleaned up, which doesnt seem 679 // to be happening here. So to fail properly, we should be cloning the op and 680 // deleting the previous op. This needs more investigation. 681 rewriter.startRootUpdate(op); 682 Optional<LinalgOp> promotedOp = promoteSubViews(rewriter, op, options); 683 if (!promotedOp) { 684 rewriter.cancelRootUpdate(op); 685 return op->emitError("subview promotion failed"); 686 } 687 rewriter.finalizeRootUpdate(op); 688 filter.replaceLinalgTransformationFilter(rewriter, op); 689 return success(); 690 } 691 692 mlir::linalg::LinalgVectorizationPattern::LinalgVectorizationPattern( 693 MLIRContext *context, LinalgTransformationFilter f, 694 LinalgVectorizationOptions options, PatternBenefit benefit) 695 : OpInterfaceRewritePattern<LinalgOp>(context, benefit), 696 filter(std::move(f)) {} 697 698 mlir::linalg::LinalgVectorizationPattern::LinalgVectorizationPattern( 699 StringRef opName, MLIRContext *context, LinalgVectorizationOptions options, 700 LinalgTransformationFilter f, PatternBenefit benefit) 701 : OpInterfaceRewritePattern<LinalgOp>(context, benefit), 702 filter(f.addOpNameFilter(opName)) {} 703 704 LogicalResult mlir::linalg::LinalgVectorizationPattern::matchAndRewrite( 705 LinalgOp linalgOp, PatternRewriter &rewriter) const { 706 if (failed(filter.checkAndNotify(rewriter, linalgOp))) 707 return failure(); 708 return vectorize(rewriter, linalgOp); 709 } 710 711 LogicalResult mlir::linalg::CopyVectorizationPattern::matchAndRewrite( 712 memref::CopyOp copyOp, PatternRewriter &rewriter) const { 713 return vectorizeCopy(rewriter, copyOp); 714 } 715 716 LogicalResult mlir::linalg::applyStagedPatterns( 717 Operation *op, ArrayRef<FrozenRewritePatternSet> stage1Patterns, 718 const FrozenRewritePatternSet &stage2Patterns, 719 function_ref<LogicalResult(Operation *)> stage3Lambda) { 720 unsigned iteration = 0; 721 (void)iteration; 722 for (const auto &patterns : stage1Patterns) { 723 LLVM_DEBUG(DBGS() << "Before 1st stage, iter: " << ++iteration << "\n" 724 << *op); 725 if (failed(applyPatternsAndFoldGreedily(op, patterns))) { 726 LLVM_DEBUG(DBGS() << "Underlying first stage rewrite did not converge"); 727 return failure(); 728 } 729 LLVM_DEBUG(DBGS() << "After 1st stage, iter: " << ++iteration << "\n" 730 << *op); 731 if (failed(applyPatternsAndFoldGreedily(op, stage2Patterns))) { 732 LLVM_DEBUG(DBGS() << "Underlying 2nd stage rewrite did not converge"); 733 return failure(); 734 } 735 LLVM_DEBUG(DBGS() << "After 2nd stage, iter : " << iteration << "\n" 736 << *op); 737 if (stage3Lambda) { 738 if (failed(stage3Lambda(op))) 739 return failure(); 740 LLVM_DEBUG(DBGS() << "After 3rd stage, iter : " << iteration << "\n" 741 << *op); 742 } 743 } 744 return success(); 745 } 746 747 static SmallVector<StringRef> getNParallelLoopsAttrs(unsigned nParallelLoops) { 748 return SmallVector<StringRef>(nParallelLoops, getParallelIteratorTypeName()); 749 } 750 751 /// Rewrite a tensor::PadOp into a sequence of InitTensorOp, FillOp (to 752 /// initialize with pad_val) and GenericOp (to copy contents). 753 LogicalResult 754 PadOpTransformationPattern::matchAndRewrite(tensor::PadOp padOp, 755 PatternRewriter &rewriter) const { 756 757 auto inputShapedType = padOp.source().getType().cast<ShapedType>(); 758 auto resultShapedType = padOp.result().getType().cast<ShapedType>(); 759 760 // Bail on non-static shapes. 761 if (!inputShapedType.hasStaticShape()) 762 return failure(); 763 if (!resultShapedType.hasStaticShape()) 764 return failure(); 765 766 // Only support padding with a constant for now, i.e. either: 767 // 1. A BBarg from a different block. 768 // 2. A value defined outside of the current block. 769 Block &block = padOp.region().front(); 770 auto yieldOp = cast<tensor::YieldOp>(block.getTerminator()); 771 Value padValue = yieldOp.value(); 772 Operation *definingOp = padValue.getDefiningOp(); 773 if (definingOp && definingOp->getBlock() == &block) 774 return failure(); 775 if (!definingOp && padValue.cast<BlockArgument>().getOwner() == &block) 776 return failure(); 777 778 // Create tensor with the padded shape 779 Location loc = padOp.getLoc(); 780 SmallVector<Value> indices(resultShapedType.getRank(), 781 rewriter.create<arith::ConstantIndexOp>(loc, 0)); 782 Value initTensor = rewriter.create<InitTensorOp>( 783 loc, resultShapedType.getShape(), resultShapedType.getElementType()); 784 785 // Initialize tensor with the pad value 786 Value tmpTensor = 787 rewriter.create<linalg::FillOp>(loc, padValue, initTensor).result(); 788 789 // Copy original contents into new tensor 790 // Uses linalg.generic, but could be done with tensor.insert_slice 791 SmallVector<AffineExpr, 4> outputExprs; 792 for (unsigned i = 0; i < resultShapedType.getRank(); ++i) { 793 outputExprs.push_back(getAffineDimExpr(i, rewriter.getContext()) + 794 padOp.static_low()[i].cast<IntegerAttr>().getInt()); 795 } 796 797 SmallVector<AffineMap, 2> transferMaps = { 798 rewriter.getMultiDimIdentityMap(inputShapedType.getRank()), 799 AffineMap::get(resultShapedType.getRank(), 800 /*symbolCount=*/0, outputExprs, rewriter.getContext())}; 801 802 rewriter.replaceOpWithNewOp<linalg::GenericOp>( 803 padOp, resultShapedType, padOp.source(), tmpTensor, transferMaps, 804 getNParallelLoopsAttrs(resultShapedType.getRank()), 805 [&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange args) { 806 nestedBuilder.create<linalg::YieldOp>(nestedLoc, args[0]); 807 }); 808 809 return success(); 810 } 811 812 /// Filling `dest` using FillOp constant padding value if possible. 813 /// Otherwise, generate a tensor::GenerateOp. 814 Value GeneralizePadOpPattern::createFillOrGenerateOp( 815 PatternRewriter &rewriter, tensor::PadOp padOp, Value dest, 816 const SmallVector<Value> &dynSizes) const { 817 auto padValue = padOp.getConstantPaddingValue(); 818 if (padValue) 819 return rewriter.create<FillOp>(padOp.getLoc(), padValue, dest).result(); 820 821 // Fill could not be optimized: Lower to tensor::GenerateOp with region. 822 auto generateOp = rewriter.create<tensor::GenerateOp>( 823 padOp.getLoc(), padOp.getResultType(), dynSizes); 824 // Copy region to new op. 825 BlockAndValueMapping bvm; 826 padOp.region().cloneInto(&generateOp.getRegion(), bvm); 827 return generateOp; 828 } 829 830 LogicalResult 831 GeneralizePadOpPattern::matchAndRewrite(tensor::PadOp padOp, 832 PatternRewriter &rewriter) const { 833 // Given an OpFoldResult, return an index-typed value. 834 auto getIdxValue = [&](OpFoldResult ofr) { 835 if (auto val = ofr.dyn_cast<Value>()) 836 return val; 837 return rewriter 838 .create<arith::ConstantIndexOp>( 839 padOp.getLoc(), ofr.get<Attribute>().cast<IntegerAttr>().getInt()) 840 .getResult(); 841 }; 842 843 auto resultType = padOp.getResultType(); 844 // Compute size of InitTensorOp. Any combination of static/dynamic is 845 // supported. 846 SmallVector<Value> dynSizes; 847 SmallVector<int64_t> staticSizes; 848 for (unsigned dim = 0; dim < resultType.getRank(); ++dim) { 849 if (resultType.isDynamicDim(dim)) { 850 auto srcSize = rewriter.createOrFold<tensor::DimOp>(padOp.getLoc(), 851 padOp.source(), dim); 852 // Add low and high padding value. 853 auto plusLow = rewriter.createOrFold<arith::AddIOp>( 854 padOp.getLoc(), srcSize, getIdxValue(padOp.getMixedLowPad()[dim])); 855 auto plusHigh = rewriter.createOrFold<arith::AddIOp>( 856 padOp.getLoc(), plusLow, getIdxValue(padOp.getMixedHighPad()[dim])); 857 dynSizes.push_back(plusHigh); 858 } 859 staticSizes.push_back(resultType.getDimSize(dim)); 860 } 861 862 // Init tensor and fill it with padding. 863 Value init = rewriter.create<InitTensorOp>( 864 padOp.getLoc(), dynSizes, staticSizes, resultType.getElementType()); 865 Value fill = createFillOrGenerateOp(rewriter, padOp, init, dynSizes); 866 867 // Try optimize the copy of source. 868 if (optimizeCopyFn && optimizeCopyFn(rewriter, padOp, fill).succeeded()) 869 return success(); 870 871 // tensor::PadOps cannot be optimized. Generate a InsertSliceOp instead 872 // for copying the PadOp source. 873 auto sourceType = padOp.getSourceType(); 874 // Compute size of source of tensor::PadOp. 875 SmallVector<OpFoldResult> srcSizes; 876 for (unsigned dim = 0; dim < sourceType.getRank(); ++dim) { 877 if (sourceType.isDynamicDim(dim)) { 878 srcSizes.push_back(rewriter.createOrFold<tensor::DimOp>( 879 padOp.getLoc(), padOp.source(), dim)); 880 } else { 881 srcSizes.push_back(rewriter.getIndexAttr(sourceType.getDimSize(dim))); 882 } 883 } 884 // Strides of InsertSliceOp are all 1. 885 SmallVector<OpFoldResult> strides(sourceType.getRank(), 886 rewriter.getIndexAttr(1)); 887 rewriter.replaceOpWithNewOp<tensor::InsertSliceOp>( 888 padOp, padOp.source(), fill, padOp.getMixedLowPad(), srcSizes, strides); 889 890 return success(); 891 } 892 893 LogicalResult ExtractSliceOfPadTensorSwapPattern::matchAndRewrite( 894 tensor::ExtractSliceOp sliceOp, PatternRewriter &rewriter) const { 895 if (!sliceOp.hasUnitStride()) 896 return failure(); 897 898 auto padOp = sliceOp.source().getDefiningOp<tensor::PadOp>(); 899 if (!padOp) 900 return failure(); 901 902 bool zeroSliceGuard = true; 903 if (controlFn) { 904 if (Optional<bool> control = controlFn(sliceOp)) 905 zeroSliceGuard = control.getValue(); 906 else 907 return failure(); 908 } 909 910 Operation *tiledPadOp = 911 tensor::bubbleUpPadSlice(rewriter, padOp, sliceOp.getMixedOffsets(), 912 sliceOp.getMixedSizes(), zeroSliceGuard); 913 // All shapes are static and the data source is actually used. Rewrite into 914 // pad(extract_slice(x)). 915 rewriter.replaceOp(sliceOp, tiledPadOp->getResults()); 916 return success(); 917 } 918 919 namespace { 920 // The following are patterns for downscaling convolution ops with size-1 921 // window dimensions. 922 // 923 // Note that we'd eventually want to write such transformations in a generic 924 // way, e.g., converting to linalg.generic, removing the size-1 dimensions, 925 // and then turning back to named ops. But for now it's fine to have a few 926 // patterns matching special ops to get started. 927 928 /// Rewrites 2-D convolution ops with size-1 window dimensions into 1-D 929 /// convolution ops. 930 struct DownscaleSizeOneWindowed2DConvolution final 931 : public OpRewritePattern<Conv2DNhwcHwcfOp> { 932 DownscaleSizeOneWindowed2DConvolution( 933 MLIRContext *context, 934 LinalgTransformationFilter f = LinalgTransformationFilter(), 935 PatternBenefit benefit = 1) 936 : OpRewritePattern<Conv2DNhwcHwcfOp>(context, benefit), 937 filter(std::move(f)) {} 938 939 LogicalResult matchAndRewrite(linalg::Conv2DNhwcHwcfOp convOp, 940 PatternRewriter &rewriter) const override { 941 if (failed(filter.checkAndNotify(rewriter, convOp))) 942 return failure(); 943 if (convOp.hasBufferSemantics()) 944 return failure(); // To be implemented 945 946 Value input = convOp.inputs().front(); 947 Value kernel = convOp.inputs().back(); 948 Value output = convOp.outputs().front(); 949 950 auto inputType = input.getType().dyn_cast<RankedTensorType>(); 951 auto kernelType = kernel.getType().dyn_cast<RankedTensorType>(); 952 auto outputType = output.getType().dyn_cast<RankedTensorType>(); 953 954 auto kernelShape = kernelType.getShape(); 955 auto outputShape = outputType.getShape(); 956 957 // Only handle the case where at least one of the window dimensions is 958 // of size 1. Other cases can rely on tiling to reduce to such cases. 959 int64_t khSize = kernelShape[0], kwSize = kernelShape[1]; 960 int64_t ohSize = outputShape[1], owSize = outputShape[2]; 961 bool removeH = (khSize == 1 && ohSize == 1); 962 bool removeW = (kwSize == 1 && owSize == 1); 963 if (!removeH && !removeW) 964 return failure(); 965 966 // Get new shapes and types for all operands by removing the size-1 967 // dimension. 968 using RTTBuilder = RankedTensorType::Builder; 969 RankedTensorType newInputType = 970 RTTBuilder(inputType).dropDim((removeH ? 1 : 2)); 971 RankedTensorType newKernelType = 972 RTTBuilder(kernelType).dropDim((removeH ? 0 : 1)); 973 RankedTensorType newOutputType = 974 RTTBuilder(outputType).dropDim(removeH ? 1 : 2); 975 976 // Rank-reduce operands. 977 Location loc = convOp.getLoc(); 978 Value newInput = tensor::createCanonicalRankReducingExtractSliceOp( 979 rewriter, loc, input, newInputType); 980 Value newKernel = tensor::createCanonicalRankReducingExtractSliceOp( 981 rewriter, loc, kernel, newKernelType); 982 Value newOutput = tensor::createCanonicalRankReducingExtractSliceOp( 983 rewriter, loc, output, newOutputType); 984 985 // Rank-reduce strides and dilations too. 986 // TODO: dropDim 1-liner helper. 987 auto strides = llvm::to_vector<4>(convOp.strides().getValues<int64_t>()); 988 strides.erase(strides.begin() + (removeH ? 0 : 1)); 989 auto stridesAttr = rewriter.getI64VectorAttr(strides); 990 991 auto dilations = 992 llvm::to_vector<4>(convOp.dilations().getValues<int64_t>()); 993 dilations.erase(dilations.begin() + (removeH ? 0 : 1)); 994 auto dilationsAttr = rewriter.getI64VectorAttr(dilations); 995 996 auto conv1DOp = rewriter.create<linalg::Conv1DNwcWcfOp>( 997 loc, newOutputType, ValueRange{newInput, newKernel}, 998 ValueRange{newOutput}, stridesAttr, dilationsAttr); 999 1000 // Insert back. 1001 Value inserted = tensor::createCanonicalRankReducingInsertSliceOp( 1002 rewriter, loc, conv1DOp.getResult(0), output); 1003 rewriter.replaceOp(convOp, inserted); 1004 1005 filter.replaceLinalgTransformationFilter(rewriter, conv1DOp); 1006 return success(); 1007 }; 1008 1009 private: 1010 /// LinalgTransformMarker handles special attribute manipulations. 1011 LinalgTransformationFilter filter; 1012 }; 1013 1014 /// Rewrites 2-D depthwise convolution ops with size-1 (w, kw) or (h, kh) 1015 /// dimensions into 1-D depthwise convolution ops. 1016 struct DownscaleDepthwiseConv2DNhwcHwcOp final 1017 : public OpRewritePattern<DepthwiseConv2DNhwcHwcOp> { 1018 DownscaleDepthwiseConv2DNhwcHwcOp( 1019 MLIRContext *context, 1020 LinalgTransformationFilter f = LinalgTransformationFilter(), 1021 PatternBenefit benefit = 1) 1022 : OpRewritePattern<DepthwiseConv2DNhwcHwcOp>(context, benefit), 1023 filter(std::move(f)) {} 1024 1025 LogicalResult matchAndRewrite(DepthwiseConv2DNhwcHwcOp convOp, 1026 PatternRewriter &rewriter) const override { 1027 if (failed(filter.checkAndNotify(rewriter, convOp))) 1028 return failure(); 1029 if (convOp.hasBufferSemantics()) 1030 return failure(); // To be implemented 1031 1032 Value input = convOp.inputs().front(); 1033 Value kernel = convOp.inputs().back(); 1034 Value output = convOp.outputs().front(); 1035 1036 auto inputType = input.getType().dyn_cast<RankedTensorType>(); 1037 auto kernelType = kernel.getType().dyn_cast<RankedTensorType>(); 1038 auto outputType = output.getType().dyn_cast<RankedTensorType>(); 1039 1040 auto kernelShape = kernelType.getShape(); 1041 auto outputShape = outputType.getShape(); 1042 1043 // Only handle the case where at least one of the window dimensions is 1044 // of size 1. Other cases can rely on tiling to reduce to such cases. 1045 int64_t khSize = kernelShape[0], kwSize = kernelShape[1]; 1046 int64_t ohSize = outputShape[1], owSize = outputShape[2]; 1047 bool removeH = (khSize == 1 && ohSize == 1); 1048 bool removeW = (kwSize == 1 && owSize == 1); 1049 if (!removeH && !removeW) 1050 return failure(); 1051 1052 // Get new shapes and types for all operands by removing the size-1 1053 // dimension. 1054 using RTTBuilder = RankedTensorType::Builder; 1055 RankedTensorType newInputType = 1056 RTTBuilder(inputType).dropDim((removeH ? 1 : 2)); 1057 RankedTensorType newKernelType = 1058 RTTBuilder(kernelType).dropDim((removeH ? 0 : 1)); 1059 RankedTensorType newOutputType = 1060 RTTBuilder(outputType).dropDim(removeH ? 1 : 2); 1061 1062 // Rank-reduce operands. 1063 Location loc = convOp.getLoc(); 1064 Value newInput = tensor::createCanonicalRankReducingExtractSliceOp( 1065 rewriter, loc, input, newInputType); 1066 Value newKernel = tensor::createCanonicalRankReducingExtractSliceOp( 1067 rewriter, loc, kernel, newKernelType); 1068 Value newOutput = tensor::createCanonicalRankReducingExtractSliceOp( 1069 rewriter, loc, output, newOutputType); 1070 1071 // Rank-reduce strides and dilations too. 1072 // TODO: dropDim 1-liner helper. 1073 auto strides = llvm::to_vector<4>(convOp.strides().getValues<int64_t>()); 1074 strides.erase(strides.begin() + (removeH ? 0 : 1)); 1075 auto stridesAttr = rewriter.getI64VectorAttr(strides); 1076 1077 auto dilations = 1078 llvm::to_vector<4>(convOp.dilations().getValues<int64_t>()); 1079 dilations.erase(dilations.begin() + (removeH ? 0 : 1)); 1080 auto dilationsAttr = rewriter.getI64VectorAttr(dilations); 1081 1082 auto conv1DOp = rewriter.create<DepthwiseConv1DNwcWcOp>( 1083 loc, newOutputType, ValueRange{newInput, newKernel}, 1084 ValueRange{newOutput}, stridesAttr, dilationsAttr); 1085 1086 // Insert back. 1087 Value inserted = tensor::createCanonicalRankReducingInsertSliceOp( 1088 rewriter, loc, conv1DOp.getResult(0), output); 1089 rewriter.replaceOp(convOp, inserted); 1090 1091 filter.replaceLinalgTransformationFilter(rewriter, conv1DOp); 1092 return success(); 1093 }; 1094 1095 private: 1096 /// LinalgTransformMarker handles special attribute manipulations. 1097 LinalgTransformationFilter filter; 1098 }; 1099 1100 } // namespace 1101 1102 void linalg::populateDecomposeConvolutionPatterns( 1103 RewritePatternSet &patterns, const LinalgTransformationFilter &filter, 1104 PatternBenefit benefit) { 1105 patterns.add<DownscaleSizeOneWindowed2DConvolution, 1106 DownscaleDepthwiseConv2DNhwcHwcOp>(patterns.getContext(), filter, 1107 benefit); 1108 } 1109