1 //===- Transforms.cpp - Linalg transformations as patterns ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements logic and helpers to expose Linalg transforms as rewrite 10 // patterns. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 15 #include "mlir/Dialect/Affine/IR/AffineOps.h" 16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 17 #include "mlir/Dialect/Func/IR/FuncOps.h" 18 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" 19 #include "mlir/Dialect/Linalg/IR/Linalg.h" 20 #include "mlir/Dialect/Linalg/Transforms/HoistPadding.h" 21 #include "mlir/Dialect/Linalg/Utils/Utils.h" 22 #include "mlir/Dialect/SCF/Transforms.h" 23 #include "mlir/Dialect/Tensor/IR/Tensor.h" 24 #include "mlir/Dialect/Tensor/IR/TensorTilingInterfaceImpl.h" 25 #include "mlir/Dialect/Utils/StaticValueUtils.h" 26 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 27 #include "mlir/Dialect/Vector/IR/VectorOps.h" 28 #include "mlir/IR/AffineExpr.h" 29 #include "mlir/IR/Matchers.h" 30 #include "mlir/Pass/Pass.h" 31 #include "mlir/Support/LLVM.h" 32 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 33 #include "llvm/ADT/ScopeExit.h" 34 #include "llvm/ADT/TypeSwitch.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <type_traits> 38 #include <utility> 39 40 #define DEBUG_TYPE "linalg-transforms" 41 42 using namespace mlir; 43 using namespace mlir::linalg; 44 45 #define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE << "]: ") 46 47 //===----------------------------------------------------------------------===// 48 // Transformations exposed as rewrite patterns. 49 //===----------------------------------------------------------------------===// 50 // Marker used as attribute name in generated Linalg rewriting transformations. 51 const StringLiteral mlir::linalg::LinalgTransforms::kLinalgTransformMarker = 52 "__internal_linalg_transform__"; 53 54 mlir::linalg::LinalgTransformationFilter::LinalgTransformationFilter( 55 ArrayRef<StringAttr> matchDisjunction, Optional<StringAttr> replacement) 56 : matchDisjunction(matchDisjunction.begin(), matchDisjunction.end()), 57 replacement(replacement), matchByDefault(false) {} 58 59 mlir::linalg::LinalgTransformationFilter::LinalgTransformationFilter( 60 const FilterFunction &f, ArrayRef<StringAttr> matchDisjunction, 61 Optional<StringAttr> replacement) 62 : filters(), 63 matchDisjunction(matchDisjunction.begin(), matchDisjunction.end()), 64 replacement(replacement), matchByDefault(false) { 65 if (f) 66 filters.push_back(f); 67 } 68 69 LogicalResult mlir::linalg::LinalgTransformationFilter::checkAndNotify( 70 PatternRewriter &rewriter, Operation *op) const { 71 if (llvm::any_of(filters, 72 [&](const FilterFunction &f) { return failed(f(op)); })) 73 return failure(); 74 75 auto attr = op->template getAttrOfType<StringAttr>( 76 LinalgTransforms::kLinalgTransformMarker); 77 78 if (!attr) { 79 // 1. Has no filter case and matchDisjunction is empty. 80 if (matchDisjunction.empty() || matchByDefault) 81 return success(); 82 83 // 2. Has no filter but was expecting a filter. 84 return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) { 85 diag << " does not have any filter from list: "; 86 interleaveComma(matchDisjunction, diag); 87 }); 88 } 89 90 // 4. Match explicit filter. 91 for (auto filter : matchDisjunction) 92 if (attr.getValue() == filter) 93 return success(); 94 95 // 5. Fail to match. 96 return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) { 97 diag << " does not have any filter from list: "; 98 interleaveComma(matchDisjunction, diag); 99 }); 100 } 101 102 void mlir::linalg::LinalgTransformationFilter:: 103 replaceLinalgTransformationFilter(PatternRewriter &rewriter, 104 Operation *op) const { 105 if (replacement.hasValue()) 106 op->setAttr(LinalgTransforms::kLinalgTransformMarker, 107 replacement.getValue()); 108 else 109 op->removeAttr( 110 rewriter.getStringAttr(LinalgTransforms::kLinalgTransformMarker)); 111 } 112 113 bool mlir::linalg::LinalgTransformationFilter::hasReplacementFilter( 114 Operation *op) const { 115 if (!replacement) 116 return false; 117 auto attr = op->getAttr(LinalgTransforms::kLinalgTransformMarker) 118 .dyn_cast<StringAttr>(); 119 return attr && attr == replacement.getValue(); 120 } 121 122 LinalgTilingOptions & 123 mlir::linalg::LinalgTilingOptions::setTileSizes(ArrayRef<int64_t> ts) { 124 assert(!tileSizeComputationFunction && "tile sizes already set"); 125 SmallVector<int64_t, 4> tileSizes(ts.begin(), ts.end()); 126 tileSizeComputationFunction = [tileSizes](OpBuilder &b, Operation *op) { 127 OpBuilder::InsertionGuard guard(b); 128 b.setInsertionPointToStart( 129 &op->getParentOfType<func::FuncOp>().getBody().front()); 130 return llvm::to_vector<4>(map_range(tileSizes, [&](int64_t s) { 131 Value v = b.create<arith::ConstantIndexOp>(op->getLoc(), s); 132 return v; 133 })); 134 }; 135 return *this; 136 } 137 138 LinalgTilingOptions &mlir::linalg::LinalgTilingOptions::scalarizeDynamicDims() { 139 assert(!tileSizeComputationFunction && "tile sizes already set"); 140 tileSizeComputationFunction = [](OpBuilder &b, Operation *op) { 141 SmallVector<Value, 4> tileSizes; 142 auto linalgOp = dyn_cast<LinalgOp>(op); 143 if (!linalgOp) 144 return tileSizes; 145 Location loc = linalgOp.getLoc(); 146 auto allShapeSizes = linalgOp.createFlatListOfOperandDims(b, loc); 147 AffineMap map = linalgOp.getShapesToLoopsMap(); 148 if (!map) 149 return tileSizes; 150 auto shapeSizes = applyMapToValues(b, loc, map, allShapeSizes); 151 // If the shape size is dynamic, tile by 1. Otherwise, do not tile (tile 152 // size 0). 153 for (Value shapeSize : shapeSizes) 154 tileSizes.push_back(getConstantIntValue(shapeSize).hasValue() 155 ? b.create<arith::ConstantIndexOp>(loc, 0) 156 : b.create<arith::ConstantIndexOp>(loc, 1)); 157 return tileSizes; 158 }; 159 return *this; 160 } 161 162 /// Pad the `opOperand` in the `paddingDimensions` using the padding value and 163 /// the nofold flag found in `paddingValues` and `packPaddings`, respectively. 164 /// Exit early and return the `opOperand` value if the shape dimensions that 165 /// match `paddingDimensions` have a static size and the nofold flag is not set. 166 /// Otherwise, try to pad the shape dimensions that match the iterator 167 /// dimensions `paddingDimensions` and return the tensor::PadOp result if 168 /// padding succeeds or failure otherwise. 169 static FailureOr<Value> padOperandToSmallestStaticBoundingBox( 170 OpBuilder &b, linalg::LinalgOp opToPad, OpOperand *opOperand, 171 ArrayRef<int64_t> paddingDimensions, ArrayRef<Attribute> paddingValues, 172 ArrayRef<bool> packPaddings) { 173 AffineMap indexingMap = opToPad.getTiedIndexingMap(opOperand); 174 ArrayRef<int64_t> shape = opToPad.getShape(opOperand); 175 176 // Collect the shape dimension that are a function of the `paddingDimensions`. 177 llvm::SmallDenseSet<int64_t> shapeDimsToPad; 178 for (int64_t dim : paddingDimensions) 179 for (const auto &en : enumerate(indexingMap.getResults())) 180 if (en.value().isFunctionOfDim(dim)) 181 shapeDimsToPad.insert(en.index()); 182 183 // Return the unpadded operand if padding to a static shape is not needed and 184 // if the nofold flag is not set. 185 bool nofold = opOperand->getOperandNumber() < packPaddings.size() 186 ? packPaddings[opOperand->getOperandNumber()] 187 : false; 188 bool hasStaticShape = llvm::none_of(shapeDimsToPad, [&](int64_t dim) { 189 return ShapedType::isDynamic(shape[dim]); 190 }); 191 if (!nofold && hasStaticShape) 192 return opOperand->get(); 193 194 // Fail if `paddingValues` specifies no padding value. 195 if (opOperand->getOperandNumber() >= paddingValues.size()) 196 return failure(); 197 Attribute paddingAttr = paddingValues[opOperand->getOperandNumber()]; 198 Value paddingValue = b.create<arith::ConstantOp>( 199 opToPad.getLoc(), paddingAttr.getType(), paddingAttr); 200 201 // Follow the use-def chain if `currOpOperand` is defined by a LinalgOp. 202 OpOperand *currOpOperand = opOperand; 203 while (auto linalgOp = currOpOperand->get().getDefiningOp<LinalgOp>()) { 204 OpResult result = currOpOperand->get().cast<OpResult>(); 205 currOpOperand = linalgOp.getOutputOperand(result.getResultNumber()); 206 } 207 208 // Fail if `currOpOperand` is not defined by an ExtractSliceOp. 209 auto sliceOp = currOpOperand->get().getDefiningOp<tensor::ExtractSliceOp>(); 210 if (!sliceOp) 211 return failure(); 212 213 // Compute the dropped dimensions if `sliceOp` is ranke-reducing. 214 llvm::SmallBitVector droppedDims = sliceOp.getDroppedDims(); 215 OffsetSizeAndStrideOpInterface shapedOp = sliceOp; 216 217 // Upper bound the `sliceOp` sizes to obtain a static bounding box. 218 SmallVector<int64_t> paddedShape(shape.begin(), shape.end()); 219 int64_t shapeIdx = 0; 220 for (const auto &en : enumerate(shapedOp.getMixedSizes())) { 221 // Skip dropped dimensions. 222 if (droppedDims.test(en.index())) 223 continue; 224 // Skip dimensions that do not require padding. 225 if (!shapeDimsToPad.contains(shapeIdx)) { 226 shapeIdx++; 227 continue; 228 } 229 // If the size is an attribute add it directly to `paddedShape`. 230 if (en.value().is<Attribute>()) { 231 paddedShape[shapeIdx++] = 232 en.value().get<Attribute>().dyn_cast<IntegerAttr>().getInt(); 233 continue; 234 } 235 // Otherwise, try to compute a constant upper bound for the size value. 236 FailureOr<int64_t> upperBound = 237 getConstantUpperBoundForIndex(en.value().get<Value>()); 238 if (failed(upperBound)) { 239 LLVM_DEBUG(DBGS() << "No constant bounding box can be found for padding"); 240 return failure(); 241 } 242 paddedShape[shapeIdx++] = upperBound.getValue(); 243 } 244 assert(shapeIdx == static_cast<int64_t>(shape.size()) && 245 "expect the dynamic and static ranks to match"); 246 247 // Pad the operand to the bounding box defined by `paddedShape`. 248 auto paddedTensorType = RankedTensorType::get( 249 paddedShape, getElementTypeOrSelf(opOperand->get())); 250 return makeComposedPadHighOp(b, opToPad->getLoc(), paddedTensorType, 251 opOperand->get(), paddingValue, nofold); 252 } 253 254 FailureOr<SmallVector<Value>> 255 linalg::rewriteAsPaddedOp(OpBuilder &b, LinalgOp opToPad, 256 ArrayRef<int64_t> paddingDimensions, 257 ArrayRef<Attribute> paddingValues, 258 ArrayRef<bool> packPaddings, LinalgOp &paddedOp) { 259 Location loc = opToPad->getLoc(); 260 261 // TODO: there are cases where we may still want to pad to larger sizes. 262 assert(opToPad.hasTensorSemantics() && 263 "expected operation to have tensor semantics"); 264 265 OpBuilder::InsertionGuard g(b); 266 // Set IP after op because we also take the dims of the original output. 267 b.setInsertionPointAfter(opToPad); 268 // Make a copy of the shaped operands and update it. 269 SmallVector<Value> newOperands; 270 newOperands.reserve(opToPad.getNumInputsAndOutputs()); 271 for (OpOperand *opOperand : opToPad.getInputAndOutputOperands()) { 272 FailureOr<Value> paddedOperand = padOperandToSmallestStaticBoundingBox( 273 b, opToPad, opOperand, paddingDimensions, paddingValues, packPaddings); 274 // Exit if `paddingDimensions` cannot be bounded statically. 275 if (failed(paddedOperand)) 276 return failure(); 277 newOperands.push_back(*paddedOperand); 278 } 279 280 SmallVector<SmallVector<Value>> reifiedResultShapes; 281 if (failed(cast<ReifyRankedShapedTypeOpInterface>(opToPad.getOperation()) 282 .reifyResultShapes(b, reifiedResultShapes))) 283 return failure(); 284 assert(reifiedResultShapes.size() == opToPad->getNumResults() && 285 "expected same number of results"); 286 287 // Clone `opToPad` to operate on the statically padded shapes. 288 auto resultTensorTypes = 289 ValueRange(newOperands).take_back(opToPad.getNumOutputs()).getTypes(); 290 paddedOp = opToPad.clone(b, loc, resultTensorTypes, newOperands); 291 292 // Recover the slice out of the new static results. This keeps the original 293 // linalg op around because it uses the dims of the original results. 294 SmallVector<Value> paddedSubviewResults; 295 paddedSubviewResults.reserve(opToPad->getNumResults()); 296 for (const auto &en : llvm::enumerate(paddedOp->getResults())) { 297 Value paddedResult = en.value(); 298 int64_t resultNumber = en.index(); 299 int64_t rank = paddedResult.getType().cast<RankedTensorType>().getRank(); 300 SmallVector<OpFoldResult> offsets(rank, b.getIndexAttr(0)); 301 SmallVector<OpFoldResult> sizes; 302 for (Value v : reifiedResultShapes[resultNumber]) 303 sizes.push_back(getAsOpFoldResult(v)); 304 SmallVector<OpFoldResult> strides(rank, b.getIndexAttr(1)); 305 paddedSubviewResults.push_back(b.create<tensor::ExtractSliceOp>( 306 loc, paddedResult, offsets, sizes, strides)); 307 } 308 return paddedSubviewResults; 309 } 310 311 /// Try to peel a loop `op` and return the new result. 312 // TODO: Add support for scf.parallel and affine.for loops. 313 static SmallVector<Value, 4> peelLoop(RewriterBase &rewriter, Operation *op) { 314 return llvm::TypeSwitch<Operation *, SmallVector<Value, 4>>(op) 315 .Case<scf::ForOp>([&](scf::ForOp forOp) { 316 scf::ForOp partialIteration; 317 if (succeeded(scf::peelAndCanonicalizeForLoop(rewriter, forOp, 318 partialIteration))) 319 return partialIteration->getResults(); 320 assert(!partialIteration && "expected that loop was not peeled"); 321 return forOp->getResults(); 322 }) 323 .Default([&](Operation *op) { return op->getResults(); }); 324 } 325 326 /// Peel loops after tiling. 327 void mlir::linalg::peelTiledLinalgOp(RewriterBase &rewriter, TiledLinalgOp &res, 328 ArrayRef<int64_t> peeledLoops, 329 LinalgTilingLoopType loopType) { 330 for (int64_t loop : peeledLoops) { 331 assert(loop < static_cast<int64_t>(res.loops.size()) && 332 "requested peeling of non-existing loop"); 333 SmallVector<Value, 4> loopResults; 334 Operation *loopOp = res.loops[loop]; 335 loopResults = peelLoop(rewriter, loopOp); 336 337 // The result of the loop nest may change with peeling. 338 if (res.tensorResults.size() == loopOp->getNumResults() && 339 std::equal(res.tensorResults.begin(), res.tensorResults.end(), 340 loopOp->getResults().begin())) 341 res.tensorResults = loopResults; 342 } 343 } 344 345 static ValueRange getTiledOpResult(TiledLinalgOp tiledOp) { 346 if (tiledOp.loops.empty()) 347 return tiledOp.op.getOperation()->getResults(); 348 return tiledOp.loops.front()->getResults(); 349 } 350 351 static ValueRange 352 getTiledAndFusedOpResult(TiledAndFusedLinalgOps tiledAndFusedOp) { 353 if (tiledAndFusedOp.fusedLoops.empty()) 354 return tiledAndFusedOp.op.getOperation()->getResults(); 355 return tiledAndFusedOp.fusedLoops.front()->getResults(); 356 } 357 358 mlir::linalg::LinalgBaseTileAndFusePattern::LinalgBaseTileAndFusePattern( 359 StringRef opName, MLIRContext *context, 360 const LinalgDependenceGraph &dependenceGraph, 361 LinalgTilingOptions tilingOptions, LinalgFusionOptions fusionOptions, 362 LinalgTransformationFilter f, LinalgTransformationFilter fusedOpMarker, 363 LinalgTransformationFilter originalOpMarker, PatternBenefit benefit) 364 : RewritePattern(opName, benefit, context, {}), 365 dependenceGraph(dependenceGraph), tilingOptions(std::move(tilingOptions)), 366 fusionOptions(std::move(fusionOptions)), filter(std::move(f)), 367 fusedOpMarker(std::move(fusedOpMarker)), 368 originalOpMarker(std::move(originalOpMarker)) {} 369 370 LogicalResult mlir::linalg::LinalgBaseTileAndFusePattern::matchAndRewrite( 371 Operation *op, PatternRewriter &rewriter) const { 372 LinalgOp linalgOp = dyn_cast<LinalgOp>(op); 373 // TODO: remove hasIndexSemantics check once index ops are supported. 374 if (!linalgOp || linalgOp.hasIndexSemantics()) 375 return failure(); 376 if (failed(filter.checkAndNotify(rewriter, linalgOp))) 377 return failure(); 378 379 DenseSet<Operation *> producers; 380 producers.insert(linalgOp); 381 for (auto dependence : dependenceGraph.getDependentOperationsInto(linalgOp)) { 382 Optional<unsigned> operandNumber = dependence.getIndexingOpViewOperandNum(); 383 // When looking at dependences into, indexingOp is always OpOperand. We 384 // could assert, but continue if this is not the case. 385 if (!operandNumber) 386 continue; 387 if (!fusionOptions.indicesToFuse.count(operandNumber.getValue())) 388 continue; 389 if (isa<LinalgOp>(dependence.getDependentOp())) 390 producers.insert(dependence.getDependentOp()); 391 } 392 393 SmallVector<LinalgOp, 1> fusionOps; 394 for (auto it = op->getBlock()->begin(), ie = Block::iterator(op); it != ie; 395 ++it) { 396 auto producerLinalgOp = dyn_cast<LinalgOp>(&(*it)); 397 if (producerLinalgOp && producers.count(producerLinalgOp)) 398 fusionOps.push_back(producerLinalgOp); 399 } 400 fusionOps.push_back(linalgOp); 401 402 SmallVector<Value, 4> tileSizes = 403 tilingOptions.tileSizeComputationFunction(rewriter, op); 404 LinalgTilingOptions instanceTilingOptions = tilingOptions; 405 instanceTilingOptions.setTileSizes(tileSizes); 406 Optional<TiledAndFusedLinalgOps> tiledAndFusedOps = tileAndFuseLinalgOps( 407 rewriter, fusionOps, dependenceGraph, instanceTilingOptions); 408 if (!tiledAndFusedOps) 409 return failure(); 410 411 // Tile the unfused loops; 412 SmallVector<Value, 4> unfusedLoopTileSizes; 413 Value zero = rewriter.create<arith::ConstantIndexOp>(op->getLoc(), 0); 414 for (const auto &tileSize : enumerate(tileSizes)) { 415 if (tiledAndFusedOps->fusedLoopDims.count(tileSize.index())) 416 unfusedLoopTileSizes.push_back(zero); 417 else 418 unfusedLoopTileSizes.push_back(tileSize.value()); 419 } 420 // Tile the loop only if there is a non-zero tile size. 421 if (unfusedLoopTileSizes.size() > linalgOp.getNumLoops()) 422 unfusedLoopTileSizes.resize(linalgOp.getNumLoops()); 423 if (llvm::any_of(unfusedLoopTileSizes, [](Value val) { 424 if (auto cst = val.getDefiningOp<arith::ConstantIndexOp>()) 425 return cst.value() != 0; 426 return true; 427 })) { 428 LinalgTilingOptions unfusedTilingOptions = tilingOptions; 429 unfusedTilingOptions.setTileSizes(unfusedLoopTileSizes); 430 FailureOr<TiledLinalgOp> unfusedTiledOp = 431 tileLinalgOp(rewriter, tiledAndFusedOps->op, unfusedTilingOptions); 432 if (failed(unfusedTiledOp)) 433 return failure(); 434 rewriter.replaceOp(tiledAndFusedOps->op, 435 getTiledOpResult(unfusedTiledOp.getValue())); 436 tiledAndFusedOps->op = unfusedTiledOp->op; 437 } 438 op->replaceAllUsesWith(getTiledAndFusedOpResult(tiledAndFusedOps.getValue())); 439 440 filter.replaceLinalgTransformationFilter(rewriter, 441 tiledAndFusedOps->op.getOperation()); 442 for (auto fusedOp : tiledAndFusedOps->fusedProducers) { 443 fusedOpMarker.replaceLinalgTransformationFilter(rewriter, 444 fusedOp.getOperation()); 445 } 446 for (auto origProducerOp : ArrayRef<LinalgOp>(fusionOps).drop_back()) { 447 originalOpMarker.replaceLinalgTransformationFilter( 448 rewriter, origProducerOp.getOperation()); 449 } 450 rewriter.updateRootInPlace(op, [&]() { 451 originalOpMarker.replaceLinalgTransformationFilter(rewriter, op); 452 }); 453 return success(); 454 } 455 456 /// Linalg tiling pattern. 457 mlir::linalg::LinalgTilingPattern::LinalgTilingPattern( 458 MLIRContext *context, LinalgTilingOptions options, 459 LinalgTransformationFilter f, PatternBenefit benefit) 460 : OpInterfaceRewritePattern<LinalgOp>(context, benefit), 461 filter(std::move(f)), options(std::move(options)) {} 462 463 mlir::linalg::LinalgTilingPattern::LinalgTilingPattern( 464 StringRef opName, MLIRContext *context, LinalgTilingOptions options, 465 LinalgTransformationFilter f, PatternBenefit benefit) 466 : OpInterfaceRewritePattern<LinalgOp>(context, benefit), 467 filter(f.addOpNameFilter(opName)), options(std::move(options)) {} 468 469 FailureOr<TiledLinalgOp> 470 mlir::linalg::LinalgTilingPattern::returningMatchAndRewrite( 471 LinalgOp op, PatternRewriter &rewriter) const { 472 if (failed(filter.checkAndNotify(rewriter, op))) 473 return failure(); 474 475 FailureOr<TiledLinalgOp> res = tileLinalgOp(rewriter, op, options); 476 if (failed(res)) 477 return failure(); 478 479 // Clear filter to stop recursive pattern application. 480 // This must be done here to properly propagate to peeling branches. 481 filter.replaceLinalgTransformationFilter(rewriter, res->op); 482 483 // Peel the loops of the TiledLinalgOp. 484 peelTiledLinalgOp(rewriter, *res, options.peeledLoops, options.loopType); 485 486 if (res->tensorResults.empty()) 487 rewriter.eraseOp(op); 488 else 489 rewriter.replaceOp(op, res->tensorResults); 490 491 return res; 492 } 493 494 /// Linalg padding pattern. 495 mlir::linalg::LinalgPaddingPattern::LinalgPaddingPattern( 496 MLIRContext *context, LinalgPaddingOptions options, 497 LinalgTransformationFilter f, PatternBenefit benefit) 498 : OpInterfaceRewritePattern<LinalgOp>(context, benefit), 499 filter(std::move(f)), options(std::move(options)) {} 500 501 mlir::linalg::LinalgPaddingPattern::LinalgPaddingPattern( 502 StringRef opName, MLIRContext *context, LinalgPaddingOptions options, 503 LinalgTransformationFilter f, PatternBenefit benefit) 504 : OpInterfaceRewritePattern<LinalgOp>(context, benefit), 505 filter(f.addOpNameFilter(opName)), options(std::move(options)) {} 506 507 FailureOr<LinalgOp> 508 mlir::linalg::LinalgPaddingPattern::returningMatchAndRewrite( 509 LinalgOp linalgOp, PatternRewriter &rewriter) const { 510 if (!linalgOp.hasTensorSemantics()) 511 return failure(); 512 if (failed(filter.checkAndNotify(rewriter, linalgOp))) 513 return failure(); 514 515 // Pad the operation. 516 LinalgOp paddedOp; 517 FailureOr<SmallVector<Value>> newResults = 518 rewriteAsPaddedOp(rewriter, linalgOp, options.paddingDimensions, 519 options.paddingValues, options.packPaddings, paddedOp); 520 if (failed(newResults)) 521 return failure(); 522 523 // Hoist the padding. 524 for (const auto &en : enumerate(options.hoistPaddings)) { 525 if (static_cast<int64_t>(en.index()) >= paddedOp.getNumInputsAndOutputs()) 526 break; 527 OpOperand *opOperand = &paddedOp->getOpOperand(en.index()); 528 auto padOp = opOperand->get().getDefiningOp<tensor::PadOp>(); 529 if (!padOp || en.value() == 0) 530 continue; 531 532 // Fail hoisting if the operand shape is not fully static. 533 if (llvm::any_of(paddedOp.getShape(opOperand), 534 [](int64_t size) { return ShapedType::isDynamic(size); })) 535 return failure(); 536 537 tensor::PadOp hoistedOp; 538 SmallVector<GenericOp> transposeOps; 539 SmallVector<int64_t> transposeVector = 540 en.index() < options.transposePaddings.size() 541 ? options.transposePaddings[en.index()] 542 : SmallVector<int64_t>{}; 543 544 FailureOr<Value> newResult = hoistPaddingOnTensors( 545 padOp, en.value(), transposeVector, hoistedOp, transposeOps); 546 if (failed(newResult)) 547 continue; 548 rewriter.replaceOp(padOp, newResult.getValue()); 549 550 // Do not apply hoist padding to the newly introduced transpose operations. 551 for (GenericOp transposeOp : transposeOps) 552 filter.replaceLinalgTransformationFilter(rewriter, transposeOp); 553 } 554 555 // Replace the original operation to pad. 556 rewriter.replaceOp(linalgOp, newResults.getValue()); 557 filter.replaceLinalgTransformationFilter(rewriter, paddedOp); 558 559 return paddedOp; 560 } 561 562 /// Linalg tile and fuse tensor ops pattern. 563 mlir::linalg::LinalgTileAndFuseTensorOpsPattern:: 564 LinalgTileAndFuseTensorOpsPattern(MLIRContext *context, 565 LinalgTilingAndFusionOptions options, 566 LinalgTransformationFilter f, 567 PatternBenefit benefit) 568 : RewritePattern(MatchAnyOpTypeTag(), benefit, context), 569 filter(std::move(f)), options(std::move(options)) {} 570 571 mlir::linalg::LinalgTileAndFuseTensorOpsPattern:: 572 LinalgTileAndFuseTensorOpsPattern(StringRef opName, MLIRContext *context, 573 LinalgTilingAndFusionOptions options, 574 LinalgTransformationFilter f, 575 PatternBenefit benefit) 576 : RewritePattern(opName, benefit, context), filter(std::move(f)), 577 options(std::move(options)) {} 578 579 FailureOr<mlir::linalg::TileLoopNest> 580 mlir::linalg::LinalgTileAndFuseTensorOpsPattern::returningMatchAndRewrite( 581 Operation *op, PatternRewriter &rewriter) const { 582 LinalgOp rootOp = dyn_cast<LinalgOp>(op); 583 if (!rootOp) 584 return failure(); 585 if (failed(filter.checkAndNotify(rewriter, op))) 586 return failure(); 587 588 // Check `tileSizes` contains a tile size for every `rootOp` loop dimension. 589 if (options.tileSizes.size() < rootOp.getNumLoops()) 590 return rewriter.notifyMatchFailure(op, "expect #tile sizes >= #loops"); 591 592 // Check `tileInterchange` contains no entries or as many as `tileSizes`. 593 if (!options.tileInterchange.empty() && 594 options.tileInterchange.size() != options.tileSizes.size()) 595 return rewriter.notifyMatchFailure( 596 op, "expect the number of tile sizes and interchange dims to match"); 597 598 // Copy the `tileSizes` and `tileInterchange` prefixes needed for `rootOp`. 599 SmallVector<int64_t> rootTileSizes(options.tileSizes.begin(), 600 options.tileSizes.begin() + 601 rootOp.getNumLoops()); 602 SmallVector<int64_t> rootInterchange = 603 options.tileInterchange.empty() 604 ? llvm::to_vector<6>(llvm::seq<int64_t>(0, rootOp.getNumLoops())) 605 : SmallVector<int64_t>(options.tileInterchange.begin(), 606 options.tileInterchange.begin() + 607 rootOp.getNumLoops()); 608 609 // Check `rootTileSizes` contains non-zero tile sizes. 610 if (llvm::count(rootTileSizes, 0) == static_cast<long>(rootTileSizes.size())) 611 return rewriter.notifyMatchFailure( 612 op, "expect at least one non-zero tile size"); 613 614 // Check `rootInterchange` is a permutation of the `rootOp` loop dimensions. 615 // It has to be a permutation since the tiling cannot tile the same loop 616 // dimension multiple times. 617 if (!isPermutation(rootInterchange)) 618 return rewriter.notifyMatchFailure( 619 op, "expect the tile interchange permutes the root loops"); 620 621 // Tile `rootOp` and fuse its producers. 622 FailureOr<TileLoopNest> tileLoopNest = 623 tileConsumerAndFuseProducers(rewriter, rootOp, rootTileSizes, 624 rootInterchange, options.tileDistribution); 625 if (failed(tileLoopNest)) 626 return rewriter.notifyMatchFailure( 627 op, "tileConsumerAndFuseProducers failed unexpectedly"); 628 629 // Replace all uses of the tiled loop operation. 630 rootOp->replaceAllUsesWith(tileLoopNest->getRootOpReplacementResults()); 631 632 // Apply the filter if specified. 633 for (LinalgOp linalgOp : tileLoopNest->getAllTiledAndFusedOps()) 634 filter.replaceLinalgTransformationFilter(rewriter, linalgOp); 635 return tileLoopNest; 636 } 637 638 /// Linalg generic interchange pattern. 639 mlir::linalg::GenericOpInterchangePattern::GenericOpInterchangePattern( 640 MLIRContext *context, ArrayRef<unsigned> interchangeVector, 641 LinalgTransformationFilter f, PatternBenefit benefit) 642 : OpRewritePattern(context, benefit), filter(std::move(f)), 643 interchangeVector(interchangeVector.begin(), interchangeVector.end()) {} 644 645 FailureOr<GenericOp> 646 mlir::linalg::GenericOpInterchangePattern::returningMatchAndRewrite( 647 GenericOp genericOp, PatternRewriter &rewriter) const { 648 if (failed(filter.checkAndNotify(rewriter, genericOp))) 649 return failure(); 650 651 FailureOr<GenericOp> transformedOp = 652 interchangeGenericOp(rewriter, genericOp, interchangeVector); 653 if (failed(transformedOp)) 654 return failure(); 655 656 // New filter if specified. 657 filter.replaceLinalgTransformationFilter(rewriter, genericOp); 658 return transformedOp; 659 } 660 661 /// Linalg generalization pattern. 662 mlir::linalg::LinalgGeneralizationPattern::LinalgGeneralizationPattern( 663 MLIRContext *context, LinalgTransformationFilter f, PatternBenefit benefit) 664 : OpInterfaceRewritePattern<LinalgOp>(context, benefit), 665 filter(std::move(f)) {} 666 667 mlir::linalg::LinalgGeneralizationPattern::LinalgGeneralizationPattern( 668 StringRef opName, MLIRContext *context, LinalgTransformationFilter f, 669 PatternBenefit benefit) 670 : OpInterfaceRewritePattern<LinalgOp>(context, benefit), 671 filter(f.addOpNameFilter(opName)) {} 672 673 FailureOr<GenericOp> 674 mlir::linalg::LinalgGeneralizationPattern::returningMatchAndRewrite( 675 LinalgOp linalgOp, PatternRewriter &rewriter) const { 676 if (failed(filter.checkAndNotify(rewriter, linalgOp))) 677 return failure(); 678 FailureOr<GenericOp> genericOp = generalizeNamedOp(rewriter, linalgOp); 679 if (failed(genericOp)) 680 return failure(); 681 filter.replaceLinalgTransformationFilter(rewriter, *genericOp); 682 return genericOp; 683 } 684 685 mlir::linalg::LinalgBasePromotionPattern::LinalgBasePromotionPattern( 686 MLIRContext *context, LinalgTransformationFilter f, 687 LinalgPromotionOptions options, PatternBenefit benefit) 688 : RewritePattern(MatchAnyOpTypeTag(), benefit, context), 689 filter(std::move(f)), options(std::move(options)) {} 690 691 mlir::linalg::LinalgBasePromotionPattern::LinalgBasePromotionPattern( 692 StringRef opName, MLIRContext *context, LinalgPromotionOptions options, 693 LinalgTransformationFilter f, PatternBenefit benefit) 694 : RewritePattern(opName, benefit, context, {}), filter(std::move(f)), 695 options(std::move(options)) {} 696 697 LogicalResult mlir::linalg::LinalgBasePromotionPattern::matchAndRewrite( 698 Operation *op, PatternRewriter &rewriter) const { 699 if (failed(filter.checkAndNotify(rewriter, op))) 700 return failure(); 701 if (failed(promoteSubviewsPrecondition(op, options))) 702 return failure(); 703 704 // TODO: We cannot use root update here. This pattern is creating other ops, 705 // so if the promotion fails, those need to be cleaned up, which doesnt seem 706 // to be happening here. So to fail properly, we should be cloning the op and 707 // deleting the previous op. This needs more investigation. 708 rewriter.startRootUpdate(op); 709 Optional<LinalgOp> promotedOp = promoteSubViews(rewriter, op, options); 710 if (!promotedOp) { 711 rewriter.cancelRootUpdate(op); 712 return op->emitError("subview promotion failed"); 713 } 714 rewriter.finalizeRootUpdate(op); 715 filter.replaceLinalgTransformationFilter(rewriter, op); 716 return success(); 717 } 718 719 mlir::linalg::LinalgVectorizationPattern::LinalgVectorizationPattern( 720 MLIRContext *context, LinalgTransformationFilter f, 721 LinalgVectorizationOptions options, PatternBenefit benefit) 722 : OpInterfaceRewritePattern<LinalgOp>(context, benefit), 723 filter(std::move(f)) {} 724 725 mlir::linalg::LinalgVectorizationPattern::LinalgVectorizationPattern( 726 StringRef opName, MLIRContext *context, LinalgVectorizationOptions options, 727 LinalgTransformationFilter f, PatternBenefit benefit) 728 : OpInterfaceRewritePattern<LinalgOp>(context, benefit), 729 filter(f.addOpNameFilter(opName)) {} 730 731 LogicalResult mlir::linalg::LinalgVectorizationPattern::matchAndRewrite( 732 LinalgOp linalgOp, PatternRewriter &rewriter) const { 733 if (failed(filter.checkAndNotify(rewriter, linalgOp))) 734 return failure(); 735 return vectorize(rewriter, linalgOp); 736 } 737 738 LogicalResult mlir::linalg::CopyVectorizationPattern::matchAndRewrite( 739 memref::CopyOp copyOp, PatternRewriter &rewriter) const { 740 return vectorizeCopy(rewriter, copyOp); 741 } 742 743 LogicalResult mlir::linalg::applyStagedPatterns( 744 Operation *op, ArrayRef<FrozenRewritePatternSet> stage1Patterns, 745 const FrozenRewritePatternSet &stage2Patterns, 746 function_ref<LogicalResult(Operation *)> stage3Lambda) { 747 unsigned iteration = 0; 748 (void)iteration; 749 for (const auto &patterns : stage1Patterns) { 750 LLVM_DEBUG(DBGS() << "Before 1st stage, iter: " << ++iteration << "\n" 751 << *op); 752 if (failed(applyPatternsAndFoldGreedily(op, patterns))) { 753 LLVM_DEBUG(DBGS() << "Underlying first stage rewrite did not converge"); 754 return failure(); 755 } 756 LLVM_DEBUG(DBGS() << "After 1st stage, iter: " << ++iteration << "\n" 757 << *op); 758 if (failed(applyPatternsAndFoldGreedily(op, stage2Patterns))) { 759 LLVM_DEBUG(DBGS() << "Underlying 2nd stage rewrite did not converge"); 760 return failure(); 761 } 762 LLVM_DEBUG(DBGS() << "After 2nd stage, iter : " << iteration << "\n" 763 << *op); 764 if (stage3Lambda) { 765 if (failed(stage3Lambda(op))) 766 return failure(); 767 LLVM_DEBUG(DBGS() << "After 3rd stage, iter : " << iteration << "\n" 768 << *op); 769 } 770 } 771 return success(); 772 } 773 774 static SmallVector<StringRef> getNParallelLoopsAttrs(unsigned nParallelLoops) { 775 return SmallVector<StringRef>(nParallelLoops, getParallelIteratorTypeName()); 776 } 777 778 /// Rewrite a tensor::PadOp into a sequence of InitTensorOp, FillOp (to 779 /// initialize with pad_val) and GenericOp (to copy contents). 780 LogicalResult 781 PadOpTransformationPattern::matchAndRewrite(tensor::PadOp padOp, 782 PatternRewriter &rewriter) const { 783 784 auto inputShapedType = padOp.source().getType().cast<ShapedType>(); 785 auto resultShapedType = padOp.result().getType().cast<ShapedType>(); 786 787 // Bail on non-static shapes. 788 if (!inputShapedType.hasStaticShape()) 789 return failure(); 790 if (!resultShapedType.hasStaticShape()) 791 return failure(); 792 793 // Only support padding with a constant for now, i.e. either: 794 // 1. A BBarg from a different block. 795 // 2. A value defined outside of the current block. 796 Block &block = padOp.region().front(); 797 auto yieldOp = cast<tensor::YieldOp>(block.getTerminator()); 798 Value padValue = yieldOp.value(); 799 Operation *definingOp = padValue.getDefiningOp(); 800 if (definingOp && definingOp->getBlock() == &block) 801 return failure(); 802 if (!definingOp && padValue.cast<BlockArgument>().getOwner() == &block) 803 return failure(); 804 805 // Create tensor with the padded shape 806 Location loc = padOp.getLoc(); 807 SmallVector<Value> indices(resultShapedType.getRank(), 808 rewriter.create<arith::ConstantIndexOp>(loc, 0)); 809 Value initTensor = rewriter.create<InitTensorOp>( 810 loc, resultShapedType.getShape(), resultShapedType.getElementType()); 811 812 // Initialize tensor with the pad value 813 Value tmpTensor = rewriter 814 .create<linalg::FillOp>(loc, ValueRange{padValue}, 815 ValueRange{initTensor}) 816 .result(); 817 818 // Copy original contents into new tensor 819 // Uses linalg.generic, but could be done with tensor.insert_slice 820 SmallVector<AffineExpr, 4> outputExprs; 821 for (unsigned i = 0; i < resultShapedType.getRank(); ++i) { 822 outputExprs.push_back(getAffineDimExpr(i, rewriter.getContext()) + 823 padOp.static_low()[i].cast<IntegerAttr>().getInt()); 824 } 825 826 SmallVector<AffineMap, 2> transferMaps = { 827 rewriter.getMultiDimIdentityMap(inputShapedType.getRank()), 828 AffineMap::get(resultShapedType.getRank(), 829 /*symbolCount=*/0, outputExprs, rewriter.getContext())}; 830 831 rewriter.replaceOpWithNewOp<linalg::GenericOp>( 832 padOp, resultShapedType, padOp.source(), tmpTensor, transferMaps, 833 getNParallelLoopsAttrs(resultShapedType.getRank()), 834 [&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange args) { 835 nestedBuilder.create<linalg::YieldOp>(nestedLoc, args[0]); 836 }); 837 838 return success(); 839 } 840 841 /// Filling `dest` using FillOp constant padding value if possible. 842 /// Otherwise, generate a tensor::GenerateOp. 843 Value GeneralizePadOpPattern::createFillOrGenerateOp( 844 PatternRewriter &rewriter, tensor::PadOp padOp, Value dest, 845 const SmallVector<Value> &dynSizes) const { 846 auto padValue = padOp.getConstantPaddingValue(); 847 if (padValue) 848 return rewriter.create<FillOp>(padOp.getLoc(), padValue, dest).result(); 849 850 // Fill could not be optimized: Lower to tensor::GenerateOp with region. 851 auto generateOp = rewriter.create<tensor::GenerateOp>( 852 padOp.getLoc(), padOp.getResultType(), dynSizes); 853 // Copy region to new op. 854 BlockAndValueMapping bvm; 855 padOp.region().cloneInto(&generateOp.getRegion(), bvm); 856 return generateOp; 857 } 858 859 LogicalResult 860 GeneralizePadOpPattern::matchAndRewrite(tensor::PadOp padOp, 861 PatternRewriter &rewriter) const { 862 // Given an OpFoldResult, return an index-typed value. 863 auto getIdxValue = [&](OpFoldResult ofr) { 864 if (auto val = ofr.dyn_cast<Value>()) 865 return val; 866 return rewriter 867 .create<arith::ConstantIndexOp>( 868 padOp.getLoc(), ofr.get<Attribute>().cast<IntegerAttr>().getInt()) 869 .getResult(); 870 }; 871 872 auto resultType = padOp.getResultType(); 873 // Compute size of InitTensorOp. Any combination of static/dynamic is 874 // supported. 875 SmallVector<Value> dynSizes; 876 SmallVector<int64_t> staticSizes; 877 for (unsigned dim = 0; dim < resultType.getRank(); ++dim) { 878 if (resultType.isDynamicDim(dim)) { 879 auto srcSize = rewriter.createOrFold<tensor::DimOp>(padOp.getLoc(), 880 padOp.source(), dim); 881 // Add low and high padding value. 882 auto plusLow = rewriter.createOrFold<arith::AddIOp>( 883 padOp.getLoc(), srcSize, getIdxValue(padOp.getMixedLowPad()[dim])); 884 auto plusHigh = rewriter.createOrFold<arith::AddIOp>( 885 padOp.getLoc(), plusLow, getIdxValue(padOp.getMixedHighPad()[dim])); 886 dynSizes.push_back(plusHigh); 887 } 888 staticSizes.push_back(resultType.getDimSize(dim)); 889 } 890 891 // Init tensor and fill it with padding. 892 Value init = rewriter.create<InitTensorOp>( 893 padOp.getLoc(), dynSizes, staticSizes, resultType.getElementType()); 894 Value fill = createFillOrGenerateOp(rewriter, padOp, init, dynSizes); 895 896 // Try optimize the copy of source. 897 if (optimizeCopyFn && optimizeCopyFn(rewriter, padOp, fill).succeeded()) 898 return success(); 899 900 // tensor::PadOps cannot be optimized. Generate a InsertSliceOp instead 901 // for copying the PadOp source. 902 auto sourceType = padOp.getSourceType(); 903 // Compute size of source of tensor::PadOp. 904 SmallVector<OpFoldResult> srcSizes; 905 for (unsigned dim = 0; dim < sourceType.getRank(); ++dim) { 906 if (sourceType.isDynamicDim(dim)) { 907 srcSizes.push_back(rewriter.createOrFold<tensor::DimOp>( 908 padOp.getLoc(), padOp.source(), dim)); 909 } else { 910 srcSizes.push_back(rewriter.getIndexAttr(sourceType.getDimSize(dim))); 911 } 912 } 913 // Strides of InsertSliceOp are all 1. 914 SmallVector<OpFoldResult> strides(sourceType.getRank(), 915 rewriter.getIndexAttr(1)); 916 rewriter.replaceOpWithNewOp<tensor::InsertSliceOp>( 917 padOp, padOp.source(), fill, padOp.getMixedLowPad(), srcSizes, strides); 918 919 return success(); 920 } 921 922 LogicalResult ExtractSliceOfPadTensorSwapPattern::matchAndRewrite( 923 tensor::ExtractSliceOp sliceOp, PatternRewriter &rewriter) const { 924 if (!sliceOp.hasUnitStride()) 925 return failure(); 926 927 auto padOp = sliceOp.source().getDefiningOp<tensor::PadOp>(); 928 if (!padOp) 929 return failure(); 930 931 bool zeroSliceGuard = true; 932 if (controlFn) { 933 if (Optional<bool> control = controlFn(sliceOp)) 934 zeroSliceGuard = control.getValue(); 935 else 936 return failure(); 937 } 938 939 Operation *tiledPadOp = 940 tensor::bubbleUpPadSlice(rewriter, padOp, sliceOp.getMixedOffsets(), 941 sliceOp.getMixedSizes(), zeroSliceGuard); 942 // All shapes are static and the data source is actually used. Rewrite into 943 // pad(extract_slice(x)). 944 rewriter.replaceOp(sliceOp, tiledPadOp->getResults()); 945 return success(); 946 } 947 948 namespace { 949 // The following are patterns for downscaling convolution ops with size-1 950 // window dimensions. 951 // 952 // Note that we'd eventually want to write such transformations in a generic 953 // way, e.g., converting to linalg.generic, removing the size-1 dimensions, 954 // and then turning back to named ops. But for now it's fine to have a few 955 // patterns matching special ops to get started. 956 957 /// Rewrites 2-D convolution ops with size-1 window dimensions into 1-D 958 /// convolution ops. 959 struct DownscaleSizeOneWindowed2DConvolution final 960 : public OpRewritePattern<Conv2DNhwcHwcfOp> { 961 DownscaleSizeOneWindowed2DConvolution( 962 MLIRContext *context, 963 LinalgTransformationFilter f = LinalgTransformationFilter(), 964 PatternBenefit benefit = 1) 965 : OpRewritePattern<Conv2DNhwcHwcfOp>(context, benefit), 966 filter(std::move(f)) {} 967 968 LogicalResult matchAndRewrite(linalg::Conv2DNhwcHwcfOp convOp, 969 PatternRewriter &rewriter) const override { 970 if (failed(filter.checkAndNotify(rewriter, convOp))) 971 return failure(); 972 if (convOp.hasBufferSemantics()) 973 return failure(); // To be implemented 974 975 Value input = convOp.inputs().front(); 976 Value kernel = convOp.inputs().back(); 977 Value output = convOp.outputs().front(); 978 979 auto inputType = input.getType().dyn_cast<RankedTensorType>(); 980 auto kernelType = kernel.getType().dyn_cast<RankedTensorType>(); 981 auto outputType = output.getType().dyn_cast<RankedTensorType>(); 982 983 auto kernelShape = kernelType.getShape(); 984 auto outputShape = outputType.getShape(); 985 986 // Only handle the case where at least one of the window dimensions is 987 // of size 1. Other cases can rely on tiling to reduce to such cases. 988 int64_t khSize = kernelShape[0], kwSize = kernelShape[1]; 989 int64_t ohSize = outputShape[1], owSize = outputShape[2]; 990 bool removeH = (khSize == 1 && ohSize == 1); 991 bool removeW = (kwSize == 1 && owSize == 1); 992 if (!removeH && !removeW) 993 return failure(); 994 995 // Get new shapes and types for all operands by removing the size-1 996 // dimension. 997 using RTTBuilder = RankedTensorType::Builder; 998 RankedTensorType newInputType = 999 RTTBuilder(inputType).dropDim((removeH ? 1 : 2)); 1000 RankedTensorType newKernelType = 1001 RTTBuilder(kernelType).dropDim((removeH ? 0 : 1)); 1002 RankedTensorType newOutputType = 1003 RTTBuilder(outputType).dropDim(removeH ? 1 : 2); 1004 1005 // Rank-reduce operands. 1006 Location loc = convOp.getLoc(); 1007 Value newInput = tensor::createCanonicalRankReducingExtractSliceOp( 1008 rewriter, loc, input, newInputType); 1009 Value newKernel = tensor::createCanonicalRankReducingExtractSliceOp( 1010 rewriter, loc, kernel, newKernelType); 1011 Value newOutput = tensor::createCanonicalRankReducingExtractSliceOp( 1012 rewriter, loc, output, newOutputType); 1013 1014 // Rank-reduce strides and dilations too. 1015 // TODO: dropDim 1-liner helper. 1016 auto strides = llvm::to_vector<4>(convOp.strides().getValues<int64_t>()); 1017 strides.erase(strides.begin() + (removeH ? 0 : 1)); 1018 auto stridesAttr = rewriter.getI64VectorAttr(strides); 1019 1020 auto dilations = 1021 llvm::to_vector<4>(convOp.dilations().getValues<int64_t>()); 1022 dilations.erase(dilations.begin() + (removeH ? 0 : 1)); 1023 auto dilationsAttr = rewriter.getI64VectorAttr(dilations); 1024 1025 auto conv1DOp = rewriter.create<linalg::Conv1DNwcWcfOp>( 1026 loc, newOutputType, ValueRange{newInput, newKernel}, 1027 ValueRange{newOutput}, stridesAttr, dilationsAttr); 1028 1029 // Insert back. 1030 Value inserted = tensor::createCanonicalRankReducingInsertSliceOp( 1031 rewriter, loc, conv1DOp.getResult(0), output); 1032 rewriter.replaceOp(convOp, inserted); 1033 1034 filter.replaceLinalgTransformationFilter(rewriter, conv1DOp); 1035 return success(); 1036 }; 1037 1038 private: 1039 /// LinalgTransformMarker handles special attribute manipulations. 1040 LinalgTransformationFilter filter; 1041 }; 1042 1043 /// Rewrites 2-D depthwise convolution ops with size-1 (w, kw) or (h, kh) 1044 /// dimensions into 1-D depthwise convolution ops. 1045 struct DownscaleDepthwiseConv2DNhwcHwcOp final 1046 : public OpRewritePattern<DepthwiseConv2DNhwcHwcOp> { 1047 DownscaleDepthwiseConv2DNhwcHwcOp( 1048 MLIRContext *context, 1049 LinalgTransformationFilter f = LinalgTransformationFilter(), 1050 PatternBenefit benefit = 1) 1051 : OpRewritePattern<DepthwiseConv2DNhwcHwcOp>(context, benefit), 1052 filter(std::move(f)) {} 1053 1054 LogicalResult matchAndRewrite(DepthwiseConv2DNhwcHwcOp convOp, 1055 PatternRewriter &rewriter) const override { 1056 if (failed(filter.checkAndNotify(rewriter, convOp))) 1057 return failure(); 1058 if (convOp.hasBufferSemantics()) 1059 return failure(); // To be implemented 1060 1061 Value input = convOp.inputs().front(); 1062 Value kernel = convOp.inputs().back(); 1063 Value output = convOp.outputs().front(); 1064 1065 auto inputType = input.getType().dyn_cast<RankedTensorType>(); 1066 auto kernelType = kernel.getType().dyn_cast<RankedTensorType>(); 1067 auto outputType = output.getType().dyn_cast<RankedTensorType>(); 1068 1069 auto kernelShape = kernelType.getShape(); 1070 auto outputShape = outputType.getShape(); 1071 1072 // Only handle the case where at least one of the window dimensions is 1073 // of size 1. Other cases can rely on tiling to reduce to such cases. 1074 int64_t khSize = kernelShape[0], kwSize = kernelShape[1]; 1075 int64_t ohSize = outputShape[1], owSize = outputShape[2]; 1076 bool removeH = (khSize == 1 && ohSize == 1); 1077 bool removeW = (kwSize == 1 && owSize == 1); 1078 if (!removeH && !removeW) 1079 return failure(); 1080 1081 // Get new shapes and types for all operands by removing the size-1 1082 // dimension. 1083 using RTTBuilder = RankedTensorType::Builder; 1084 RankedTensorType newInputType = 1085 RTTBuilder(inputType).dropDim((removeH ? 1 : 2)); 1086 RankedTensorType newKernelType = 1087 RTTBuilder(kernelType).dropDim((removeH ? 0 : 1)); 1088 RankedTensorType newOutputType = 1089 RTTBuilder(outputType).dropDim(removeH ? 1 : 2); 1090 1091 // Rank-reduce operands. 1092 Location loc = convOp.getLoc(); 1093 Value newInput = tensor::createCanonicalRankReducingExtractSliceOp( 1094 rewriter, loc, input, newInputType); 1095 Value newKernel = tensor::createCanonicalRankReducingExtractSliceOp( 1096 rewriter, loc, kernel, newKernelType); 1097 Value newOutput = tensor::createCanonicalRankReducingExtractSliceOp( 1098 rewriter, loc, output, newOutputType); 1099 1100 // Rank-reduce strides and dilations too. 1101 // TODO: dropDim 1-liner helper. 1102 auto strides = llvm::to_vector<4>(convOp.strides().getValues<int64_t>()); 1103 strides.erase(strides.begin() + (removeH ? 0 : 1)); 1104 auto stridesAttr = rewriter.getI64VectorAttr(strides); 1105 1106 auto dilations = 1107 llvm::to_vector<4>(convOp.dilations().getValues<int64_t>()); 1108 dilations.erase(dilations.begin() + (removeH ? 0 : 1)); 1109 auto dilationsAttr = rewriter.getI64VectorAttr(dilations); 1110 1111 auto conv1DOp = rewriter.create<DepthwiseConv1DNwcWcOp>( 1112 loc, newOutputType, ValueRange{newInput, newKernel}, 1113 ValueRange{newOutput}, stridesAttr, dilationsAttr); 1114 1115 // Insert back. 1116 Value inserted = tensor::createCanonicalRankReducingInsertSliceOp( 1117 rewriter, loc, conv1DOp.getResult(0), output); 1118 rewriter.replaceOp(convOp, inserted); 1119 1120 filter.replaceLinalgTransformationFilter(rewriter, conv1DOp); 1121 return success(); 1122 }; 1123 1124 private: 1125 /// LinalgTransformMarker handles special attribute manipulations. 1126 LinalgTransformationFilter filter; 1127 }; 1128 1129 } // namespace 1130 1131 void linalg::populateDecomposeConvolutionPatterns( 1132 RewritePatternSet &patterns, const LinalgTransformationFilter &filter, 1133 PatternBenefit benefit) { 1134 patterns.add<DownscaleSizeOneWindowed2DConvolution, 1135 DownscaleDepthwiseConv2DNhwcHwcOp>(patterns.getContext(), filter, 1136 benefit); 1137 } 1138