1 //===- LinalgTransforms.cpp - Linalg transformations as patterns ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements logic and helpers to expose Linalg transforms as rewrite
10 // patterns.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
15 #include "mlir/Dialect/Affine/Utils.h"
16 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
17 #include "mlir/Dialect/Linalg/IR/LinalgOps.h"
18 #include "mlir/Dialect/Linalg/Utils/Utils.h"
19 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
20 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
21 #include "mlir/Dialect/Vector/EDSC/Intrinsics.h"
22 #include "mlir/Dialect/Vector/VectorOps.h"
23 #include "mlir/IR/AffineExpr.h"
24 #include "mlir/IR/Matchers.h"
25 #include "mlir/Pass/Pass.h"
26 #include "mlir/Support/LLVM.h"
27 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
28 #include "llvm/ADT/ScopeExit.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <type_traits>
32 
33 #define DEBUG_TYPE "linalg-transforms"
34 
35 using namespace mlir;
36 using namespace mlir::edsc;
37 using namespace mlir::edsc::intrinsics;
38 using namespace mlir::linalg;
39 
40 #define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE << "]: ")
41 
42 //===----------------------------------------------------------------------===//
43 // Transformations exposed as rewrite patterns.
44 //===----------------------------------------------------------------------===//
45 // Marker used as attribute name in generated Linalg rewriting transformations.
46 const StringLiteral mlir::linalg::LinalgTransforms::kLinalgTransformMarker =
47     "__internal_linalg_transform__";
48 
49 mlir::linalg::LinalgTransformationFilter::LinalgTransformationFilter(
50     ArrayRef<Identifier> matchDisjunction, Optional<Identifier> replacement)
51     : matchDisjunction(matchDisjunction.begin(), matchDisjunction.end()),
52       replacement(replacement) {}
53 
54 mlir::linalg::LinalgTransformationFilter::LinalgTransformationFilter(
55     FilterFunction f, ArrayRef<Identifier> matchDisjunction,
56     Optional<Identifier> replacement)
57     : filters(),
58       matchDisjunction(matchDisjunction.begin(), matchDisjunction.end()),
59       replacement(replacement) {
60   if (f)
61     filters.push_back(f);
62 }
63 
64 LogicalResult mlir::linalg::LinalgTransformationFilter::checkAndNotify(
65     PatternRewriter &rewriter, Operation *op) const {
66   if (llvm::any_of(filters,
67                    [&](const FilterFunction &f) { return failed(f(op)); }))
68     return failure();
69 
70   auto attr = op->template getAttrOfType<StringAttr>(
71       LinalgTransforms::kLinalgTransformMarker);
72 
73   if (!attr) {
74     // 1. Has no filter case and matchDisjunction is empty.
75     if (matchDisjunction.empty())
76       return success();
77 
78     // 2. Has no filter but was expecting a filter.
79     return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) {
80       diag << " does not have any filter from list: ";
81       interleaveComma(matchDisjunction, diag);
82     });
83   }
84 
85   // 4. Match explicit filter.
86   for (auto filter : matchDisjunction)
87     if (attr.getValue() == filter)
88       return success();
89 
90   // 5. Fail to match.
91   return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) {
92     diag << " does not have any filter from list: ";
93     interleaveComma(matchDisjunction, diag);
94   });
95 }
96 
97 void mlir::linalg::LinalgTransformationFilter::
98     replaceLinalgTransformationFilter(PatternRewriter &rewriter,
99                                       Operation *op) const {
100   if (replacement.hasValue())
101     op->setAttr(LinalgTransforms::kLinalgTransformMarker,
102                 rewriter.getStringAttr(replacement.getValue()));
103   else
104     op->removeAttr(Identifier::get(LinalgTransforms::kLinalgTransformMarker,
105                                    rewriter.getContext()));
106 }
107 
108 LinalgTilingOptions &
109 mlir::linalg::LinalgTilingOptions::setTileSizes(ArrayRef<int64_t> ts) {
110   SmallVector<int64_t, 4> tileSizes(ts.begin(), ts.end());
111   tileSizeComputationFunction = [tileSizes](OpBuilder &b, Operation *op) {
112     OpBuilder::InsertionGuard guard(b);
113     b.setInsertionPointToStart(
114         &op->getParentOfType<FuncOp>().getBody().front());
115     return llvm::to_vector<4>(map_range(tileSizes, [&](int64_t s) {
116       Value v = b.create<ConstantIndexOp>(op->getLoc(), s);
117       return v;
118     }));
119   };
120   return *this;
121 }
122 
123 /// Try to compute a static bounding box for `operand`
124 /// Return success if either:
125 ///   1. The operand is already statically shaped, `result` is left unchanged.
126 ///   2. The operand is (partially) dynamic, `result` is the result of a freshly
127 ///      created PadTensorOp.
128 /// Return failure if the operand cannot be padded to a static shape.
129 static LogicalResult padOperandToSmallestStaticBoundingBox(
130     PatternRewriter &rewriter, linalg::LinalgOp opToPad, OpOperand &operand,
131     const LinalgTilingOptions &options, Value &result) {
132   auto tensorType = operand.get().getType().cast<RankedTensorType>();
133   // Already static shape, no need to pad.
134   if (tensorType.hasStaticShape())
135     return success();
136   auto subtensor = operand.get().getDefiningOp<SubTensorOp>();
137   // Not a subtensor, cannot construct a static bounding box.
138   if (!subtensor)
139     return failure();
140   SmallVector<int64_t> staticSizes;
141   staticSizes.reserve(tensorType.getRank());
142   auto shapedOp =
143       cast<OffsetSizeAndStrideOpInterface>(subtensor.getOperation());
144   for (auto size : shapedOp.getMixedSizes()) {
145     auto indexAttr = size.is<Attribute>()
146                          ? size.get<Attribute>().dyn_cast<IntegerAttr>()
147                          : linalg::getSmallestBoundingIndex(size.get<Value>());
148     // SmallestBoundingIndex must exist for all sizes.
149     // For now return an error if we can't find it.
150     if (!indexAttr)
151       return rewriter.notifyMatchFailure(
152           opToPad, "No constant bounding box can be found for padding");
153     staticSizes.push_back(indexAttr.getInt());
154   }
155   Value pad = options.paddingValueComputationFunction(rewriter, operand);
156   auto staticTensorType =
157       RankedTensorType::get(staticSizes, tensorType.getElementType());
158   result = linalg::PadTensorOp::createPadHighOp(
159       staticTensorType, operand.get(), pad, opToPad->getLoc(), rewriter);
160   return success();
161 }
162 
163 // Try to create a static bounding box around each operand of `res.op`.
164 // If successful, `res.op` is rewritten in static form with padded operands.
165 // `res.op` is updated to the cloned static form of the op on success.
166 static LogicalResult rewriteAsPaddedOp(PatternRewriter &rewriter,
167                                        TiledLinalgOp &res,
168                                        const LinalgTilingOptions &options) {
169   LinalgOp opToPad = res.op;
170   Location loc = opToPad->getLoc();
171 
172   // If the op is fully static, it does not need padding.
173   // TODO: there are cases where we may still want to pad to larger sizes.
174   if (llvm::all_of(opToPad.getShapedOperands(), [](Value v) {
175         return v.getType().cast<RankedTensorType>().hasStaticShape();
176       }))
177     return success();
178 
179   OpBuilder::InsertionGuard g(rewriter);
180   // Set IP after op because we also take the dims of the original output.
181   rewriter.setInsertionPointAfter(opToPad);
182   // Make a copy of the shaped operands and update it.
183   SmallVector<Value> newOperands;
184   newOperands.reserve(opToPad.getNumShapedOperands());
185   for (OpOperand &operand : opToPad.getShapedOpOperands()) {
186     Value paddedOperand;
187     // If padding was requested but the shape cannot be bounded statically then
188     // the pattern fails to apply.
189     if (failed(padOperandToSmallestStaticBoundingBox(rewriter, opToPad, operand,
190                                                      options, paddedOperand))) {
191       return failure();
192     }
193     newOperands.push_back(paddedOperand ? paddedOperand : operand.get());
194   }
195 
196   // Clone `opToPad` to operate on the statically padded shapes.
197   auto resultTensorTypes =
198       ValueRange(newOperands).take_back(opToPad.getNumOutputs()).getTypes();
199   ValueRange otherOperands = opToPad.getAssumedNonShapedOperands();
200   newOperands.append(otherOperands.begin(), otherOperands.end());
201   linalg::LinalgOp paddedOp =
202       opToPad.clone(rewriter, loc, resultTensorTypes, newOperands);
203 
204   // Recover the subtensor out of the new static results. This keeps the
205   // original linalg op around because it uses the dims of the original results.
206   // This later folds away.
207   SmallVector<Value> paddedSubviewResults;
208   paddedSubviewResults.reserve(opToPad->getNumResults());
209   llvm::SetVector<Operation *> newUsersOfOpToPad;
210   for (auto it : llvm::zip(opToPad->getResults(), paddedOp->getResults())) {
211     auto rank = std::get<0>(it).getType().cast<RankedTensorType>().getRank();
212     SmallVector<OpFoldResult> offsets(rank, rewriter.getIndexAttr(0));
213     auto sizes = llvm::to_vector<4>(llvm::map_range(
214         llvm::seq<unsigned>(0, rank), [&](unsigned d) -> OpFoldResult {
215           auto dimOp = rewriter.create<memref::DimOp>(loc, std::get<0>(it), d);
216           newUsersOfOpToPad.insert(dimOp);
217           return dimOp.getResult();
218         }));
219     SmallVector<OpFoldResult> strides(rank, rewriter.getIndexAttr(1));
220     paddedSubviewResults.push_back(rewriter.create<SubTensorOp>(
221         loc, std::get<1>(it), offsets, sizes, strides));
222   }
223   // Replace the transient `opToPad` locally, except for uses that we just
224   // created for the purpose of extracting the dims.
225   rewriter.replaceOpWithIf(opToPad, paddedSubviewResults, [&](OpOperand &opOp) {
226     return !newUsersOfOpToPad.contains(opOp.getOwner());
227   });
228 
229   res = TiledLinalgOp{paddedOp, res.loops, res.tensorResults};
230   return success();
231 }
232 
233 /// Linalg base tiling pattern.
234 mlir::linalg::LinalgBaseTilingPattern::LinalgBaseTilingPattern(
235     StringRef opName, MLIRContext *context, LinalgTilingOptions options,
236     LinalgTransformationFilter filter, PatternBenefit benefit)
237     : RewritePattern(opName, benefit, context), filter(filter),
238       options(options) {}
239 
240 mlir::linalg::LinalgBaseTilingPattern::LinalgBaseTilingPattern(
241     MLIRContext *context, LinalgTilingOptions options,
242     LinalgTransformationFilter filter, PatternBenefit benefit)
243     : RewritePattern(MatchAnyOpTypeTag(), benefit, context), filter(filter),
244       options(options) {}
245 
246 LogicalResult mlir::linalg::LinalgBaseTilingPattern::matchAndRewriteBase(
247     Operation *op, PatternRewriter &rewriter, TiledLinalgOp &result) const {
248   LinalgOp linalgOp = dyn_cast<LinalgOp>(op);
249   if (!linalgOp)
250     return failure();
251   if (failed(filter.checkAndNotify(rewriter, linalgOp)))
252     return failure();
253 
254   Optional<TiledLinalgOp> res = tileLinalgOp(rewriter, linalgOp, options);
255 
256   if (!res)
257     return failure();
258 
259   // Setup RAII guard to return properly.
260   bool succeeded = true;
261   LinalgOp tiledOp = res->op;
262   auto guard = llvm::make_scope_exit([&]() {
263     if (!succeeded)
264       return;
265     // Return relevant information to derived pattern.
266     result = *res;
267     // Replace filter on both tiledOp and tiledAndPaddedOp, if necessary.
268     filter.replaceLinalgTransformationFilter(rewriter, tiledOp);
269     if (tiledOp != res->op)
270       filter.replaceLinalgTransformationFilter(rewriter, res->op);
271   });
272 
273   // Consider padding on the fly only if the op has tensor semantics.
274   if (!options.paddingValueComputationFunction ||
275       !linalgOp.hasTensorSemantics())
276     return success();
277 
278   // Try to pad on the fly by rewriting res->op as a padded op.
279   if (failed(rewriteAsPaddedOp(rewriter, *res, options))) {
280     // Set so RAII guard does not propagate TiledLinalgOp to `result`.
281     succeeded = false;
282     return failure();
283   }
284 
285   // Do not perform replacement of `linalgOp`, let the derived patterns
286   // do this as they see fit, from the resulting TiledLinalgOp.
287   return success();
288 }
289 
290 static ValueRange getTiledOpResult(TiledLinalgOp tiledOp) {
291   if (tiledOp.loops.empty())
292     return tiledOp.op.getOperation()->getResults();
293   return tiledOp.loops.front()->getResults();
294 }
295 
296 static ValueRange
297 getTiledAndFusedOpResult(TiledAndFusedLinalgOps tiledAndFusedOp) {
298   if (tiledAndFusedOp.fusedLoops.empty())
299     return tiledAndFusedOp.op.getOperation()->getResults();
300   return tiledAndFusedOp.fusedLoops.front()->getResults();
301 }
302 
303 mlir::linalg::LinalgBaseTileAndFusePattern::LinalgBaseTileAndFusePattern(
304     StringRef opName, MLIRContext *context,
305     const LinalgDependenceGraph &dependenceGraph,
306     LinalgTilingOptions tilingOptions, LinalgFusionOptions fusionOptions,
307     LinalgTransformationFilter filter, LinalgTransformationFilter fusedOpMarker,
308     LinalgTransformationFilter originalOpMarker, PatternBenefit benefit)
309     : RewritePattern(opName, benefit, context, {}),
310       dependenceGraph(dependenceGraph), tilingOptions(tilingOptions),
311       fusionOptions(fusionOptions), filter(filter),
312       fusedOpMarker(fusedOpMarker), originalOpMarker(originalOpMarker) {}
313 
314 LogicalResult mlir::linalg::LinalgBaseTileAndFusePattern::matchAndRewrite(
315     Operation *op, PatternRewriter &rewriter) const {
316   LinalgOp linalgOp = dyn_cast<LinalgOp>(op);
317   // TODO: remove hasIndexSemantics check once index ops are supported.
318   if (!linalgOp || linalgOp.hasIndexSemantics())
319     return failure();
320   if (failed(filter.checkAndNotify(rewriter, linalgOp)))
321     return failure();
322 
323   DenseSet<Operation *> producers;
324   producers.insert(linalgOp);
325   for (auto dependence : dependenceGraph.getDependentOperationsInto(linalgOp)) {
326     Optional<unsigned> operandNumber = dependence.getIndexingOpViewOperandNum();
327     // When looking at dependences into, indexingOp is always OpOperand. We
328     // could assert, but continue if this is not the case.
329     if (!operandNumber)
330       continue;
331     if (!fusionOptions.indicesToFuse.count(operandNumber.getValue()))
332       continue;
333     if (isa<LinalgOp>(dependence.getDependentOp()))
334       producers.insert(dependence.getDependentOp());
335   }
336 
337   SmallVector<LinalgOp, 1> fusionOps;
338   for (auto it = op->getBlock()->begin(), ie = Block::iterator(op); it != ie;
339        ++it) {
340     auto producerLinalgOp = dyn_cast<LinalgOp>(&(*it));
341     if (producerLinalgOp && producers.count(producerLinalgOp))
342       fusionOps.push_back(producerLinalgOp);
343   }
344   fusionOps.push_back(linalgOp);
345 
346   SmallVector<Value, 4> tileSizes =
347       tilingOptions.tileSizeComputationFunction(rewriter, op);
348   LinalgTilingOptions instanceTilingOptions = tilingOptions;
349   instanceTilingOptions.setTileSizes(tileSizes);
350   Optional<TiledAndFusedLinalgOps> tiledAndFusedOps = tileAndFuseLinalgOps(
351       rewriter, fusionOps, dependenceGraph, instanceTilingOptions);
352   if (!tiledAndFusedOps)
353     return failure();
354 
355   // Tile the unfused loops;
356   SmallVector<Value, 4> unfusedLoopTileSizes;
357   Value zero = rewriter.create<ConstantIndexOp>(op->getLoc(), 0);
358   for (auto tileSize : enumerate(tileSizes)) {
359     if (tiledAndFusedOps->fusedLoopDims.count(tileSize.index()))
360       unfusedLoopTileSizes.push_back(zero);
361     else
362       unfusedLoopTileSizes.push_back(tileSize.value());
363   }
364   // Tile the loop only if there is a non-zero tile size.
365   if (unfusedLoopTileSizes.size() > linalgOp.getNumLoops())
366     unfusedLoopTileSizes.resize(linalgOp.getNumLoops());
367   if (llvm::any_of(unfusedLoopTileSizes, [](Value val) {
368         if (auto cst = val.getDefiningOp<ConstantIndexOp>())
369           return cst.getValue() != 0;
370         return true;
371       })) {
372     LinalgTilingOptions unfusedTilingOptions = tilingOptions;
373     unfusedTilingOptions.setTileSizes(unfusedLoopTileSizes);
374     Optional<TiledLinalgOp> unfusedTiledOp =
375         tileLinalgOp(rewriter, tiledAndFusedOps->op, unfusedTilingOptions);
376     if (!unfusedTiledOp)
377       return failure();
378     rewriter.replaceOp(tiledAndFusedOps->op,
379                        getTiledOpResult(unfusedTiledOp.getValue()));
380     tiledAndFusedOps->op = unfusedTiledOp->op;
381   }
382   op->replaceAllUsesWith(getTiledAndFusedOpResult(tiledAndFusedOps.getValue()));
383 
384   filter.replaceLinalgTransformationFilter(rewriter,
385                                            tiledAndFusedOps->op.getOperation());
386   for (auto fusedOp : tiledAndFusedOps->fusedProducers) {
387     fusedOpMarker.replaceLinalgTransformationFilter(rewriter,
388                                                     fusedOp.getOperation());
389   }
390   for (auto origProducerOp : ArrayRef<LinalgOp>(fusionOps).drop_back()) {
391     originalOpMarker.replaceLinalgTransformationFilter(
392         rewriter, origProducerOp.getOperation());
393   }
394   rewriter.updateRootInPlace(op, [&]() {
395     originalOpMarker.replaceLinalgTransformationFilter(rewriter, op);
396   });
397   return success();
398 }
399 
400 /// Linalg base interchange pattern.
401 mlir::linalg::LinalgBaseInterchangePattern::LinalgBaseInterchangePattern(
402     StringRef opName, MLIRContext *context,
403     ArrayRef<unsigned> interchangeVector, LinalgTransformationFilter filter,
404     PatternBenefit benefit)
405     : RewritePattern(opName, benefit, context, {}), filter(filter),
406       interchangeVector(interchangeVector.begin(), interchangeVector.end()) {}
407 
408 LogicalResult mlir::linalg::LinalgBaseInterchangePattern::matchAndRewrite(
409     Operation *op, PatternRewriter &rewriter) const {
410   LinalgOp linalgOp = dyn_cast<LinalgOp>(op);
411   // TODO: remove hasIndexSemantics check once index ops are supported.
412   if (!linalgOp || linalgOp.hasIndexSemantics())
413     return failure();
414   if (failed(filter.checkAndNotify(rewriter, linalgOp)))
415     return failure();
416   if (failed(interchangeGenericLinalgOpPrecondition(op, interchangeVector)))
417     return failure();
418 
419   // TODO: figure out how this interplays with named ops. In particular this
420   // should break the named op property.
421   rewriter.updateRootInPlace(op, [&]() {
422     interchange(linalgOp, interchangeVector);
423     // New filter if specified.
424     filter.replaceLinalgTransformationFilter(rewriter, op);
425   });
426   return success();
427 }
428 
429 mlir::linalg::LinalgBasePromotionPattern::LinalgBasePromotionPattern(
430     StringRef opName, MLIRContext *context, LinalgPromotionOptions options,
431     LinalgTransformationFilter filter, PatternBenefit benefit)
432     : RewritePattern(opName, benefit, context, {}), filter(filter),
433       options(options) {}
434 
435 LogicalResult mlir::linalg::LinalgBasePromotionPattern::matchAndRewrite(
436     Operation *op, PatternRewriter &rewriter) const {
437   if (failed(filter.checkAndNotify(rewriter, op)))
438     return failure();
439   if (failed(promoteSubviewsPrecondition(op, options)))
440     return failure();
441 
442   // TODO: We cannot use root update here. This pattern is creating other ops,
443   // so if the promotion fails, those need to be cleaned up, which doesnt seem
444   // to be happening here. So to fail properly, we should be cloning the op and
445   // deleting the previous op. This needs more investigation.
446   rewriter.startRootUpdate(op);
447   Optional<LinalgOp> promotedOp = promoteSubViews(rewriter, op, options);
448   if (!promotedOp) {
449     rewriter.cancelRootUpdate(op);
450     return op->emitError("subview promotion failed");
451   }
452   rewriter.finalizeRootUpdate(op);
453   filter.replaceLinalgTransformationFilter(rewriter, op);
454   return success();
455 }
456 
457 mlir::linalg::LinalgBaseVectorizationPattern::LinalgBaseVectorizationPattern(
458     MLIRContext *context, LinalgTransformationFilter filter,
459     PatternBenefit benefit)
460     : RewritePattern(MatchAnyOpTypeTag(), benefit, context), filter(filter) {}
461 
462 mlir::linalg::LinalgBaseVectorizationPattern::LinalgBaseVectorizationPattern(
463     StringRef opName, MLIRContext *context, LinalgTransformationFilter filter,
464     PatternBenefit benefit)
465     : RewritePattern(opName, benefit, context, {}), filter(filter) {}
466 
467 LogicalResult mlir::linalg::LinalgBaseVectorizationPattern::matchAndRewrite(
468     Operation *op, PatternRewriter &rewriter) const {
469   LinalgOp linalgOp = dyn_cast<LinalgOp>(op);
470   // TODO: remove hasIndexSemantics check once index ops are supported.
471   if (!linalgOp || linalgOp.hasIndexSemantics())
472     return failure();
473   if (failed(filter.checkAndNotify(rewriter, linalgOp)))
474     return failure();
475   SmallVector<Value> newResults;
476   if (failed(vectorizeLinalgOp(rewriter, op, newResults)))
477     return failure();
478   if (!newResults.empty())
479     rewriter.replaceOp(op, newResults);
480   else
481     rewriter.eraseOp(op);
482   return success();
483 }
484 
485 LogicalResult mlir::linalg::applyStagedPatterns(
486     Operation *op, ArrayRef<FrozenRewritePatternSet> stage1Patterns,
487     const FrozenRewritePatternSet &stage2Patterns,
488     function_ref<LogicalResult(Operation *)> stage3Lambda) {
489   unsigned iteration = 0;
490   (void)iteration;
491   for (const auto &patterns : stage1Patterns) {
492     LLVM_DEBUG(DBGS() << "Before 1st stage, iter: " << ++iteration << "\n"
493                       << *op);
494     if (failed(applyPatternsAndFoldGreedily(op, patterns))) {
495       LLVM_DEBUG(DBGS() << "Underlying first stage rewrite did not converge");
496       return failure();
497     }
498     LLVM_DEBUG(DBGS() << "After 1st stage, iter: " << ++iteration << "\n"
499                       << *op);
500     if (failed(applyPatternsAndFoldGreedily(op, stage2Patterns))) {
501       LLVM_DEBUG(DBGS() << "Underlying 2nd stage rewrite did not converge");
502       return failure();
503     }
504     LLVM_DEBUG(DBGS() << "After 2nd stage, iter : " << iteration << "\n"
505                       << *op);
506     if (stage3Lambda) {
507       if (failed(stage3Lambda(op)))
508         return failure();
509       LLVM_DEBUG(DBGS() << "After 3rd stage, iter : " << iteration << "\n"
510                         << *op);
511     }
512   }
513   return success();
514 }
515 
516 /// Given the `lbVal`, `ubVal` and `stepVal` of a loop, append `lbVal` and
517 /// `ubVal` to `dims` and `stepVal` to `symbols`.
518 /// Create new AffineDimExpr (`%lb` and `%ub`) and AffineSymbolExpr (`%step`)
519 /// with positions matching the newly appended values. Substitute occurrences of
520 /// `dimExpr` by either the min expression (i.e. `%lb`) or the max expression
521 /// (i.e. `%lb + %step * floordiv(%ub -1 - %lb, %step)`), depending on whether
522 /// the induction variable is used with a positive or negative  coefficient.
523 static AffineExpr substituteLoopInExpr(AffineExpr expr, AffineExpr dimExpr,
524                                        Value lbVal, Value ubVal, Value stepVal,
525                                        SmallVectorImpl<Value> &dims,
526                                        SmallVectorImpl<Value> &symbols) {
527   MLIRContext *ctx = lbVal.getContext();
528   AffineExpr lb = getAffineDimExpr(dims.size(), ctx);
529   dims.push_back(lbVal);
530   AffineExpr ub = getAffineDimExpr(dims.size(), ctx);
531   dims.push_back(ubVal);
532   AffineExpr step = getAffineSymbolExpr(symbols.size(), ctx);
533   symbols.push_back(stepVal);
534   LLVM_DEBUG(DBGS() << "Before: " << expr << "\n");
535   AffineExpr ee = substWithMin(expr, dimExpr, lb,
536                                lb + step * ((ub - 1) - lb).floorDiv(step));
537   LLVM_DEBUG(DBGS() << "After: " << expr << "\n");
538   return ee;
539 }
540 
541 /// Traverse the `dims` and substitute known min or max expressions in place of
542 /// induction variables in `exprs`.
543 static AffineMap substitute(
544     AffineMap map, SmallVectorImpl<Value> &dims,
545     SmallVectorImpl<Value> &symbols,
546     llvm::function_ref<bool(Operation *)> substituteOperation = nullptr) {
547   auto exprs = llvm::to_vector<4>(map.getResults());
548   for (AffineExpr &expr : exprs) {
549     bool substituted = true;
550     while (substituted) {
551       substituted = false;
552       for (unsigned dimIdx = 0; dimIdx < dims.size(); ++dimIdx) {
553         Value dim = dims[dimIdx];
554         AffineExpr dimExpr = getAffineDimExpr(dimIdx, expr.getContext());
555         LLVM_DEBUG(DBGS() << "Subst: " << dim << " @ " << dimExpr << "\n");
556         AffineExpr substitutedExpr;
557         if (auto forOp = scf::getForInductionVarOwner(dim))
558           if (!substituteOperation || substituteOperation(forOp))
559             substitutedExpr = substituteLoopInExpr(
560                 expr, dimExpr, forOp.lowerBound(), forOp.upperBound(),
561                 forOp.step(), dims, symbols);
562 
563         if (auto parallelForOp = scf::getParallelForInductionVarOwner(dim))
564           if (!substituteOperation || substituteOperation(parallelForOp))
565             for (unsigned idx = 0, e = parallelForOp.getNumLoops(); idx < e;
566                  ++idx)
567               substitutedExpr = substituteLoopInExpr(
568                   expr, dimExpr, parallelForOp.lowerBound()[idx],
569                   parallelForOp.upperBound()[idx], parallelForOp.step()[idx],
570                   dims, symbols);
571 
572         if (!substitutedExpr)
573           continue;
574 
575         substituted = (substitutedExpr != expr);
576         expr = substitutedExpr;
577       }
578     }
579 
580     // Cleanup and simplify the results.
581     // This needs to happen outside of the loop iterating on dims.size() since
582     // it modifies dims.
583     SmallVector<Value, 4> operands(dims.begin(), dims.end());
584     operands.append(symbols.begin(), symbols.end());
585     auto map = AffineMap::get(dims.size(), symbols.size(), exprs,
586                               exprs.front().getContext());
587 
588     LLVM_DEBUG({
589       DBGS() << "Map to simplify: " << map << "\n";
590       DBGS() << "Operands:\n";
591       for (Value v : operands)
592         DBGS() << v << "\n";
593     });
594 
595     // Pull in affine.apply operations and compose them fully into the
596     // result.
597     fullyComposeAffineMapAndOperands(&map, &operands);
598     canonicalizeMapAndOperands(&map, &operands);
599     map = simplifyAffineMap(map);
600     // Assign the results.
601     exprs.assign(map.getResults().begin(), map.getResults().end());
602     dims.assign(operands.begin(), operands.begin() + map.getNumDims());
603     symbols.assign(operands.begin() + map.getNumDims(), operands.end());
604 
605     LLVM_DEBUG(DBGS() << "Map simplified: " << map << "\n");
606   }
607 
608   assert(!exprs.empty() && "Unexpected empty exprs");
609   return AffineMap::get(dims.size(), symbols.size(), exprs, map.getContext());
610 }
611 
612 /// Traverse the dims of the AffineMap of `affineMinOp` and substitute scf loop
613 /// induction variables by new expressions involving the lower or upper bound:
614 ///   - If the AffineDimExpr mapped to a loop IV has a positive sign, it is
615 ///     replaced by the loop upper bound.
616 ///   - If the AffineDimExpr mapped to a loop IV has a negative sign, it is
617 ///     replaced by the loop lower bound.
618 /// All loop induction variables are iteratively replaced, unless a
619 /// `substituteOperation` hook is passed to more finely determine which
620 /// operations are substituted.
621 /// This is used as an intermediate step in computing bounding boxes and
622 /// canonicalize AffineMinOps. All dim and symbol operands are assumed to have
623 /// positive values (positive orthant assumptions).
624 /// Return a new AffineMap, dims and symbols that have been canonicalized and
625 /// simplified.
626 AffineMapAndOperands mlir::linalg::substituteMin(
627     AffineMinOp affineMinOp,
628     llvm::function_ref<bool(Operation *)> substituteOperation) {
629   AffineMapAndOperands res{affineMinOp.getAffineMap(),
630                            SmallVector<Value>(affineMinOp.getDimOperands()),
631                            SmallVector<Value>(affineMinOp.getSymbolOperands())};
632   res.map = substitute(affineMinOp.getAffineMap(), res.dims, res.symbols,
633                        substituteOperation);
634   return res;
635 }
636 
637 LogicalResult AffineMinSCFCanonicalizationPattern::matchAndRewrite(
638     AffineMinOp minOp, PatternRewriter &rewriter) const {
639   LLVM_DEBUG(DBGS() << "Canonicalize AffineMinSCF: " << *minOp.getOperation()
640                     << "\n");
641 
642   auto affineMapAndOperands = substituteMin(minOp);
643   AffineMap map = affineMapAndOperands.map;
644 
645   LLVM_DEBUG(DBGS() << "Resulting map: " << map << "\n");
646 
647   // Check whether any of the expressions, when subtracted from all other
648   // expressions, produces only >= 0 constants. If so, it is the min.
649   for (auto e : minOp.getAffineMap().getResults()) {
650     LLVM_DEBUG(DBGS() << "Candidate min: " << e << "\n");
651     if (!e.isSymbolicOrConstant())
652       continue;
653 
654     auto isNonPositive = [](AffineExpr e) {
655       if (auto cst = e.dyn_cast<AffineConstantExpr>())
656         return cst.getValue() < 0;
657       return true;
658     };
659 
660     // Build the subMap and check everything is statically known to be
661     // positive.
662     SmallVector<AffineExpr, 4> subExprs;
663     subExprs.reserve(map.getNumResults());
664     for (auto ee : map.getResults())
665       subExprs.push_back(ee - e);
666     MLIRContext *ctx = minOp.getContext();
667     AffineMap subMap = simplifyAffineMap(
668         AffineMap::get(map.getNumDims(), map.getNumSymbols(), subExprs, ctx));
669     LLVM_DEBUG(DBGS() << "simplified subMap: " << subMap << "\n");
670     if (llvm::any_of(subMap.getResults(), isNonPositive))
671       continue;
672 
673     // Static min found.
674     if (auto cst = e.dyn_cast<AffineConstantExpr>()) {
675       rewriter.replaceOpWithNewOp<ConstantIndexOp>(minOp, cst.getValue());
676     } else {
677       auto resultMap = AffineMap::get(0, map.getNumSymbols(), {e}, ctx);
678       SmallVector<Value> resultOperands = affineMapAndOperands.dims;
679       llvm::append_range(resultOperands, affineMapAndOperands.symbols);
680       canonicalizeMapAndOperands(&resultMap, &resultOperands);
681       resultMap = simplifyAffineMap(resultMap);
682       rewriter.replaceOpWithNewOp<AffineApplyOp>(minOp, resultMap,
683                                                  resultOperands);
684     }
685     return success();
686   }
687 
688   return failure();
689 }
690