1 //===- Transforms.cpp - Linalg transformations as patterns ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements logic and helpers to expose Linalg transforms as rewrite
10 // patterns.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
15 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
16 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
17 #include "mlir/Dialect/Linalg/IR/Linalg.h"
18 #include "mlir/Dialect/Linalg/Transforms/HoistPadding.h"
19 #include "mlir/Dialect/Linalg/Utils/Utils.h"
20 #include "mlir/Dialect/SCF/Transforms.h"
21 #include "mlir/Dialect/Tensor/IR/Tensor.h"
22 #include "mlir/Dialect/Tensor/IR/TensorTilingInterfaceImpl.h"
23 #include "mlir/Dialect/Utils/StaticValueUtils.h"
24 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
25 #include "mlir/Dialect/Vector/IR/VectorOps.h"
26 #include "mlir/IR/AffineExpr.h"
27 #include "mlir/IR/Matchers.h"
28 #include "mlir/Pass/Pass.h"
29 #include "mlir/Support/LLVM.h"
30 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
31 #include "llvm/ADT/ScopeExit.h"
32 #include "llvm/ADT/TypeSwitch.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <type_traits>
36 #include <utility>
37 
38 #define DEBUG_TYPE "linalg-transforms"
39 
40 using namespace mlir;
41 using namespace mlir::linalg;
42 
43 #define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE << "]: ")
44 
45 //===----------------------------------------------------------------------===//
46 // Transformations exposed as rewrite patterns.
47 //===----------------------------------------------------------------------===//
48 // Marker used as attribute name in generated Linalg rewriting transformations.
49 const StringLiteral mlir::linalg::LinalgTransforms::kLinalgTransformMarker =
50     "__internal_linalg_transform__";
51 
52 mlir::linalg::LinalgTransformationFilter::LinalgTransformationFilter(
53     ArrayRef<StringAttr> matchDisjunction, Optional<StringAttr> replacement)
54     : matchDisjunction(matchDisjunction.begin(), matchDisjunction.end()),
55       replacement(replacement), matchByDefault(false) {}
56 
57 mlir::linalg::LinalgTransformationFilter::LinalgTransformationFilter(
58     const FilterFunction &f, ArrayRef<StringAttr> matchDisjunction,
59     Optional<StringAttr> replacement)
60     : filters(),
61       matchDisjunction(matchDisjunction.begin(), matchDisjunction.end()),
62       replacement(replacement), matchByDefault(false) {
63   if (f)
64     filters.push_back(f);
65 }
66 
67 LogicalResult mlir::linalg::LinalgTransformationFilter::checkAndNotify(
68     PatternRewriter &rewriter, Operation *op) const {
69   if (llvm::any_of(filters,
70                    [&](const FilterFunction &f) { return failed(f(op)); }))
71     return failure();
72 
73   auto attr = op->template getAttrOfType<StringAttr>(
74       LinalgTransforms::kLinalgTransformMarker);
75 
76   if (!attr) {
77     // 1. Has no filter case and matchDisjunction is empty.
78     if (matchDisjunction.empty() || matchByDefault)
79       return success();
80 
81     // 2. Has no filter but was expecting a filter.
82     return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) {
83       diag << " does not have any filter from list: ";
84       interleaveComma(matchDisjunction, diag);
85     });
86   }
87 
88   // 4. Match explicit filter.
89   for (auto filter : matchDisjunction)
90     if (attr.getValue() == filter)
91       return success();
92 
93   // 5. Fail to match.
94   return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) {
95     diag << " does not have any filter from list: ";
96     interleaveComma(matchDisjunction, diag);
97   });
98 }
99 
100 void mlir::linalg::LinalgTransformationFilter::
101     replaceLinalgTransformationFilter(PatternRewriter &rewriter,
102                                       Operation *op) const {
103   if (replacement.hasValue())
104     op->setAttr(LinalgTransforms::kLinalgTransformMarker,
105                 replacement.getValue());
106   else
107     op->removeAttr(
108         rewriter.getStringAttr(LinalgTransforms::kLinalgTransformMarker));
109 }
110 
111 bool mlir::linalg::LinalgTransformationFilter::hasReplacementFilter(
112     Operation *op) const {
113   if (!replacement)
114     return false;
115   auto attr = op->getAttr(LinalgTransforms::kLinalgTransformMarker)
116                   .dyn_cast<StringAttr>();
117   return attr && attr == replacement.getValue();
118 }
119 
120 LinalgTilingOptions &
121 mlir::linalg::LinalgTilingOptions::setTileSizes(ArrayRef<int64_t> ts) {
122   assert(!tileSizeComputationFunction && "tile sizes already set");
123   SmallVector<int64_t, 4> tileSizes(ts.begin(), ts.end());
124   tileSizeComputationFunction = [tileSizes](OpBuilder &b, Operation *op) {
125     OpBuilder::InsertionGuard guard(b);
126     b.setInsertionPointToStart(
127         &op->getParentOfType<FuncOp>().getBody().front());
128     return llvm::to_vector<4>(map_range(tileSizes, [&](int64_t s) {
129       Value v = b.create<arith::ConstantIndexOp>(op->getLoc(), s);
130       return v;
131     }));
132   };
133   return *this;
134 }
135 
136 LinalgTilingOptions &mlir::linalg::LinalgTilingOptions::scalarizeDynamicDims() {
137   assert(!tileSizeComputationFunction && "tile sizes already set");
138   tileSizeComputationFunction = [](OpBuilder &b, Operation *op) {
139     SmallVector<Value, 4> tileSizes;
140     auto linalgOp = dyn_cast<LinalgOp>(op);
141     if (!linalgOp)
142       return tileSizes;
143     Location loc = linalgOp.getLoc();
144     auto allShapeSizes = linalgOp.createFlatListOfOperandDims(b, loc);
145     AffineMap map = linalgOp.getShapesToLoopsMap();
146     if (!map)
147       return tileSizes;
148     auto shapeSizes = applyMapToValues(b, loc, map, allShapeSizes);
149     // If the shape size is dynamic, tile by 1. Otherwise, do not tile (tile
150     // size 0).
151     for (Value shapeSize : shapeSizes)
152       tileSizes.push_back(getConstantIntValue(shapeSize).hasValue()
153                               ? b.create<arith::ConstantIndexOp>(loc, 0)
154                               : b.create<arith::ConstantIndexOp>(loc, 1));
155     return tileSizes;
156   };
157   return *this;
158 }
159 
160 /// Helper function that tries to pad `opOperand`. Exit early for scalar
161 /// operands, if `paddingFunc` returns failure, or if `opOperand` is not defined
162 /// by an ExtractSliceOp. Otherwise, try to pad the operand even if it already
163 /// has a static shape. Set `result` to the result of the created tensor::PadOp
164 /// or and return success if the operand either has been padded to a static
165 /// shape or already had a static shape and failure otherwise.
166 static LogicalResult padOperandToSmallestStaticBoundingBox(
167     OpBuilder &b, linalg::LinalgOp opToPad, OpOperand *opOperand,
168     const PaddingValueComputationFunction &paddingFunc,
169     const PaddingNoFoldComputationFunction &nofoldFunc, Value &result) {
170   // Get the shape of the operand and check if it has a dynamic shape. Only
171   // return failure if the operand is not a scalar and has a dynamic shape.
172   ArrayRef<int64_t> shape = opToPad.getShape(opOperand);
173   bool hasDynamicShape = llvm::is_contained(shape, ShapedType::kDynamicSize);
174 
175   // Cannot pad scalar operands.
176   if (shape.empty())
177     return success();
178 
179   // Cannot pad if the padding value is unknown.
180   FailureOr<Value> paddingValue = paddingFunc(b, *opOperand);
181   if (failed(paddingValue))
182     return failure(hasDynamicShape);
183 
184   // Cannot construct a static bounding box if the operand is not defined by an
185   // ExtractSliceOp.
186   auto sliceOp = opOperand->get().getDefiningOp<tensor::ExtractSliceOp>();
187   if (!sliceOp)
188     return failure(hasDynamicShape);
189 
190   // Compute the dropped dimensions if `sliceOp` is ranke-reducing.
191   llvm::SmallBitVector droppedDims = sliceOp.getDroppedDims();
192 
193   // Upper bound the `sliceOp` sizes to obtain a static bounding box.
194   SmallVector<int64_t> staticSizes;
195   staticSizes.reserve(shape.size());
196   auto shapedOp = cast<OffsetSizeAndStrideOpInterface>(sliceOp.getOperation());
197   for (const auto &en : enumerate(shapedOp.getMixedSizes())) {
198     // Skip dropped dimensions.
199     if (droppedDims.test(en.index()))
200       continue;
201     // If the size is an attribute add it directly to `staticSizes`.
202     if (en.value().is<Attribute>()) {
203       staticSizes.push_back(
204           en.value().get<Attribute>().dyn_cast<IntegerAttr>().getInt());
205       continue;
206     }
207     // Otherwise, try to compute a constant upper bound for the size value.
208     FailureOr<int64_t> upperBound =
209         getConstantUpperBoundForIndex(en.value().get<Value>());
210     if (failed(upperBound)) {
211       LLVM_DEBUG(DBGS() << "No constant bounding box can be found for padding");
212       return failure();
213     }
214     staticSizes.push_back(upperBound.getValue());
215   }
216   assert(staticSizes.size() == shape.size() &&
217          "expect the dynamic and static ranks to match");
218 
219   // Pad the operand to the bounding box defined by `staticSizes`.
220   auto staticTensorType = RankedTensorType::get(
221       staticSizes, getElementTypeOrSelf(opOperand->get()));
222   bool nofold = nofoldFunc ? nofoldFunc(*opOperand) : false;
223   result =
224       makeComposedPadHighOp(b, opToPad->getLoc(), staticTensorType,
225                             opOperand->get(), paddingValue.getValue(), nofold);
226   return success();
227 }
228 
229 FailureOr<SmallVector<Value>>
230 linalg::rewriteAsPaddedOp(OpBuilder &b, LinalgOp opToPad,
231                           const PaddingValueComputationFunction &paddingFunc,
232                           const PaddingNoFoldComputationFunction &nofoldFunc,
233                           LinalgOp &paddedOp) {
234   Location loc = opToPad->getLoc();
235 
236   // TODO: there are cases where we may still want to pad to larger sizes.
237   assert(opToPad.hasTensorSemantics() &&
238          "expected operation to have tensor semantics");
239 
240   OpBuilder::InsertionGuard g(b);
241   // Set IP after op because we also take the dims of the original output.
242   b.setInsertionPointAfter(opToPad);
243   // Make a copy of the shaped operands and update it.
244   SmallVector<Value> newOperands;
245   newOperands.reserve(opToPad.getNumInputsAndOutputs());
246   for (OpOperand *opOperand : opToPad.getInputAndOutputOperands()) {
247     Value paddedOperand;
248     // If padding was requested but the shape cannot be bounded statically then
249     // the pattern fails to apply.
250     if (failed(padOperandToSmallestStaticBoundingBox(
251             b, opToPad, opOperand, paddingFunc, nofoldFunc, paddedOperand)))
252       return failure();
253     newOperands.push_back(paddedOperand ? paddedOperand : opOperand->get());
254   }
255 
256   SmallVector<SmallVector<Value>> reifiedResultShapes;
257   if (failed(cast<ReifyRankedShapedTypeOpInterface>(opToPad.getOperation())
258                  .reifyResultShapes(b, reifiedResultShapes)))
259     return failure();
260   assert(reifiedResultShapes.size() == opToPad->getNumResults() &&
261          "expected same number of results");
262 
263   // Clone `opToPad` to operate on the statically padded shapes.
264   auto resultTensorTypes =
265       ValueRange(newOperands).take_back(opToPad.getNumOutputs()).getTypes();
266   paddedOp = opToPad.clone(b, loc, resultTensorTypes, newOperands);
267 
268   // Recover the slice out of the new static results. This keeps the original
269   // linalg op around because it uses the dims of the original results.
270   SmallVector<Value> paddedSubviewResults;
271   paddedSubviewResults.reserve(opToPad->getNumResults());
272   for (const auto &en : llvm::enumerate(paddedOp->getResults())) {
273     Value paddedResult = en.value();
274     int64_t resultNumber = en.index();
275     int64_t rank = paddedResult.getType().cast<RankedTensorType>().getRank();
276     SmallVector<OpFoldResult> offsets(rank, b.getIndexAttr(0));
277     SmallVector<OpFoldResult> sizes;
278     for (Value v : reifiedResultShapes[resultNumber])
279       sizes.push_back(getAsOpFoldResult(v));
280     SmallVector<OpFoldResult> strides(rank, b.getIndexAttr(1));
281     paddedSubviewResults.push_back(b.create<tensor::ExtractSliceOp>(
282         loc, paddedResult, offsets, sizes, strides));
283   }
284   return paddedSubviewResults;
285 }
286 
287 /// Try to peel a loop `op` and return the new result.
288 // TODO: Add support for scf.parallel and affine.for loops.
289 static SmallVector<Value, 4> peelLoop(RewriterBase &rewriter, Operation *op) {
290   return llvm::TypeSwitch<Operation *, SmallVector<Value, 4>>(op)
291       .Case<scf::ForOp>([&](scf::ForOp forOp) {
292         scf::ForOp partialIteration;
293         if (succeeded(scf::peelAndCanonicalizeForLoop(rewriter, forOp,
294                                                       partialIteration)))
295           return partialIteration->getResults();
296         assert(!partialIteration && "expected that loop was not peeled");
297         return forOp->getResults();
298       })
299       .Default([&](Operation *op) { return op->getResults(); });
300 }
301 
302 /// Try to peel a TiledLoopOp and return the new result.
303 static SmallVector<Value, 4> peelLoop(RewriterBase &rewriter,
304                                       TiledLoopOp tiledLoop, int64_t idx) {
305   assert(idx < static_cast<int64_t>(tiledLoop.iterator_types().size()) &&
306          "requested peeling of non-existing loop");
307   TiledLoopOp result;
308   if (succeeded(peelAndCanonicalizeTiledLoop(rewriter, tiledLoop, idx, result)))
309     return result->getResults();
310   assert(!result && "expected that loop was not peeled");
311   return tiledLoop->getResults();
312 }
313 
314 /// Peel loops after tiling.
315 void mlir::linalg::peelTiledLinalgOp(RewriterBase &rewriter, TiledLinalgOp &res,
316                                      ArrayRef<int64_t> peeledLoops,
317                                      LinalgTilingLoopType loopType) {
318   for (int64_t loop : peeledLoops) {
319     assert(loop < static_cast<int64_t>(res.loops.size()) &&
320            "requested peeling of non-existing loop");
321     SmallVector<Value, 4> loopResults;
322     Operation *loopOp = res.loops[loop];
323     if (loopType == LinalgTilingLoopType::TiledLoops) {
324       assert(llvm::all_of(
325                  res.loops,
326                  [&](Operation *op) { return op == res.loops.front(); }) &&
327              "expected that all loop ops are the same TiledLoopOp");
328       auto tiledLoopOp = dyn_cast<TiledLoopOp>(loopOp);
329       assert(tiledLoopOp && "expected TiledLoopOp");
330       loopResults = peelLoop(rewriter, tiledLoopOp, loop);
331     } else {
332       loopResults = peelLoop(rewriter, loopOp);
333     }
334 
335     // The result of the loop nest may change with peeling.
336     if (res.tensorResults.size() == loopOp->getNumResults() &&
337         std::equal(res.tensorResults.begin(), res.tensorResults.end(),
338                    loopOp->getResults().begin()))
339       res.tensorResults = loopResults;
340   }
341 }
342 
343 static ValueRange getTiledOpResult(TiledLinalgOp tiledOp) {
344   if (tiledOp.loops.empty())
345     return tiledOp.op.getOperation()->getResults();
346   return tiledOp.loops.front()->getResults();
347 }
348 
349 static ValueRange
350 getTiledAndFusedOpResult(TiledAndFusedLinalgOps tiledAndFusedOp) {
351   if (tiledAndFusedOp.fusedLoops.empty())
352     return tiledAndFusedOp.op.getOperation()->getResults();
353   return tiledAndFusedOp.fusedLoops.front()->getResults();
354 }
355 
356 mlir::linalg::LinalgBaseTileAndFusePattern::LinalgBaseTileAndFusePattern(
357     StringRef opName, MLIRContext *context,
358     const LinalgDependenceGraph &dependenceGraph,
359     LinalgTilingOptions tilingOptions, LinalgFusionOptions fusionOptions,
360     LinalgTransformationFilter f, LinalgTransformationFilter fusedOpMarker,
361     LinalgTransformationFilter originalOpMarker, PatternBenefit benefit)
362     : RewritePattern(opName, benefit, context, {}),
363       dependenceGraph(dependenceGraph), tilingOptions(std::move(tilingOptions)),
364       fusionOptions(std::move(fusionOptions)), filter(std::move(f)),
365       fusedOpMarker(std::move(fusedOpMarker)),
366       originalOpMarker(std::move(originalOpMarker)) {}
367 
368 LogicalResult mlir::linalg::LinalgBaseTileAndFusePattern::matchAndRewrite(
369     Operation *op, PatternRewriter &rewriter) const {
370   LinalgOp linalgOp = dyn_cast<LinalgOp>(op);
371   // TODO: remove hasIndexSemantics check once index ops are supported.
372   if (!linalgOp || linalgOp.hasIndexSemantics())
373     return failure();
374   if (failed(filter.checkAndNotify(rewriter, linalgOp)))
375     return failure();
376 
377   DenseSet<Operation *> producers;
378   producers.insert(linalgOp);
379   for (auto dependence : dependenceGraph.getDependentOperationsInto(linalgOp)) {
380     Optional<unsigned> operandNumber = dependence.getIndexingOpViewOperandNum();
381     // When looking at dependences into, indexingOp is always OpOperand. We
382     // could assert, but continue if this is not the case.
383     if (!operandNumber)
384       continue;
385     if (!fusionOptions.indicesToFuse.count(operandNumber.getValue()))
386       continue;
387     if (isa<LinalgOp>(dependence.getDependentOp()))
388       producers.insert(dependence.getDependentOp());
389   }
390 
391   SmallVector<LinalgOp, 1> fusionOps;
392   for (auto it = op->getBlock()->begin(), ie = Block::iterator(op); it != ie;
393        ++it) {
394     auto producerLinalgOp = dyn_cast<LinalgOp>(&(*it));
395     if (producerLinalgOp && producers.count(producerLinalgOp))
396       fusionOps.push_back(producerLinalgOp);
397   }
398   fusionOps.push_back(linalgOp);
399 
400   SmallVector<Value, 4> tileSizes =
401       tilingOptions.tileSizeComputationFunction(rewriter, op);
402   LinalgTilingOptions instanceTilingOptions = tilingOptions;
403   instanceTilingOptions.setTileSizes(tileSizes);
404   Optional<TiledAndFusedLinalgOps> tiledAndFusedOps = tileAndFuseLinalgOps(
405       rewriter, fusionOps, dependenceGraph, instanceTilingOptions);
406   if (!tiledAndFusedOps)
407     return failure();
408 
409   // Tile the unfused loops;
410   SmallVector<Value, 4> unfusedLoopTileSizes;
411   Value zero = rewriter.create<arith::ConstantIndexOp>(op->getLoc(), 0);
412   for (const auto &tileSize : enumerate(tileSizes)) {
413     if (tiledAndFusedOps->fusedLoopDims.count(tileSize.index()))
414       unfusedLoopTileSizes.push_back(zero);
415     else
416       unfusedLoopTileSizes.push_back(tileSize.value());
417   }
418   // Tile the loop only if there is a non-zero tile size.
419   if (unfusedLoopTileSizes.size() > linalgOp.getNumLoops())
420     unfusedLoopTileSizes.resize(linalgOp.getNumLoops());
421   if (llvm::any_of(unfusedLoopTileSizes, [](Value val) {
422         if (auto cst = val.getDefiningOp<arith::ConstantIndexOp>())
423           return cst.value() != 0;
424         return true;
425       })) {
426     LinalgTilingOptions unfusedTilingOptions = tilingOptions;
427     unfusedTilingOptions.setTileSizes(unfusedLoopTileSizes);
428     FailureOr<TiledLinalgOp> unfusedTiledOp =
429         tileLinalgOp(rewriter, tiledAndFusedOps->op, unfusedTilingOptions);
430     if (failed(unfusedTiledOp))
431       return failure();
432     rewriter.replaceOp(tiledAndFusedOps->op,
433                        getTiledOpResult(unfusedTiledOp.getValue()));
434     tiledAndFusedOps->op = unfusedTiledOp->op;
435   }
436   op->replaceAllUsesWith(getTiledAndFusedOpResult(tiledAndFusedOps.getValue()));
437 
438   filter.replaceLinalgTransformationFilter(rewriter,
439                                            tiledAndFusedOps->op.getOperation());
440   for (auto fusedOp : tiledAndFusedOps->fusedProducers) {
441     fusedOpMarker.replaceLinalgTransformationFilter(rewriter,
442                                                     fusedOp.getOperation());
443   }
444   for (auto origProducerOp : ArrayRef<LinalgOp>(fusionOps).drop_back()) {
445     originalOpMarker.replaceLinalgTransformationFilter(
446         rewriter, origProducerOp.getOperation());
447   }
448   rewriter.updateRootInPlace(op, [&]() {
449     originalOpMarker.replaceLinalgTransformationFilter(rewriter, op);
450   });
451   return success();
452 }
453 
454 /// Linalg tiling pattern.
455 mlir::linalg::LinalgTilingPattern::LinalgTilingPattern(
456     MLIRContext *context, LinalgTilingOptions options,
457     LinalgTransformationFilter f, PatternBenefit benefit)
458     : OpInterfaceRewritePattern<LinalgOp>(context, benefit),
459       filter(std::move(f)), options(std::move(options)) {}
460 
461 mlir::linalg::LinalgTilingPattern::LinalgTilingPattern(
462     StringRef opName, MLIRContext *context, LinalgTilingOptions options,
463     LinalgTransformationFilter f, PatternBenefit benefit)
464     : OpInterfaceRewritePattern<LinalgOp>(context, benefit),
465       filter(f.addOpNameFilter(opName)), options(std::move(options)) {}
466 
467 FailureOr<TiledLinalgOp>
468 mlir::linalg::LinalgTilingPattern::returningMatchAndRewrite(
469     LinalgOp op, PatternRewriter &rewriter) const {
470   if (failed(filter.checkAndNotify(rewriter, op)))
471     return failure();
472 
473   FailureOr<TiledLinalgOp> res = tileLinalgOp(rewriter, op, options);
474   if (failed(res))
475     return failure();
476 
477   // Clear filter to stop recursive pattern application.
478   // This must be done here to properly propagate to peeling branches.
479   filter.replaceLinalgTransformationFilter(rewriter, res->op);
480 
481   // Peel the loops of the TiledLinalgOp.
482   peelTiledLinalgOp(rewriter, *res, options.peeledLoops, options.loopType);
483 
484   if (res->tensorResults.empty())
485     rewriter.eraseOp(op);
486   else
487     rewriter.replaceOp(op, res->tensorResults);
488 
489   return res;
490 }
491 
492 /// Linalg padding pattern.
493 mlir::linalg::LinalgPaddingPattern::LinalgPaddingPattern(
494     MLIRContext *context, LinalgPaddingOptions options,
495     LinalgTransformationFilter f, PatternBenefit benefit)
496     : OpInterfaceRewritePattern<LinalgOp>(context, benefit),
497       filter(std::move(f)), options(std::move(options)) {}
498 
499 mlir::linalg::LinalgPaddingPattern::LinalgPaddingPattern(
500     StringRef opName, MLIRContext *context, LinalgPaddingOptions options,
501     LinalgTransformationFilter f, PatternBenefit benefit)
502     : OpInterfaceRewritePattern<LinalgOp>(context, benefit),
503       filter(f.addOpNameFilter(opName)), options(std::move(options)) {}
504 
505 FailureOr<LinalgOp>
506 mlir::linalg::LinalgPaddingPattern::returningMatchAndRewrite(
507     LinalgOp linalgOp, PatternRewriter &rewriter) const {
508   if (!linalgOp.hasTensorSemantics())
509     return failure();
510   if (failed(filter.checkAndNotify(rewriter, linalgOp)))
511     return failure();
512 
513   // Pad the operation.
514   LinalgOp paddedOp;
515   FailureOr<SmallVector<Value>> newResults = rewriteAsPaddedOp(
516       rewriter, linalgOp, options.paddingValueComputationFunction,
517       options.paddingNoFoldComputationFunction, paddedOp);
518   if (failed(newResults))
519     return failure();
520 
521   // Compute the desired hoisting depths.
522   SmallVector<int64_t> depths;
523   if (options.paddingHoistComputationFunction) {
524     for (OpOperand *opOperand : linalgOp.getInputAndOutputOperands())
525       depths.push_back(options.paddingHoistComputationFunction(*opOperand));
526   }
527 
528   // Hoist the padding.
529   for (const auto &en : enumerate(depths)) {
530     OpOperand &opOperand = paddedOp->getOpOperand(en.index());
531     auto padOp = opOperand.get().getDefiningOp<tensor::PadOp>();
532     if (!padOp || en.value() == 0)
533       continue;
534     tensor::PadOp hoistedOp;
535     SmallVector<GenericOp> transposeOps;
536     SmallVector<int64_t> transposeVector =
537         options.paddingTransposeComputationFunction(opOperand);
538 
539     FailureOr<Value> newResult = hoistPaddingOnTensors(
540         padOp, en.value(), transposeVector, hoistedOp, transposeOps);
541     if (failed(newResult))
542       continue;
543     rewriter.replaceOp(padOp, newResult.getValue());
544 
545     // Do not apply hoist padding to the newly introduced transpose operations.
546     for (GenericOp transposeOp : transposeOps)
547       filter.replaceLinalgTransformationFilter(rewriter, transposeOp);
548   }
549 
550   // Replace the original operation to pad.
551   rewriter.replaceOp(linalgOp, newResults.getValue());
552   filter.replaceLinalgTransformationFilter(rewriter, paddedOp);
553 
554   return paddedOp;
555 }
556 
557 /// Linalg tile and fuse tensor ops pattern.
558 mlir::linalg::LinalgTileAndFuseTensorOpsPattern::
559     LinalgTileAndFuseTensorOpsPattern(MLIRContext *context,
560                                       LinalgTilingAndFusionOptions options,
561                                       LinalgTransformationFilter f,
562                                       PatternBenefit benefit)
563     : RewritePattern(MatchAnyOpTypeTag(), benefit, context),
564       filter(std::move(f)), options(std::move(options)) {}
565 
566 mlir::linalg::LinalgTileAndFuseTensorOpsPattern::
567     LinalgTileAndFuseTensorOpsPattern(StringRef opName, MLIRContext *context,
568                                       LinalgTilingAndFusionOptions options,
569                                       LinalgTransformationFilter f,
570                                       PatternBenefit benefit)
571     : RewritePattern(opName, benefit, context), filter(std::move(f)),
572       options(std::move(options)) {}
573 
574 LogicalResult mlir::linalg::LinalgTileAndFuseTensorOpsPattern::matchAndRewrite(
575     Operation *op, PatternRewriter &rewriter) const {
576   LinalgOp rootOp = dyn_cast<LinalgOp>(op);
577   if (!rootOp)
578     return failure();
579   if (failed(filter.checkAndNotify(rewriter, op)))
580     return failure();
581 
582   // Check `tileSizes` contains a tile size for every `rootOp` loop dimension.
583   if (options.tileSizes.size() < rootOp.getNumLoops())
584     return rewriter.notifyMatchFailure(op, "expect #tile sizes >= #loops");
585 
586   // Check `tileInterchange` contains no entries or as many as `tileSizes`.
587   if (!options.tileInterchange.empty() &&
588       options.tileInterchange.size() != options.tileSizes.size())
589     return rewriter.notifyMatchFailure(
590         op, "expect the number of tile sizes and interchange dims to match");
591 
592   // Copy the `tileSizes` and `tileInterchange` prefixes needed for `rootOp`.
593   SmallVector<int64_t> rootTileSizes(options.tileSizes.begin(),
594                                      options.tileSizes.begin() +
595                                          rootOp.getNumLoops());
596   SmallVector<int64_t> rootInterchange =
597       options.tileInterchange.empty()
598           ? llvm::to_vector<6>(llvm::seq<int64_t>(0, rootOp.getNumLoops()))
599           : SmallVector<int64_t>(options.tileInterchange.begin(),
600                                  options.tileInterchange.begin() +
601                                      rootOp.getNumLoops());
602 
603   // Check `rootTileSizes` contains non-zero tile sizes.
604   if (llvm::count(rootTileSizes, 0) == static_cast<long>(rootTileSizes.size()))
605     return rewriter.notifyMatchFailure(
606         op, "expect at least one non-zero tile size");
607 
608   // Check `rootInterchange` is a permutation of the `rootOp` loop dimensions.
609   // It has to be a permutation since the tiling cannot tile the same loop
610   // dimension multiple times.
611   if (!isPermutation(rootInterchange))
612     return rewriter.notifyMatchFailure(
613         op, "expect the tile interchange permutes the root loops");
614 
615   // Tile `rootOp` and fuse its producers.
616   FailureOr<TileLoopNest> tileLoopNest =
617       tileConsumerAndFuseProducers(rewriter, rootOp, rootTileSizes,
618                                    rootInterchange, options.tileDistribution);
619   if (failed(tileLoopNest))
620     return rewriter.notifyMatchFailure(
621         op, "tileConsumerAndFuseProducers failed unexpectedly");
622 
623   // Replace all uses of the tiled loop operation.
624   rootOp->replaceAllUsesWith(tileLoopNest->getRootOpReplacementResults());
625 
626   // Apply the filter if specified.
627   for (LinalgOp linalgOp : tileLoopNest->getAllTiledAndFusedOps())
628     filter.replaceLinalgTransformationFilter(rewriter, linalgOp);
629   return success();
630 }
631 
632 /// Linalg generic interchange pattern.
633 mlir::linalg::GenericOpInterchangePattern::GenericOpInterchangePattern(
634     MLIRContext *context, ArrayRef<unsigned> interchangeVector,
635     LinalgTransformationFilter f, PatternBenefit benefit)
636     : OpRewritePattern(context, benefit), filter(std::move(f)),
637       interchangeVector(interchangeVector.begin(), interchangeVector.end()) {}
638 
639 FailureOr<GenericOp>
640 mlir::linalg::GenericOpInterchangePattern::returningMatchAndRewrite(
641     GenericOp genericOp, PatternRewriter &rewriter) const {
642   if (failed(filter.checkAndNotify(rewriter, genericOp)))
643     return failure();
644 
645   FailureOr<GenericOp> transformedOp =
646       interchangeGenericOp(rewriter, genericOp, interchangeVector);
647   if (failed(transformedOp))
648     return failure();
649 
650   // New filter if specified.
651   filter.replaceLinalgTransformationFilter(rewriter, genericOp);
652   return transformedOp;
653 }
654 
655 /// Linalg generalization pattern.
656 mlir::linalg::LinalgGeneralizationPattern::LinalgGeneralizationPattern(
657     MLIRContext *context, LinalgTransformationFilter f, PatternBenefit benefit)
658     : OpInterfaceRewritePattern<LinalgOp>(context, benefit),
659       filter(std::move(f)) {}
660 
661 mlir::linalg::LinalgGeneralizationPattern::LinalgGeneralizationPattern(
662     StringRef opName, MLIRContext *context, LinalgTransformationFilter f,
663     PatternBenefit benefit)
664     : OpInterfaceRewritePattern<LinalgOp>(context, benefit),
665       filter(f.addOpNameFilter(opName)) {}
666 
667 FailureOr<GenericOp>
668 mlir::linalg::LinalgGeneralizationPattern::returningMatchAndRewrite(
669     LinalgOp linalgOp, PatternRewriter &rewriter) const {
670   if (failed(filter.checkAndNotify(rewriter, linalgOp)))
671     return failure();
672   FailureOr<GenericOp> genericOp = generalizeNamedOp(rewriter, linalgOp);
673   if (failed(genericOp))
674     return failure();
675   filter.replaceLinalgTransformationFilter(rewriter, *genericOp);
676   return genericOp;
677 }
678 
679 mlir::linalg::LinalgBasePromotionPattern::LinalgBasePromotionPattern(
680     MLIRContext *context, LinalgTransformationFilter f,
681     LinalgPromotionOptions options, PatternBenefit benefit)
682     : RewritePattern(MatchAnyOpTypeTag(), benefit, context),
683       filter(std::move(f)), options(std::move(options)) {}
684 
685 mlir::linalg::LinalgBasePromotionPattern::LinalgBasePromotionPattern(
686     StringRef opName, MLIRContext *context, LinalgPromotionOptions options,
687     LinalgTransformationFilter f, PatternBenefit benefit)
688     : RewritePattern(opName, benefit, context, {}), filter(std::move(f)),
689       options(std::move(options)) {}
690 
691 LogicalResult mlir::linalg::LinalgBasePromotionPattern::matchAndRewrite(
692     Operation *op, PatternRewriter &rewriter) const {
693   if (failed(filter.checkAndNotify(rewriter, op)))
694     return failure();
695   if (failed(promoteSubviewsPrecondition(op, options)))
696     return failure();
697 
698   // TODO: We cannot use root update here. This pattern is creating other ops,
699   // so if the promotion fails, those need to be cleaned up, which doesnt seem
700   // to be happening here. So to fail properly, we should be cloning the op and
701   // deleting the previous op. This needs more investigation.
702   rewriter.startRootUpdate(op);
703   Optional<LinalgOp> promotedOp = promoteSubViews(rewriter, op, options);
704   if (!promotedOp) {
705     rewriter.cancelRootUpdate(op);
706     return op->emitError("subview promotion failed");
707   }
708   rewriter.finalizeRootUpdate(op);
709   filter.replaceLinalgTransformationFilter(rewriter, op);
710   return success();
711 }
712 
713 mlir::linalg::LinalgVectorizationPattern::LinalgVectorizationPattern(
714     MLIRContext *context, LinalgTransformationFilter f,
715     LinalgVectorizationOptions options, PatternBenefit benefit)
716     : OpInterfaceRewritePattern<LinalgOp>(context, benefit),
717       filter(std::move(f)) {}
718 
719 mlir::linalg::LinalgVectorizationPattern::LinalgVectorizationPattern(
720     StringRef opName, MLIRContext *context, LinalgVectorizationOptions options,
721     LinalgTransformationFilter f, PatternBenefit benefit)
722     : OpInterfaceRewritePattern<LinalgOp>(context, benefit),
723       filter(f.addOpNameFilter(opName)) {}
724 
725 LogicalResult mlir::linalg::LinalgVectorizationPattern::matchAndRewrite(
726     LinalgOp linalgOp, PatternRewriter &rewriter) const {
727   if (failed(filter.checkAndNotify(rewriter, linalgOp)))
728     return failure();
729   return vectorize(rewriter, linalgOp);
730 }
731 
732 LogicalResult mlir::linalg::CopyVectorizationPattern::matchAndRewrite(
733     memref::CopyOp copyOp, PatternRewriter &rewriter) const {
734   return vectorizeCopy(rewriter, copyOp);
735 }
736 
737 LogicalResult mlir::linalg::applyStagedPatterns(
738     Operation *op, ArrayRef<FrozenRewritePatternSet> stage1Patterns,
739     const FrozenRewritePatternSet &stage2Patterns,
740     function_ref<LogicalResult(Operation *)> stage3Lambda) {
741   unsigned iteration = 0;
742   (void)iteration;
743   for (const auto &patterns : stage1Patterns) {
744     LLVM_DEBUG(DBGS() << "Before 1st stage, iter: " << ++iteration << "\n"
745                       << *op);
746     if (failed(applyPatternsAndFoldGreedily(op, patterns))) {
747       LLVM_DEBUG(DBGS() << "Underlying first stage rewrite did not converge");
748       return failure();
749     }
750     LLVM_DEBUG(DBGS() << "After 1st stage, iter: " << ++iteration << "\n"
751                       << *op);
752     if (failed(applyPatternsAndFoldGreedily(op, stage2Patterns))) {
753       LLVM_DEBUG(DBGS() << "Underlying 2nd stage rewrite did not converge");
754       return failure();
755     }
756     LLVM_DEBUG(DBGS() << "After 2nd stage, iter : " << iteration << "\n"
757                       << *op);
758     if (stage3Lambda) {
759       if (failed(stage3Lambda(op)))
760         return failure();
761       LLVM_DEBUG(DBGS() << "After 3rd stage, iter : " << iteration << "\n"
762                         << *op);
763     }
764   }
765   return success();
766 }
767 
768 static SmallVector<StringRef> getNParallelLoopsAttrs(unsigned nParallelLoops) {
769   return SmallVector<StringRef>(nParallelLoops, getParallelIteratorTypeName());
770 }
771 
772 /// Rewrite a tensor::PadOp into a sequence of InitTensorOp, FillOp (to
773 /// initialize with pad_val) and GenericOp (to copy contents).
774 LogicalResult
775 PadOpTransformationPattern::matchAndRewrite(tensor::PadOp padOp,
776                                             PatternRewriter &rewriter) const {
777 
778   auto inputShapedType = padOp.source().getType().cast<ShapedType>();
779   auto resultShapedType = padOp.result().getType().cast<ShapedType>();
780 
781   // Bail on non-static shapes.
782   if (!inputShapedType.hasStaticShape())
783     return failure();
784   if (!resultShapedType.hasStaticShape())
785     return failure();
786 
787   // Only support padding with a constant for now, i.e. either:
788   //   1. A BBarg from a different block.
789   //   2. A value defined outside of the current block.
790   Block &block = padOp.region().front();
791   auto yieldOp = cast<tensor::YieldOp>(block.getTerminator());
792   Value padValue = yieldOp.value();
793   Operation *definingOp = padValue.getDefiningOp();
794   if (definingOp && definingOp->getBlock() == &block)
795     return failure();
796   if (!definingOp && padValue.cast<BlockArgument>().getOwner() == &block)
797     return failure();
798 
799   // Create tensor with the padded shape
800   Location loc = padOp.getLoc();
801   SmallVector<Value> indices(resultShapedType.getRank(),
802                              rewriter.create<arith::ConstantIndexOp>(loc, 0));
803   Value initTensor = rewriter.create<InitTensorOp>(
804       loc, resultShapedType.getShape(), resultShapedType.getElementType());
805 
806   // Initialize tensor with the pad value
807   Value tmpTensor =
808       rewriter.create<linalg::FillOp>(loc, padValue, initTensor).result();
809 
810   // Copy original contents into new tensor
811   // Uses linalg.generic, but could be done with tensor.insert_slice
812   SmallVector<AffineExpr, 4> outputExprs;
813   for (unsigned i = 0; i < resultShapedType.getRank(); ++i) {
814     outputExprs.push_back(getAffineDimExpr(i, rewriter.getContext()) +
815                           padOp.static_low()[i].cast<IntegerAttr>().getInt());
816   }
817 
818   SmallVector<AffineMap, 2> transferMaps = {
819       rewriter.getMultiDimIdentityMap(inputShapedType.getRank()),
820       AffineMap::get(resultShapedType.getRank(),
821                      /*symbolCount=*/0, outputExprs, rewriter.getContext())};
822 
823   rewriter.replaceOpWithNewOp<linalg::GenericOp>(
824       padOp, resultShapedType, padOp.source(), tmpTensor, transferMaps,
825       getNParallelLoopsAttrs(resultShapedType.getRank()),
826       [&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange args) {
827         nestedBuilder.create<linalg::YieldOp>(nestedLoc, args[0]);
828       });
829 
830   return success();
831 }
832 
833 /// Filling `dest` using FillOp constant padding value if possible.
834 /// Otherwise, generate a tensor::GenerateOp.
835 Value GeneralizePadOpPattern::createFillOrGenerateOp(
836     PatternRewriter &rewriter, tensor::PadOp padOp, Value dest,
837     const SmallVector<Value> &dynSizes) const {
838   auto padValue = padOp.getConstantPaddingValue();
839   if (padValue)
840     return rewriter.create<FillOp>(padOp.getLoc(), padValue, dest).result();
841 
842   // Fill could not be optimized: Lower to tensor::GenerateOp with region.
843   auto generateOp = rewriter.create<tensor::GenerateOp>(
844       padOp.getLoc(), padOp.getResultType(), dynSizes);
845   // Copy region to new op.
846   BlockAndValueMapping bvm;
847   padOp.region().cloneInto(&generateOp.getRegion(), bvm);
848   return generateOp;
849 }
850 
851 LogicalResult
852 GeneralizePadOpPattern::matchAndRewrite(tensor::PadOp padOp,
853                                         PatternRewriter &rewriter) const {
854   // Given an OpFoldResult, return an index-typed value.
855   auto getIdxValue = [&](OpFoldResult ofr) {
856     if (auto val = ofr.dyn_cast<Value>())
857       return val;
858     return rewriter
859         .create<arith::ConstantIndexOp>(
860             padOp.getLoc(), ofr.get<Attribute>().cast<IntegerAttr>().getInt())
861         .getResult();
862   };
863 
864   auto resultType = padOp.getResultType();
865   // Compute size of InitTensorOp. Any combination of static/dynamic is
866   // supported.
867   SmallVector<Value> dynSizes;
868   SmallVector<int64_t> staticSizes;
869   for (unsigned dim = 0; dim < resultType.getRank(); ++dim) {
870     if (resultType.isDynamicDim(dim)) {
871       auto srcSize = rewriter.createOrFold<tensor::DimOp>(padOp.getLoc(),
872                                                           padOp.source(), dim);
873       // Add low and high padding value.
874       auto plusLow = rewriter.createOrFold<arith::AddIOp>(
875           padOp.getLoc(), srcSize, getIdxValue(padOp.getMixedLowPad()[dim]));
876       auto plusHigh = rewriter.createOrFold<arith::AddIOp>(
877           padOp.getLoc(), plusLow, getIdxValue(padOp.getMixedHighPad()[dim]));
878       dynSizes.push_back(plusHigh);
879     }
880     staticSizes.push_back(resultType.getDimSize(dim));
881   }
882 
883   // Init tensor and fill it with padding.
884   Value init = rewriter.create<InitTensorOp>(
885       padOp.getLoc(), dynSizes, staticSizes, resultType.getElementType());
886   Value fill = createFillOrGenerateOp(rewriter, padOp, init, dynSizes);
887 
888   // Try optimize the copy of source.
889   if (optimizeCopyFn && optimizeCopyFn(rewriter, padOp, fill).succeeded())
890     return success();
891 
892   // tensor::PadOps cannot be optimized. Generate a InsertSliceOp instead
893   // for copying the PadOp source.
894   auto sourceType = padOp.getSourceType();
895   // Compute size of source of tensor::PadOp.
896   SmallVector<OpFoldResult> srcSizes;
897   for (unsigned dim = 0; dim < sourceType.getRank(); ++dim) {
898     if (sourceType.isDynamicDim(dim)) {
899       srcSizes.push_back(rewriter.createOrFold<tensor::DimOp>(
900           padOp.getLoc(), padOp.source(), dim));
901     } else {
902       srcSizes.push_back(rewriter.getIndexAttr(sourceType.getDimSize(dim)));
903     }
904   }
905   // Strides of InsertSliceOp are all 1.
906   SmallVector<OpFoldResult> strides(sourceType.getRank(),
907                                     rewriter.getIndexAttr(1));
908   rewriter.replaceOpWithNewOp<tensor::InsertSliceOp>(
909       padOp, padOp.source(), fill, padOp.getMixedLowPad(), srcSizes, strides);
910 
911   return success();
912 }
913 
914 LogicalResult ExtractSliceOfPadTensorSwapPattern::matchAndRewrite(
915     tensor::ExtractSliceOp sliceOp, PatternRewriter &rewriter) const {
916   if (!sliceOp.hasUnitStride())
917     return failure();
918 
919   auto padOp = sliceOp.source().getDefiningOp<tensor::PadOp>();
920   if (!padOp)
921     return failure();
922 
923   bool zeroSliceGuard = true;
924   if (controlFn) {
925     if (Optional<bool> control = controlFn(sliceOp))
926       zeroSliceGuard = control.getValue();
927     else
928       return failure();
929   }
930 
931   Operation *tiledPadOp =
932       tensor::bubbleUpPadSlice(rewriter, padOp, sliceOp.getMixedOffsets(),
933                                sliceOp.getMixedSizes(), zeroSliceGuard);
934   // All shapes are static and the data source is actually used. Rewrite into
935   // pad(extract_slice(x)).
936   rewriter.replaceOp(sliceOp, tiledPadOp->getResults());
937   return success();
938 }
939 
940 namespace {
941 // The following are patterns for downscaling convolution ops with size-1
942 // window dimensions.
943 //
944 // Note that we'd eventually want to write such transformations in a generic
945 // way, e.g., converting to linalg.generic, removing the size-1 dimensions,
946 // and then turning back to named ops. But for now it's fine to have a few
947 // patterns matching special ops to get started.
948 
949 /// Rewrites 2-D convolution ops with size-1 window dimensions into 1-D
950 /// convolution ops.
951 struct DownscaleSizeOneWindowed2DConvolution final
952     : public OpRewritePattern<Conv2DNhwcHwcfOp> {
953   DownscaleSizeOneWindowed2DConvolution(
954       MLIRContext *context,
955       LinalgTransformationFilter f = LinalgTransformationFilter(),
956       PatternBenefit benefit = 1)
957       : OpRewritePattern<Conv2DNhwcHwcfOp>(context, benefit),
958         filter(std::move(f)) {}
959 
960   LogicalResult matchAndRewrite(linalg::Conv2DNhwcHwcfOp convOp,
961                                 PatternRewriter &rewriter) const override {
962     if (failed(filter.checkAndNotify(rewriter, convOp)))
963       return failure();
964     if (convOp.hasBufferSemantics())
965       return failure(); // To be implemented
966 
967     Value input = convOp.inputs().front();
968     Value kernel = convOp.inputs().back();
969     Value output = convOp.outputs().front();
970 
971     auto inputType = input.getType().dyn_cast<RankedTensorType>();
972     auto kernelType = kernel.getType().dyn_cast<RankedTensorType>();
973     auto outputType = output.getType().dyn_cast<RankedTensorType>();
974 
975     auto kernelShape = kernelType.getShape();
976     auto outputShape = outputType.getShape();
977 
978     // Only handle the case where at least one of the window dimensions is
979     // of size 1. Other cases can rely on tiling to reduce to such cases.
980     int64_t khSize = kernelShape[0], kwSize = kernelShape[1];
981     int64_t ohSize = outputShape[1], owSize = outputShape[2];
982     bool removeH = (khSize == 1 && ohSize == 1);
983     bool removeW = (kwSize == 1 && owSize == 1);
984     if (!removeH && !removeW)
985       return failure();
986 
987     // Get new shapes and types for all operands by removing the size-1
988     // dimension.
989     using RTTBuilder = RankedTensorType::Builder;
990     RankedTensorType newInputType =
991         RTTBuilder(inputType).dropDim((removeH ? 1 : 2));
992     RankedTensorType newKernelType =
993         RTTBuilder(kernelType).dropDim((removeH ? 0 : 1));
994     RankedTensorType newOutputType =
995         RTTBuilder(outputType).dropDim(removeH ? 1 : 2);
996 
997     // Rank-reduce operands.
998     Location loc = convOp.getLoc();
999     Value newInput = tensor::createCanonicalRankReducingExtractSliceOp(
1000         rewriter, loc, input, newInputType);
1001     Value newKernel = tensor::createCanonicalRankReducingExtractSliceOp(
1002         rewriter, loc, kernel, newKernelType);
1003     Value newOutput = tensor::createCanonicalRankReducingExtractSliceOp(
1004         rewriter, loc, output, newOutputType);
1005 
1006     // Rank-reduce strides and dilations too.
1007     // TODO: dropDim 1-liner helper.
1008     auto strides = llvm::to_vector<4>(convOp.strides().getValues<int64_t>());
1009     strides.erase(strides.begin() + (removeH ? 0 : 1));
1010     auto stridesAttr = rewriter.getI64VectorAttr(strides);
1011 
1012     auto dilations =
1013         llvm::to_vector<4>(convOp.dilations().getValues<int64_t>());
1014     dilations.erase(dilations.begin() + (removeH ? 0 : 1));
1015     auto dilationsAttr = rewriter.getI64VectorAttr(dilations);
1016 
1017     auto conv1DOp = rewriter.create<linalg::Conv1DNwcWcfOp>(
1018         loc, newOutputType, ValueRange{newInput, newKernel},
1019         ValueRange{newOutput}, stridesAttr, dilationsAttr);
1020 
1021     // Insert back.
1022     Value inserted = tensor::createCanonicalRankReducingInsertSliceOp(
1023         rewriter, loc, conv1DOp.getResult(0), output);
1024     rewriter.replaceOp(convOp, inserted);
1025 
1026     filter.replaceLinalgTransformationFilter(rewriter, conv1DOp);
1027     return success();
1028   };
1029 
1030 private:
1031   /// LinalgTransformMarker handles special attribute manipulations.
1032   LinalgTransformationFilter filter;
1033 };
1034 
1035 /// Rewrites 2-D depthwise convolution ops with size-1 (w, kw) or (h, kh)
1036 /// dimensions into 1-D depthwise convolution ops.
1037 struct DownscaleDepthwiseConv2DNhwcHwcOp final
1038     : public OpRewritePattern<DepthwiseConv2DNhwcHwcOp> {
1039   DownscaleDepthwiseConv2DNhwcHwcOp(
1040       MLIRContext *context,
1041       LinalgTransformationFilter f = LinalgTransformationFilter(),
1042       PatternBenefit benefit = 1)
1043       : OpRewritePattern<DepthwiseConv2DNhwcHwcOp>(context, benefit),
1044         filter(std::move(f)) {}
1045 
1046   LogicalResult matchAndRewrite(DepthwiseConv2DNhwcHwcOp convOp,
1047                                 PatternRewriter &rewriter) const override {
1048     if (failed(filter.checkAndNotify(rewriter, convOp)))
1049       return failure();
1050     if (convOp.hasBufferSemantics())
1051       return failure(); // To be implemented
1052 
1053     Value input = convOp.inputs().front();
1054     Value kernel = convOp.inputs().back();
1055     Value output = convOp.outputs().front();
1056 
1057     auto inputType = input.getType().dyn_cast<RankedTensorType>();
1058     auto kernelType = kernel.getType().dyn_cast<RankedTensorType>();
1059     auto outputType = output.getType().dyn_cast<RankedTensorType>();
1060 
1061     auto kernelShape = kernelType.getShape();
1062     auto outputShape = outputType.getShape();
1063 
1064     // Only handle the case where at least one of the window dimensions is
1065     // of size 1. Other cases can rely on tiling to reduce to such cases.
1066     int64_t khSize = kernelShape[0], kwSize = kernelShape[1];
1067     int64_t ohSize = outputShape[1], owSize = outputShape[2];
1068     bool removeH = (khSize == 1 && ohSize == 1);
1069     bool removeW = (kwSize == 1 && owSize == 1);
1070     if (!removeH && !removeW)
1071       return failure();
1072 
1073     // Get new shapes and types for all operands by removing the size-1
1074     // dimension.
1075     using RTTBuilder = RankedTensorType::Builder;
1076     RankedTensorType newInputType =
1077         RTTBuilder(inputType).dropDim((removeH ? 1 : 2));
1078     RankedTensorType newKernelType =
1079         RTTBuilder(kernelType).dropDim((removeH ? 0 : 1));
1080     RankedTensorType newOutputType =
1081         RTTBuilder(outputType).dropDim(removeH ? 1 : 2);
1082 
1083     // Rank-reduce operands.
1084     Location loc = convOp.getLoc();
1085     Value newInput = tensor::createCanonicalRankReducingExtractSliceOp(
1086         rewriter, loc, input, newInputType);
1087     Value newKernel = tensor::createCanonicalRankReducingExtractSliceOp(
1088         rewriter, loc, kernel, newKernelType);
1089     Value newOutput = tensor::createCanonicalRankReducingExtractSliceOp(
1090         rewriter, loc, output, newOutputType);
1091 
1092     // Rank-reduce strides and dilations too.
1093     // TODO: dropDim 1-liner helper.
1094     auto strides = llvm::to_vector<4>(convOp.strides().getValues<int64_t>());
1095     strides.erase(strides.begin() + (removeH ? 0 : 1));
1096     auto stridesAttr = rewriter.getI64VectorAttr(strides);
1097 
1098     auto dilations =
1099         llvm::to_vector<4>(convOp.dilations().getValues<int64_t>());
1100     dilations.erase(dilations.begin() + (removeH ? 0 : 1));
1101     auto dilationsAttr = rewriter.getI64VectorAttr(dilations);
1102 
1103     auto conv1DOp = rewriter.create<DepthwiseConv1DNwcWcOp>(
1104         loc, newOutputType, ValueRange{newInput, newKernel},
1105         ValueRange{newOutput}, stridesAttr, dilationsAttr);
1106 
1107     // Insert back.
1108     Value inserted = tensor::createCanonicalRankReducingInsertSliceOp(
1109         rewriter, loc, conv1DOp.getResult(0), output);
1110     rewriter.replaceOp(convOp, inserted);
1111 
1112     filter.replaceLinalgTransformationFilter(rewriter, conv1DOp);
1113     return success();
1114   };
1115 
1116 private:
1117   /// LinalgTransformMarker handles special attribute manipulations.
1118   LinalgTransformationFilter filter;
1119 };
1120 
1121 } // namespace
1122 
1123 void linalg::populateDecomposeConvolutionPatterns(
1124     RewritePatternSet &patterns, const LinalgTransformationFilter &filter,
1125     PatternBenefit benefit) {
1126   patterns.add<DownscaleSizeOneWindowed2DConvolution,
1127                DownscaleDepthwiseConv2DNhwcHwcOp>(patterns.getContext(), filter,
1128                                                   benefit);
1129 }
1130