1 //===- Transforms.cpp - Linalg transformations as patterns ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements logic and helpers to expose Linalg transforms as rewrite
10 // patterns.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
15 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
16 #include "mlir/Dialect/Func/IR/FuncOps.h"
17 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
18 #include "mlir/Dialect/Linalg/IR/Linalg.h"
19 #include "mlir/Dialect/Linalg/Transforms/HoistPadding.h"
20 #include "mlir/Dialect/Linalg/Utils/Utils.h"
21 #include "mlir/Dialect/SCF/Transforms.h"
22 #include "mlir/Dialect/Tensor/IR/Tensor.h"
23 #include "mlir/Dialect/Tensor/IR/TensorTilingInterfaceImpl.h"
24 #include "mlir/Dialect/Utils/StaticValueUtils.h"
25 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
26 #include "mlir/Dialect/Vector/IR/VectorOps.h"
27 #include "mlir/IR/AffineExpr.h"
28 #include "mlir/IR/Matchers.h"
29 #include "mlir/Pass/Pass.h"
30 #include "mlir/Support/LLVM.h"
31 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
32 #include "llvm/ADT/ScopeExit.h"
33 #include "llvm/ADT/TypeSwitch.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <type_traits>
37 #include <utility>
38 
39 #define DEBUG_TYPE "linalg-transforms"
40 
41 using namespace mlir;
42 using namespace mlir::linalg;
43 
44 #define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE << "]: ")
45 
46 //===----------------------------------------------------------------------===//
47 // Transformations exposed as rewrite patterns.
48 //===----------------------------------------------------------------------===//
49 // Marker used as attribute name in generated Linalg rewriting transformations.
50 const StringLiteral mlir::linalg::LinalgTransforms::kLinalgTransformMarker =
51     "__internal_linalg_transform__";
52 
53 mlir::linalg::LinalgTransformationFilter::LinalgTransformationFilter(
54     ArrayRef<StringAttr> matchDisjunction, Optional<StringAttr> replacement)
55     : matchDisjunction(matchDisjunction.begin(), matchDisjunction.end()),
56       replacement(replacement), matchByDefault(false) {}
57 
58 mlir::linalg::LinalgTransformationFilter::LinalgTransformationFilter(
59     const FilterFunction &f, ArrayRef<StringAttr> matchDisjunction,
60     Optional<StringAttr> replacement)
61     : filters(),
62       matchDisjunction(matchDisjunction.begin(), matchDisjunction.end()),
63       replacement(replacement), matchByDefault(false) {
64   if (f)
65     filters.push_back(f);
66 }
67 
68 LogicalResult mlir::linalg::LinalgTransformationFilter::checkAndNotify(
69     PatternRewriter &rewriter, Operation *op) const {
70   if (llvm::any_of(filters,
71                    [&](const FilterFunction &f) { return failed(f(op)); }))
72     return failure();
73 
74   auto attr = op->template getAttrOfType<StringAttr>(
75       LinalgTransforms::kLinalgTransformMarker);
76 
77   if (!attr) {
78     // 1. Has no filter case and matchDisjunction is empty.
79     if (matchDisjunction.empty() || matchByDefault)
80       return success();
81 
82     // 2. Has no filter but was expecting a filter.
83     return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) {
84       diag << " does not have any filter from list: ";
85       interleaveComma(matchDisjunction, diag);
86     });
87   }
88 
89   // 4. Match explicit filter.
90   for (auto filter : matchDisjunction)
91     if (attr.getValue() == filter)
92       return success();
93 
94   // 5. Fail to match.
95   return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) {
96     diag << " does not have any filter from list: ";
97     interleaveComma(matchDisjunction, diag);
98   });
99 }
100 
101 void mlir::linalg::LinalgTransformationFilter::
102     replaceLinalgTransformationFilter(PatternRewriter &rewriter,
103                                       Operation *op) const {
104   if (replacement.hasValue())
105     op->setAttr(LinalgTransforms::kLinalgTransformMarker,
106                 replacement.getValue());
107   else
108     op->removeAttr(
109         rewriter.getStringAttr(LinalgTransforms::kLinalgTransformMarker));
110 }
111 
112 bool mlir::linalg::LinalgTransformationFilter::hasReplacementFilter(
113     Operation *op) const {
114   if (!replacement)
115     return false;
116   auto attr = op->getAttr(LinalgTransforms::kLinalgTransformMarker)
117                   .dyn_cast<StringAttr>();
118   return attr && attr == replacement.getValue();
119 }
120 
121 LinalgTilingOptions &
122 mlir::linalg::LinalgTilingOptions::setTileSizes(ArrayRef<int64_t> ts) {
123   assert(!tileSizeComputationFunction && "tile sizes already set");
124   SmallVector<int64_t, 4> tileSizes(ts.begin(), ts.end());
125   tileSizeComputationFunction = [tileSizes](OpBuilder &b, Operation *op) {
126     OpBuilder::InsertionGuard guard(b);
127     b.setInsertionPointToStart(
128         &op->getParentOfType<FuncOp>().getBody().front());
129     return llvm::to_vector<4>(map_range(tileSizes, [&](int64_t s) {
130       Value v = b.create<arith::ConstantIndexOp>(op->getLoc(), s);
131       return v;
132     }));
133   };
134   return *this;
135 }
136 
137 LinalgTilingOptions &mlir::linalg::LinalgTilingOptions::scalarizeDynamicDims() {
138   assert(!tileSizeComputationFunction && "tile sizes already set");
139   tileSizeComputationFunction = [](OpBuilder &b, Operation *op) {
140     SmallVector<Value, 4> tileSizes;
141     auto linalgOp = dyn_cast<LinalgOp>(op);
142     if (!linalgOp)
143       return tileSizes;
144     Location loc = linalgOp.getLoc();
145     auto allShapeSizes = linalgOp.createFlatListOfOperandDims(b, loc);
146     AffineMap map = linalgOp.getShapesToLoopsMap();
147     if (!map)
148       return tileSizes;
149     auto shapeSizes = applyMapToValues(b, loc, map, allShapeSizes);
150     // If the shape size is dynamic, tile by 1. Otherwise, do not tile (tile
151     // size 0).
152     for (Value shapeSize : shapeSizes)
153       tileSizes.push_back(getConstantIntValue(shapeSize).hasValue()
154                               ? b.create<arith::ConstantIndexOp>(loc, 0)
155                               : b.create<arith::ConstantIndexOp>(loc, 1));
156     return tileSizes;
157   };
158   return *this;
159 }
160 
161 /// Pad `opOperand` using the provided `paddingValues`. Exit early for scalar
162 /// operands, if `paddingValues` contains no value for the `opOperand`, or if
163 /// `opOperand` is not defined by an ExtractSliceOp. Otherwise, try to pad the
164 /// operand even if it already has a static shape. Set `result` to the result of
165 /// the created tensor::PadOp or and return success if the operand either has
166 /// been padded to a static shape or already had a static shape and failure
167 /// otherwise.
168 static LogicalResult padOperandToSmallestStaticBoundingBox(
169     OpBuilder &b, linalg::LinalgOp opToPad, OpOperand *opOperand,
170     ArrayRef<Attribute> paddingValues, ArrayRef<bool> packPaddings,
171     Value &result) {
172   // Get the shape of the operand and check if it has a dynamic shape. Only
173   // return failure if the operand is not a scalar and has a dynamic shape.
174   ArrayRef<int64_t> shape = opToPad.getShape(opOperand);
175   bool hasDynamicShape = llvm::is_contained(shape, ShapedType::kDynamicSize);
176 
177   // Cannot pad scalar operands.
178   if (shape.empty())
179     return success();
180 
181   // Cannot pad if the padding value is unknown.
182   if (opOperand->getOperandNumber() >= paddingValues.size())
183     return failure(hasDynamicShape);
184   Attribute paddingAttr = paddingValues[opOperand->getOperandNumber()];
185   Value paddingValue = b.create<arith::ConstantOp>(
186       opToPad.getLoc(), paddingAttr.getType(), paddingAttr);
187 
188   // Follow the use-def chain if `currOpOperand` is defined by a LinalgOp.
189   OpOperand *currOpOperand = opOperand;
190   while (auto linalgOp = currOpOperand->get().getDefiningOp<LinalgOp>()) {
191     OpResult result = currOpOperand->get().cast<OpResult>();
192     currOpOperand = linalgOp.getOutputOperand(result.getResultNumber());
193   }
194 
195   // Cannot construct a static bounding box if the `currOpOperand` is not
196   // defined by an ExtractSliceOp.
197   auto sliceOp = currOpOperand->get().getDefiningOp<tensor::ExtractSliceOp>();
198   if (!sliceOp)
199     return failure(hasDynamicShape);
200 
201   // Compute the dropped dimensions if `sliceOp` is ranke-reducing.
202   llvm::SmallBitVector droppedDims = sliceOp.getDroppedDims();
203 
204   // Upper bound the `sliceOp` sizes to obtain a static bounding box.
205   SmallVector<int64_t> staticSizes;
206   staticSizes.reserve(shape.size());
207   auto shapedOp = cast<OffsetSizeAndStrideOpInterface>(sliceOp.getOperation());
208   for (const auto &en : enumerate(shapedOp.getMixedSizes())) {
209     // Skip dropped dimensions.
210     if (droppedDims.test(en.index()))
211       continue;
212     // If the size is an attribute add it directly to `staticSizes`.
213     if (en.value().is<Attribute>()) {
214       staticSizes.push_back(
215           en.value().get<Attribute>().dyn_cast<IntegerAttr>().getInt());
216       continue;
217     }
218     // Otherwise, try to compute a constant upper bound for the size value.
219     FailureOr<int64_t> upperBound =
220         getConstantUpperBoundForIndex(en.value().get<Value>());
221     if (failed(upperBound)) {
222       LLVM_DEBUG(DBGS() << "No constant bounding box can be found for padding");
223       return failure();
224     }
225     staticSizes.push_back(upperBound.getValue());
226   }
227   assert(staticSizes.size() == shape.size() &&
228          "expect the dynamic and static ranks to match");
229 
230   // Pad the operand to the bounding box defined by `staticSizes`.
231   auto staticTensorType = RankedTensorType::get(
232       staticSizes, getElementTypeOrSelf(opOperand->get()));
233   bool nofold = opOperand->getOperandNumber() < packPaddings.size()
234                     ? packPaddings[opOperand->getOperandNumber()]
235                     : false;
236   result = makeComposedPadHighOp(b, opToPad->getLoc(), staticTensorType,
237                                  opOperand->get(), paddingValue, nofold);
238   return success();
239 }
240 
241 FailureOr<SmallVector<Value>>
242 linalg::rewriteAsPaddedOp(OpBuilder &b, LinalgOp opToPad,
243                           ArrayRef<Attribute> paddingValues,
244                           ArrayRef<bool> packPaddings, LinalgOp &paddedOp) {
245   Location loc = opToPad->getLoc();
246 
247   // TODO: there are cases where we may still want to pad to larger sizes.
248   assert(opToPad.hasTensorSemantics() &&
249          "expected operation to have tensor semantics");
250 
251   OpBuilder::InsertionGuard g(b);
252   // Set IP after op because we also take the dims of the original output.
253   b.setInsertionPointAfter(opToPad);
254   // Make a copy of the shaped operands and update it.
255   SmallVector<Value> newOperands;
256   newOperands.reserve(opToPad.getNumInputsAndOutputs());
257   for (OpOperand *opOperand : opToPad.getInputAndOutputOperands()) {
258     Value paddedOperand;
259     // If padding was requested but the shape cannot be bounded statically then
260     // the pattern fails to apply.
261     if (failed(padOperandToSmallestStaticBoundingBox(
262             b, opToPad, opOperand, paddingValues, packPaddings, paddedOperand)))
263       return failure();
264     newOperands.push_back(paddedOperand ? paddedOperand : opOperand->get());
265   }
266 
267   SmallVector<SmallVector<Value>> reifiedResultShapes;
268   if (failed(cast<ReifyRankedShapedTypeOpInterface>(opToPad.getOperation())
269                  .reifyResultShapes(b, reifiedResultShapes)))
270     return failure();
271   assert(reifiedResultShapes.size() == opToPad->getNumResults() &&
272          "expected same number of results");
273 
274   // Clone `opToPad` to operate on the statically padded shapes.
275   auto resultTensorTypes =
276       ValueRange(newOperands).take_back(opToPad.getNumOutputs()).getTypes();
277   paddedOp = opToPad.clone(b, loc, resultTensorTypes, newOperands);
278 
279   // Recover the slice out of the new static results. This keeps the original
280   // linalg op around because it uses the dims of the original results.
281   SmallVector<Value> paddedSubviewResults;
282   paddedSubviewResults.reserve(opToPad->getNumResults());
283   for (const auto &en : llvm::enumerate(paddedOp->getResults())) {
284     Value paddedResult = en.value();
285     int64_t resultNumber = en.index();
286     int64_t rank = paddedResult.getType().cast<RankedTensorType>().getRank();
287     SmallVector<OpFoldResult> offsets(rank, b.getIndexAttr(0));
288     SmallVector<OpFoldResult> sizes;
289     for (Value v : reifiedResultShapes[resultNumber])
290       sizes.push_back(getAsOpFoldResult(v));
291     SmallVector<OpFoldResult> strides(rank, b.getIndexAttr(1));
292     paddedSubviewResults.push_back(b.create<tensor::ExtractSliceOp>(
293         loc, paddedResult, offsets, sizes, strides));
294   }
295   return paddedSubviewResults;
296 }
297 
298 /// Try to peel a loop `op` and return the new result.
299 // TODO: Add support for scf.parallel and affine.for loops.
300 static SmallVector<Value, 4> peelLoop(RewriterBase &rewriter, Operation *op) {
301   return llvm::TypeSwitch<Operation *, SmallVector<Value, 4>>(op)
302       .Case<scf::ForOp>([&](scf::ForOp forOp) {
303         scf::ForOp partialIteration;
304         if (succeeded(scf::peelAndCanonicalizeForLoop(rewriter, forOp,
305                                                       partialIteration)))
306           return partialIteration->getResults();
307         assert(!partialIteration && "expected that loop was not peeled");
308         return forOp->getResults();
309       })
310       .Default([&](Operation *op) { return op->getResults(); });
311 }
312 
313 /// Peel loops after tiling.
314 void mlir::linalg::peelTiledLinalgOp(RewriterBase &rewriter, TiledLinalgOp &res,
315                                      ArrayRef<int64_t> peeledLoops,
316                                      LinalgTilingLoopType loopType) {
317   for (int64_t loop : peeledLoops) {
318     assert(loop < static_cast<int64_t>(res.loops.size()) &&
319            "requested peeling of non-existing loop");
320     SmallVector<Value, 4> loopResults;
321     Operation *loopOp = res.loops[loop];
322     loopResults = peelLoop(rewriter, loopOp);
323 
324     // The result of the loop nest may change with peeling.
325     if (res.tensorResults.size() == loopOp->getNumResults() &&
326         std::equal(res.tensorResults.begin(), res.tensorResults.end(),
327                    loopOp->getResults().begin()))
328       res.tensorResults = loopResults;
329   }
330 }
331 
332 static ValueRange getTiledOpResult(TiledLinalgOp tiledOp) {
333   if (tiledOp.loops.empty())
334     return tiledOp.op.getOperation()->getResults();
335   return tiledOp.loops.front()->getResults();
336 }
337 
338 static ValueRange
339 getTiledAndFusedOpResult(TiledAndFusedLinalgOps tiledAndFusedOp) {
340   if (tiledAndFusedOp.fusedLoops.empty())
341     return tiledAndFusedOp.op.getOperation()->getResults();
342   return tiledAndFusedOp.fusedLoops.front()->getResults();
343 }
344 
345 mlir::linalg::LinalgBaseTileAndFusePattern::LinalgBaseTileAndFusePattern(
346     StringRef opName, MLIRContext *context,
347     const LinalgDependenceGraph &dependenceGraph,
348     LinalgTilingOptions tilingOptions, LinalgFusionOptions fusionOptions,
349     LinalgTransformationFilter f, LinalgTransformationFilter fusedOpMarker,
350     LinalgTransformationFilter originalOpMarker, PatternBenefit benefit)
351     : RewritePattern(opName, benefit, context, {}),
352       dependenceGraph(dependenceGraph), tilingOptions(std::move(tilingOptions)),
353       fusionOptions(std::move(fusionOptions)), filter(std::move(f)),
354       fusedOpMarker(std::move(fusedOpMarker)),
355       originalOpMarker(std::move(originalOpMarker)) {}
356 
357 LogicalResult mlir::linalg::LinalgBaseTileAndFusePattern::matchAndRewrite(
358     Operation *op, PatternRewriter &rewriter) const {
359   LinalgOp linalgOp = dyn_cast<LinalgOp>(op);
360   // TODO: remove hasIndexSemantics check once index ops are supported.
361   if (!linalgOp || linalgOp.hasIndexSemantics())
362     return failure();
363   if (failed(filter.checkAndNotify(rewriter, linalgOp)))
364     return failure();
365 
366   DenseSet<Operation *> producers;
367   producers.insert(linalgOp);
368   for (auto dependence : dependenceGraph.getDependentOperationsInto(linalgOp)) {
369     Optional<unsigned> operandNumber = dependence.getIndexingOpViewOperandNum();
370     // When looking at dependences into, indexingOp is always OpOperand. We
371     // could assert, but continue if this is not the case.
372     if (!operandNumber)
373       continue;
374     if (!fusionOptions.indicesToFuse.count(operandNumber.getValue()))
375       continue;
376     if (isa<LinalgOp>(dependence.getDependentOp()))
377       producers.insert(dependence.getDependentOp());
378   }
379 
380   SmallVector<LinalgOp, 1> fusionOps;
381   for (auto it = op->getBlock()->begin(), ie = Block::iterator(op); it != ie;
382        ++it) {
383     auto producerLinalgOp = dyn_cast<LinalgOp>(&(*it));
384     if (producerLinalgOp && producers.count(producerLinalgOp))
385       fusionOps.push_back(producerLinalgOp);
386   }
387   fusionOps.push_back(linalgOp);
388 
389   SmallVector<Value, 4> tileSizes =
390       tilingOptions.tileSizeComputationFunction(rewriter, op);
391   LinalgTilingOptions instanceTilingOptions = tilingOptions;
392   instanceTilingOptions.setTileSizes(tileSizes);
393   Optional<TiledAndFusedLinalgOps> tiledAndFusedOps = tileAndFuseLinalgOps(
394       rewriter, fusionOps, dependenceGraph, instanceTilingOptions);
395   if (!tiledAndFusedOps)
396     return failure();
397 
398   // Tile the unfused loops;
399   SmallVector<Value, 4> unfusedLoopTileSizes;
400   Value zero = rewriter.create<arith::ConstantIndexOp>(op->getLoc(), 0);
401   for (const auto &tileSize : enumerate(tileSizes)) {
402     if (tiledAndFusedOps->fusedLoopDims.count(tileSize.index()))
403       unfusedLoopTileSizes.push_back(zero);
404     else
405       unfusedLoopTileSizes.push_back(tileSize.value());
406   }
407   // Tile the loop only if there is a non-zero tile size.
408   if (unfusedLoopTileSizes.size() > linalgOp.getNumLoops())
409     unfusedLoopTileSizes.resize(linalgOp.getNumLoops());
410   if (llvm::any_of(unfusedLoopTileSizes, [](Value val) {
411         if (auto cst = val.getDefiningOp<arith::ConstantIndexOp>())
412           return cst.value() != 0;
413         return true;
414       })) {
415     LinalgTilingOptions unfusedTilingOptions = tilingOptions;
416     unfusedTilingOptions.setTileSizes(unfusedLoopTileSizes);
417     FailureOr<TiledLinalgOp> unfusedTiledOp =
418         tileLinalgOp(rewriter, tiledAndFusedOps->op, unfusedTilingOptions);
419     if (failed(unfusedTiledOp))
420       return failure();
421     rewriter.replaceOp(tiledAndFusedOps->op,
422                        getTiledOpResult(unfusedTiledOp.getValue()));
423     tiledAndFusedOps->op = unfusedTiledOp->op;
424   }
425   op->replaceAllUsesWith(getTiledAndFusedOpResult(tiledAndFusedOps.getValue()));
426 
427   filter.replaceLinalgTransformationFilter(rewriter,
428                                            tiledAndFusedOps->op.getOperation());
429   for (auto fusedOp : tiledAndFusedOps->fusedProducers) {
430     fusedOpMarker.replaceLinalgTransformationFilter(rewriter,
431                                                     fusedOp.getOperation());
432   }
433   for (auto origProducerOp : ArrayRef<LinalgOp>(fusionOps).drop_back()) {
434     originalOpMarker.replaceLinalgTransformationFilter(
435         rewriter, origProducerOp.getOperation());
436   }
437   rewriter.updateRootInPlace(op, [&]() {
438     originalOpMarker.replaceLinalgTransformationFilter(rewriter, op);
439   });
440   return success();
441 }
442 
443 /// Linalg tiling pattern.
444 mlir::linalg::LinalgTilingPattern::LinalgTilingPattern(
445     MLIRContext *context, LinalgTilingOptions options,
446     LinalgTransformationFilter f, PatternBenefit benefit)
447     : OpInterfaceRewritePattern<LinalgOp>(context, benefit),
448       filter(std::move(f)), options(std::move(options)) {}
449 
450 mlir::linalg::LinalgTilingPattern::LinalgTilingPattern(
451     StringRef opName, MLIRContext *context, LinalgTilingOptions options,
452     LinalgTransformationFilter f, PatternBenefit benefit)
453     : OpInterfaceRewritePattern<LinalgOp>(context, benefit),
454       filter(f.addOpNameFilter(opName)), options(std::move(options)) {}
455 
456 FailureOr<TiledLinalgOp>
457 mlir::linalg::LinalgTilingPattern::returningMatchAndRewrite(
458     LinalgOp op, PatternRewriter &rewriter) const {
459   if (failed(filter.checkAndNotify(rewriter, op)))
460     return failure();
461 
462   FailureOr<TiledLinalgOp> res = tileLinalgOp(rewriter, op, options);
463   if (failed(res))
464     return failure();
465 
466   // Clear filter to stop recursive pattern application.
467   // This must be done here to properly propagate to peeling branches.
468   filter.replaceLinalgTransformationFilter(rewriter, res->op);
469 
470   // Peel the loops of the TiledLinalgOp.
471   peelTiledLinalgOp(rewriter, *res, options.peeledLoops, options.loopType);
472 
473   if (res->tensorResults.empty())
474     rewriter.eraseOp(op);
475   else
476     rewriter.replaceOp(op, res->tensorResults);
477 
478   return res;
479 }
480 
481 /// Linalg padding pattern.
482 mlir::linalg::LinalgPaddingPattern::LinalgPaddingPattern(
483     MLIRContext *context, LinalgPaddingOptions options,
484     LinalgTransformationFilter f, PatternBenefit benefit)
485     : OpInterfaceRewritePattern<LinalgOp>(context, benefit),
486       filter(std::move(f)), options(std::move(options)) {}
487 
488 mlir::linalg::LinalgPaddingPattern::LinalgPaddingPattern(
489     StringRef opName, MLIRContext *context, LinalgPaddingOptions options,
490     LinalgTransformationFilter f, PatternBenefit benefit)
491     : OpInterfaceRewritePattern<LinalgOp>(context, benefit),
492       filter(f.addOpNameFilter(opName)), options(std::move(options)) {}
493 
494 FailureOr<LinalgOp>
495 mlir::linalg::LinalgPaddingPattern::returningMatchAndRewrite(
496     LinalgOp linalgOp, PatternRewriter &rewriter) const {
497   if (!linalgOp.hasTensorSemantics())
498     return failure();
499   if (failed(filter.checkAndNotify(rewriter, linalgOp)))
500     return failure();
501 
502   // Pad the operation.
503   LinalgOp paddedOp;
504   FailureOr<SmallVector<Value>> newResults =
505       rewriteAsPaddedOp(rewriter, linalgOp, options.paddingValues,
506                         options.packPaddings, paddedOp);
507   if (failed(newResults))
508     return failure();
509 
510   // Hoist the padding.
511   for (const auto &en : enumerate(options.hoistPaddings)) {
512     if (static_cast<int64_t>(en.index()) >= paddedOp.getNumInputsAndOutputs())
513       break;
514     OpOperand &opOperand = paddedOp->getOpOperand(en.index());
515     auto padOp = opOperand.get().getDefiningOp<tensor::PadOp>();
516     if (!padOp || en.value() == 0)
517       continue;
518     tensor::PadOp hoistedOp;
519     SmallVector<GenericOp> transposeOps;
520     SmallVector<int64_t> transposeVector =
521         en.index() < options.transposePaddings.size()
522             ? options.transposePaddings[en.index()]
523             : SmallVector<int64_t>{};
524 
525     FailureOr<Value> newResult = hoistPaddingOnTensors(
526         padOp, en.value(), transposeVector, hoistedOp, transposeOps);
527     if (failed(newResult))
528       continue;
529     rewriter.replaceOp(padOp, newResult.getValue());
530 
531     // Do not apply hoist padding to the newly introduced transpose operations.
532     for (GenericOp transposeOp : transposeOps)
533       filter.replaceLinalgTransformationFilter(rewriter, transposeOp);
534   }
535 
536   // Replace the original operation to pad.
537   rewriter.replaceOp(linalgOp, newResults.getValue());
538   filter.replaceLinalgTransformationFilter(rewriter, paddedOp);
539 
540   return paddedOp;
541 }
542 
543 /// Linalg tile and fuse tensor ops pattern.
544 mlir::linalg::LinalgTileAndFuseTensorOpsPattern::
545     LinalgTileAndFuseTensorOpsPattern(MLIRContext *context,
546                                       LinalgTilingAndFusionOptions options,
547                                       LinalgTransformationFilter f,
548                                       PatternBenefit benefit)
549     : RewritePattern(MatchAnyOpTypeTag(), benefit, context),
550       filter(std::move(f)), options(std::move(options)) {}
551 
552 mlir::linalg::LinalgTileAndFuseTensorOpsPattern::
553     LinalgTileAndFuseTensorOpsPattern(StringRef opName, MLIRContext *context,
554                                       LinalgTilingAndFusionOptions options,
555                                       LinalgTransformationFilter f,
556                                       PatternBenefit benefit)
557     : RewritePattern(opName, benefit, context), filter(std::move(f)),
558       options(std::move(options)) {}
559 
560 FailureOr<mlir::linalg::TileLoopNest>
561 mlir::linalg::LinalgTileAndFuseTensorOpsPattern::returningMatchAndRewrite(
562     Operation *op, PatternRewriter &rewriter) const {
563   LinalgOp rootOp = dyn_cast<LinalgOp>(op);
564   if (!rootOp)
565     return failure();
566   if (failed(filter.checkAndNotify(rewriter, op)))
567     return failure();
568 
569   // Check `tileSizes` contains a tile size for every `rootOp` loop dimension.
570   if (options.tileSizes.size() < rootOp.getNumLoops())
571     return rewriter.notifyMatchFailure(op, "expect #tile sizes >= #loops");
572 
573   // Check `tileInterchange` contains no entries or as many as `tileSizes`.
574   if (!options.tileInterchange.empty() &&
575       options.tileInterchange.size() != options.tileSizes.size())
576     return rewriter.notifyMatchFailure(
577         op, "expect the number of tile sizes and interchange dims to match");
578 
579   // Copy the `tileSizes` and `tileInterchange` prefixes needed for `rootOp`.
580   SmallVector<int64_t> rootTileSizes(options.tileSizes.begin(),
581                                      options.tileSizes.begin() +
582                                          rootOp.getNumLoops());
583   SmallVector<int64_t> rootInterchange =
584       options.tileInterchange.empty()
585           ? llvm::to_vector<6>(llvm::seq<int64_t>(0, rootOp.getNumLoops()))
586           : SmallVector<int64_t>(options.tileInterchange.begin(),
587                                  options.tileInterchange.begin() +
588                                      rootOp.getNumLoops());
589 
590   // Check `rootTileSizes` contains non-zero tile sizes.
591   if (llvm::count(rootTileSizes, 0) == static_cast<long>(rootTileSizes.size()))
592     return rewriter.notifyMatchFailure(
593         op, "expect at least one non-zero tile size");
594 
595   // Check `rootInterchange` is a permutation of the `rootOp` loop dimensions.
596   // It has to be a permutation since the tiling cannot tile the same loop
597   // dimension multiple times.
598   if (!isPermutation(rootInterchange))
599     return rewriter.notifyMatchFailure(
600         op, "expect the tile interchange permutes the root loops");
601 
602   // Tile `rootOp` and fuse its producers.
603   FailureOr<TileLoopNest> tileLoopNest =
604       tileConsumerAndFuseProducers(rewriter, rootOp, rootTileSizes,
605                                    rootInterchange, options.tileDistribution);
606   if (failed(tileLoopNest))
607     return rewriter.notifyMatchFailure(
608         op, "tileConsumerAndFuseProducers failed unexpectedly");
609 
610   // Replace all uses of the tiled loop operation.
611   rootOp->replaceAllUsesWith(tileLoopNest->getRootOpReplacementResults());
612 
613   // Apply the filter if specified.
614   for (LinalgOp linalgOp : tileLoopNest->getAllTiledAndFusedOps())
615     filter.replaceLinalgTransformationFilter(rewriter, linalgOp);
616   return tileLoopNest;
617 }
618 
619 /// Linalg generic interchange pattern.
620 mlir::linalg::GenericOpInterchangePattern::GenericOpInterchangePattern(
621     MLIRContext *context, ArrayRef<unsigned> interchangeVector,
622     LinalgTransformationFilter f, PatternBenefit benefit)
623     : OpRewritePattern(context, benefit), filter(std::move(f)),
624       interchangeVector(interchangeVector.begin(), interchangeVector.end()) {}
625 
626 FailureOr<GenericOp>
627 mlir::linalg::GenericOpInterchangePattern::returningMatchAndRewrite(
628     GenericOp genericOp, PatternRewriter &rewriter) const {
629   if (failed(filter.checkAndNotify(rewriter, genericOp)))
630     return failure();
631 
632   FailureOr<GenericOp> transformedOp =
633       interchangeGenericOp(rewriter, genericOp, interchangeVector);
634   if (failed(transformedOp))
635     return failure();
636 
637   // New filter if specified.
638   filter.replaceLinalgTransformationFilter(rewriter, genericOp);
639   return transformedOp;
640 }
641 
642 /// Linalg generalization pattern.
643 mlir::linalg::LinalgGeneralizationPattern::LinalgGeneralizationPattern(
644     MLIRContext *context, LinalgTransformationFilter f, PatternBenefit benefit)
645     : OpInterfaceRewritePattern<LinalgOp>(context, benefit),
646       filter(std::move(f)) {}
647 
648 mlir::linalg::LinalgGeneralizationPattern::LinalgGeneralizationPattern(
649     StringRef opName, MLIRContext *context, LinalgTransformationFilter f,
650     PatternBenefit benefit)
651     : OpInterfaceRewritePattern<LinalgOp>(context, benefit),
652       filter(f.addOpNameFilter(opName)) {}
653 
654 FailureOr<GenericOp>
655 mlir::linalg::LinalgGeneralizationPattern::returningMatchAndRewrite(
656     LinalgOp linalgOp, PatternRewriter &rewriter) const {
657   if (failed(filter.checkAndNotify(rewriter, linalgOp)))
658     return failure();
659   FailureOr<GenericOp> genericOp = generalizeNamedOp(rewriter, linalgOp);
660   if (failed(genericOp))
661     return failure();
662   filter.replaceLinalgTransformationFilter(rewriter, *genericOp);
663   return genericOp;
664 }
665 
666 mlir::linalg::LinalgBasePromotionPattern::LinalgBasePromotionPattern(
667     MLIRContext *context, LinalgTransformationFilter f,
668     LinalgPromotionOptions options, PatternBenefit benefit)
669     : RewritePattern(MatchAnyOpTypeTag(), benefit, context),
670       filter(std::move(f)), options(std::move(options)) {}
671 
672 mlir::linalg::LinalgBasePromotionPattern::LinalgBasePromotionPattern(
673     StringRef opName, MLIRContext *context, LinalgPromotionOptions options,
674     LinalgTransformationFilter f, PatternBenefit benefit)
675     : RewritePattern(opName, benefit, context, {}), filter(std::move(f)),
676       options(std::move(options)) {}
677 
678 LogicalResult mlir::linalg::LinalgBasePromotionPattern::matchAndRewrite(
679     Operation *op, PatternRewriter &rewriter) const {
680   if (failed(filter.checkAndNotify(rewriter, op)))
681     return failure();
682   if (failed(promoteSubviewsPrecondition(op, options)))
683     return failure();
684 
685   // TODO: We cannot use root update here. This pattern is creating other ops,
686   // so if the promotion fails, those need to be cleaned up, which doesnt seem
687   // to be happening here. So to fail properly, we should be cloning the op and
688   // deleting the previous op. This needs more investigation.
689   rewriter.startRootUpdate(op);
690   Optional<LinalgOp> promotedOp = promoteSubViews(rewriter, op, options);
691   if (!promotedOp) {
692     rewriter.cancelRootUpdate(op);
693     return op->emitError("subview promotion failed");
694   }
695   rewriter.finalizeRootUpdate(op);
696   filter.replaceLinalgTransformationFilter(rewriter, op);
697   return success();
698 }
699 
700 mlir::linalg::LinalgVectorizationPattern::LinalgVectorizationPattern(
701     MLIRContext *context, LinalgTransformationFilter f,
702     LinalgVectorizationOptions options, PatternBenefit benefit)
703     : OpInterfaceRewritePattern<LinalgOp>(context, benefit),
704       filter(std::move(f)) {}
705 
706 mlir::linalg::LinalgVectorizationPattern::LinalgVectorizationPattern(
707     StringRef opName, MLIRContext *context, LinalgVectorizationOptions options,
708     LinalgTransformationFilter f, PatternBenefit benefit)
709     : OpInterfaceRewritePattern<LinalgOp>(context, benefit),
710       filter(f.addOpNameFilter(opName)) {}
711 
712 LogicalResult mlir::linalg::LinalgVectorizationPattern::matchAndRewrite(
713     LinalgOp linalgOp, PatternRewriter &rewriter) const {
714   if (failed(filter.checkAndNotify(rewriter, linalgOp)))
715     return failure();
716   return vectorize(rewriter, linalgOp);
717 }
718 
719 LogicalResult mlir::linalg::CopyVectorizationPattern::matchAndRewrite(
720     memref::CopyOp copyOp, PatternRewriter &rewriter) const {
721   return vectorizeCopy(rewriter, copyOp);
722 }
723 
724 LogicalResult mlir::linalg::applyStagedPatterns(
725     Operation *op, ArrayRef<FrozenRewritePatternSet> stage1Patterns,
726     const FrozenRewritePatternSet &stage2Patterns,
727     function_ref<LogicalResult(Operation *)> stage3Lambda) {
728   unsigned iteration = 0;
729   (void)iteration;
730   for (const auto &patterns : stage1Patterns) {
731     LLVM_DEBUG(DBGS() << "Before 1st stage, iter: " << ++iteration << "\n"
732                       << *op);
733     if (failed(applyPatternsAndFoldGreedily(op, patterns))) {
734       LLVM_DEBUG(DBGS() << "Underlying first stage rewrite did not converge");
735       return failure();
736     }
737     LLVM_DEBUG(DBGS() << "After 1st stage, iter: " << ++iteration << "\n"
738                       << *op);
739     if (failed(applyPatternsAndFoldGreedily(op, stage2Patterns))) {
740       LLVM_DEBUG(DBGS() << "Underlying 2nd stage rewrite did not converge");
741       return failure();
742     }
743     LLVM_DEBUG(DBGS() << "After 2nd stage, iter : " << iteration << "\n"
744                       << *op);
745     if (stage3Lambda) {
746       if (failed(stage3Lambda(op)))
747         return failure();
748       LLVM_DEBUG(DBGS() << "After 3rd stage, iter : " << iteration << "\n"
749                         << *op);
750     }
751   }
752   return success();
753 }
754 
755 static SmallVector<StringRef> getNParallelLoopsAttrs(unsigned nParallelLoops) {
756   return SmallVector<StringRef>(nParallelLoops, getParallelIteratorTypeName());
757 }
758 
759 /// Rewrite a tensor::PadOp into a sequence of InitTensorOp, FillOp (to
760 /// initialize with pad_val) and GenericOp (to copy contents).
761 LogicalResult
762 PadOpTransformationPattern::matchAndRewrite(tensor::PadOp padOp,
763                                             PatternRewriter &rewriter) const {
764 
765   auto inputShapedType = padOp.source().getType().cast<ShapedType>();
766   auto resultShapedType = padOp.result().getType().cast<ShapedType>();
767 
768   // Bail on non-static shapes.
769   if (!inputShapedType.hasStaticShape())
770     return failure();
771   if (!resultShapedType.hasStaticShape())
772     return failure();
773 
774   // Only support padding with a constant for now, i.e. either:
775   //   1. A BBarg from a different block.
776   //   2. A value defined outside of the current block.
777   Block &block = padOp.region().front();
778   auto yieldOp = cast<tensor::YieldOp>(block.getTerminator());
779   Value padValue = yieldOp.value();
780   Operation *definingOp = padValue.getDefiningOp();
781   if (definingOp && definingOp->getBlock() == &block)
782     return failure();
783   if (!definingOp && padValue.cast<BlockArgument>().getOwner() == &block)
784     return failure();
785 
786   // Create tensor with the padded shape
787   Location loc = padOp.getLoc();
788   SmallVector<Value> indices(resultShapedType.getRank(),
789                              rewriter.create<arith::ConstantIndexOp>(loc, 0));
790   Value initTensor = rewriter.create<InitTensorOp>(
791       loc, resultShapedType.getShape(), resultShapedType.getElementType());
792 
793   // Initialize tensor with the pad value
794   Value tmpTensor = rewriter
795                         .create<linalg::FillOp>(loc, ValueRange{padValue},
796                                                 ValueRange{initTensor})
797                         .result();
798 
799   // Copy original contents into new tensor
800   // Uses linalg.generic, but could be done with tensor.insert_slice
801   SmallVector<AffineExpr, 4> outputExprs;
802   for (unsigned i = 0; i < resultShapedType.getRank(); ++i) {
803     outputExprs.push_back(getAffineDimExpr(i, rewriter.getContext()) +
804                           padOp.static_low()[i].cast<IntegerAttr>().getInt());
805   }
806 
807   SmallVector<AffineMap, 2> transferMaps = {
808       rewriter.getMultiDimIdentityMap(inputShapedType.getRank()),
809       AffineMap::get(resultShapedType.getRank(),
810                      /*symbolCount=*/0, outputExprs, rewriter.getContext())};
811 
812   rewriter.replaceOpWithNewOp<linalg::GenericOp>(
813       padOp, resultShapedType, padOp.source(), tmpTensor, transferMaps,
814       getNParallelLoopsAttrs(resultShapedType.getRank()),
815       [&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange args) {
816         nestedBuilder.create<linalg::YieldOp>(nestedLoc, args[0]);
817       });
818 
819   return success();
820 }
821 
822 /// Filling `dest` using FillOp constant padding value if possible.
823 /// Otherwise, generate a tensor::GenerateOp.
824 Value GeneralizePadOpPattern::createFillOrGenerateOp(
825     PatternRewriter &rewriter, tensor::PadOp padOp, Value dest,
826     const SmallVector<Value> &dynSizes) const {
827   auto padValue = padOp.getConstantPaddingValue();
828   if (padValue)
829     return rewriter.create<FillOp>(padOp.getLoc(), padValue, dest).result();
830 
831   // Fill could not be optimized: Lower to tensor::GenerateOp with region.
832   auto generateOp = rewriter.create<tensor::GenerateOp>(
833       padOp.getLoc(), padOp.getResultType(), dynSizes);
834   // Copy region to new op.
835   BlockAndValueMapping bvm;
836   padOp.region().cloneInto(&generateOp.getRegion(), bvm);
837   return generateOp;
838 }
839 
840 LogicalResult
841 GeneralizePadOpPattern::matchAndRewrite(tensor::PadOp padOp,
842                                         PatternRewriter &rewriter) const {
843   // Given an OpFoldResult, return an index-typed value.
844   auto getIdxValue = [&](OpFoldResult ofr) {
845     if (auto val = ofr.dyn_cast<Value>())
846       return val;
847     return rewriter
848         .create<arith::ConstantIndexOp>(
849             padOp.getLoc(), ofr.get<Attribute>().cast<IntegerAttr>().getInt())
850         .getResult();
851   };
852 
853   auto resultType = padOp.getResultType();
854   // Compute size of InitTensorOp. Any combination of static/dynamic is
855   // supported.
856   SmallVector<Value> dynSizes;
857   SmallVector<int64_t> staticSizes;
858   for (unsigned dim = 0; dim < resultType.getRank(); ++dim) {
859     if (resultType.isDynamicDim(dim)) {
860       auto srcSize = rewriter.createOrFold<tensor::DimOp>(padOp.getLoc(),
861                                                           padOp.source(), dim);
862       // Add low and high padding value.
863       auto plusLow = rewriter.createOrFold<arith::AddIOp>(
864           padOp.getLoc(), srcSize, getIdxValue(padOp.getMixedLowPad()[dim]));
865       auto plusHigh = rewriter.createOrFold<arith::AddIOp>(
866           padOp.getLoc(), plusLow, getIdxValue(padOp.getMixedHighPad()[dim]));
867       dynSizes.push_back(plusHigh);
868     }
869     staticSizes.push_back(resultType.getDimSize(dim));
870   }
871 
872   // Init tensor and fill it with padding.
873   Value init = rewriter.create<InitTensorOp>(
874       padOp.getLoc(), dynSizes, staticSizes, resultType.getElementType());
875   Value fill = createFillOrGenerateOp(rewriter, padOp, init, dynSizes);
876 
877   // Try optimize the copy of source.
878   if (optimizeCopyFn && optimizeCopyFn(rewriter, padOp, fill).succeeded())
879     return success();
880 
881   // tensor::PadOps cannot be optimized. Generate a InsertSliceOp instead
882   // for copying the PadOp source.
883   auto sourceType = padOp.getSourceType();
884   // Compute size of source of tensor::PadOp.
885   SmallVector<OpFoldResult> srcSizes;
886   for (unsigned dim = 0; dim < sourceType.getRank(); ++dim) {
887     if (sourceType.isDynamicDim(dim)) {
888       srcSizes.push_back(rewriter.createOrFold<tensor::DimOp>(
889           padOp.getLoc(), padOp.source(), dim));
890     } else {
891       srcSizes.push_back(rewriter.getIndexAttr(sourceType.getDimSize(dim)));
892     }
893   }
894   // Strides of InsertSliceOp are all 1.
895   SmallVector<OpFoldResult> strides(sourceType.getRank(),
896                                     rewriter.getIndexAttr(1));
897   rewriter.replaceOpWithNewOp<tensor::InsertSliceOp>(
898       padOp, padOp.source(), fill, padOp.getMixedLowPad(), srcSizes, strides);
899 
900   return success();
901 }
902 
903 LogicalResult ExtractSliceOfPadTensorSwapPattern::matchAndRewrite(
904     tensor::ExtractSliceOp sliceOp, PatternRewriter &rewriter) const {
905   if (!sliceOp.hasUnitStride())
906     return failure();
907 
908   auto padOp = sliceOp.source().getDefiningOp<tensor::PadOp>();
909   if (!padOp)
910     return failure();
911 
912   bool zeroSliceGuard = true;
913   if (controlFn) {
914     if (Optional<bool> control = controlFn(sliceOp))
915       zeroSliceGuard = control.getValue();
916     else
917       return failure();
918   }
919 
920   Operation *tiledPadOp =
921       tensor::bubbleUpPadSlice(rewriter, padOp, sliceOp.getMixedOffsets(),
922                                sliceOp.getMixedSizes(), zeroSliceGuard);
923   // All shapes are static and the data source is actually used. Rewrite into
924   // pad(extract_slice(x)).
925   rewriter.replaceOp(sliceOp, tiledPadOp->getResults());
926   return success();
927 }
928 
929 namespace {
930 // The following are patterns for downscaling convolution ops with size-1
931 // window dimensions.
932 //
933 // Note that we'd eventually want to write such transformations in a generic
934 // way, e.g., converting to linalg.generic, removing the size-1 dimensions,
935 // and then turning back to named ops. But for now it's fine to have a few
936 // patterns matching special ops to get started.
937 
938 /// Rewrites 2-D convolution ops with size-1 window dimensions into 1-D
939 /// convolution ops.
940 struct DownscaleSizeOneWindowed2DConvolution final
941     : public OpRewritePattern<Conv2DNhwcHwcfOp> {
942   DownscaleSizeOneWindowed2DConvolution(
943       MLIRContext *context,
944       LinalgTransformationFilter f = LinalgTransformationFilter(),
945       PatternBenefit benefit = 1)
946       : OpRewritePattern<Conv2DNhwcHwcfOp>(context, benefit),
947         filter(std::move(f)) {}
948 
949   LogicalResult matchAndRewrite(linalg::Conv2DNhwcHwcfOp convOp,
950                                 PatternRewriter &rewriter) const override {
951     if (failed(filter.checkAndNotify(rewriter, convOp)))
952       return failure();
953     if (convOp.hasBufferSemantics())
954       return failure(); // To be implemented
955 
956     Value input = convOp.inputs().front();
957     Value kernel = convOp.inputs().back();
958     Value output = convOp.outputs().front();
959 
960     auto inputType = input.getType().dyn_cast<RankedTensorType>();
961     auto kernelType = kernel.getType().dyn_cast<RankedTensorType>();
962     auto outputType = output.getType().dyn_cast<RankedTensorType>();
963 
964     auto kernelShape = kernelType.getShape();
965     auto outputShape = outputType.getShape();
966 
967     // Only handle the case where at least one of the window dimensions is
968     // of size 1. Other cases can rely on tiling to reduce to such cases.
969     int64_t khSize = kernelShape[0], kwSize = kernelShape[1];
970     int64_t ohSize = outputShape[1], owSize = outputShape[2];
971     bool removeH = (khSize == 1 && ohSize == 1);
972     bool removeW = (kwSize == 1 && owSize == 1);
973     if (!removeH && !removeW)
974       return failure();
975 
976     // Get new shapes and types for all operands by removing the size-1
977     // dimension.
978     using RTTBuilder = RankedTensorType::Builder;
979     RankedTensorType newInputType =
980         RTTBuilder(inputType).dropDim((removeH ? 1 : 2));
981     RankedTensorType newKernelType =
982         RTTBuilder(kernelType).dropDim((removeH ? 0 : 1));
983     RankedTensorType newOutputType =
984         RTTBuilder(outputType).dropDim(removeH ? 1 : 2);
985 
986     // Rank-reduce operands.
987     Location loc = convOp.getLoc();
988     Value newInput = tensor::createCanonicalRankReducingExtractSliceOp(
989         rewriter, loc, input, newInputType);
990     Value newKernel = tensor::createCanonicalRankReducingExtractSliceOp(
991         rewriter, loc, kernel, newKernelType);
992     Value newOutput = tensor::createCanonicalRankReducingExtractSliceOp(
993         rewriter, loc, output, newOutputType);
994 
995     // Rank-reduce strides and dilations too.
996     // TODO: dropDim 1-liner helper.
997     auto strides = llvm::to_vector<4>(convOp.strides().getValues<int64_t>());
998     strides.erase(strides.begin() + (removeH ? 0 : 1));
999     auto stridesAttr = rewriter.getI64VectorAttr(strides);
1000 
1001     auto dilations =
1002         llvm::to_vector<4>(convOp.dilations().getValues<int64_t>());
1003     dilations.erase(dilations.begin() + (removeH ? 0 : 1));
1004     auto dilationsAttr = rewriter.getI64VectorAttr(dilations);
1005 
1006     auto conv1DOp = rewriter.create<linalg::Conv1DNwcWcfOp>(
1007         loc, newOutputType, ValueRange{newInput, newKernel},
1008         ValueRange{newOutput}, stridesAttr, dilationsAttr);
1009 
1010     // Insert back.
1011     Value inserted = tensor::createCanonicalRankReducingInsertSliceOp(
1012         rewriter, loc, conv1DOp.getResult(0), output);
1013     rewriter.replaceOp(convOp, inserted);
1014 
1015     filter.replaceLinalgTransformationFilter(rewriter, conv1DOp);
1016     return success();
1017   };
1018 
1019 private:
1020   /// LinalgTransformMarker handles special attribute manipulations.
1021   LinalgTransformationFilter filter;
1022 };
1023 
1024 /// Rewrites 2-D depthwise convolution ops with size-1 (w, kw) or (h, kh)
1025 /// dimensions into 1-D depthwise convolution ops.
1026 struct DownscaleDepthwiseConv2DNhwcHwcOp final
1027     : public OpRewritePattern<DepthwiseConv2DNhwcHwcOp> {
1028   DownscaleDepthwiseConv2DNhwcHwcOp(
1029       MLIRContext *context,
1030       LinalgTransformationFilter f = LinalgTransformationFilter(),
1031       PatternBenefit benefit = 1)
1032       : OpRewritePattern<DepthwiseConv2DNhwcHwcOp>(context, benefit),
1033         filter(std::move(f)) {}
1034 
1035   LogicalResult matchAndRewrite(DepthwiseConv2DNhwcHwcOp convOp,
1036                                 PatternRewriter &rewriter) const override {
1037     if (failed(filter.checkAndNotify(rewriter, convOp)))
1038       return failure();
1039     if (convOp.hasBufferSemantics())
1040       return failure(); // To be implemented
1041 
1042     Value input = convOp.inputs().front();
1043     Value kernel = convOp.inputs().back();
1044     Value output = convOp.outputs().front();
1045 
1046     auto inputType = input.getType().dyn_cast<RankedTensorType>();
1047     auto kernelType = kernel.getType().dyn_cast<RankedTensorType>();
1048     auto outputType = output.getType().dyn_cast<RankedTensorType>();
1049 
1050     auto kernelShape = kernelType.getShape();
1051     auto outputShape = outputType.getShape();
1052 
1053     // Only handle the case where at least one of the window dimensions is
1054     // of size 1. Other cases can rely on tiling to reduce to such cases.
1055     int64_t khSize = kernelShape[0], kwSize = kernelShape[1];
1056     int64_t ohSize = outputShape[1], owSize = outputShape[2];
1057     bool removeH = (khSize == 1 && ohSize == 1);
1058     bool removeW = (kwSize == 1 && owSize == 1);
1059     if (!removeH && !removeW)
1060       return failure();
1061 
1062     // Get new shapes and types for all operands by removing the size-1
1063     // dimension.
1064     using RTTBuilder = RankedTensorType::Builder;
1065     RankedTensorType newInputType =
1066         RTTBuilder(inputType).dropDim((removeH ? 1 : 2));
1067     RankedTensorType newKernelType =
1068         RTTBuilder(kernelType).dropDim((removeH ? 0 : 1));
1069     RankedTensorType newOutputType =
1070         RTTBuilder(outputType).dropDim(removeH ? 1 : 2);
1071 
1072     // Rank-reduce operands.
1073     Location loc = convOp.getLoc();
1074     Value newInput = tensor::createCanonicalRankReducingExtractSliceOp(
1075         rewriter, loc, input, newInputType);
1076     Value newKernel = tensor::createCanonicalRankReducingExtractSliceOp(
1077         rewriter, loc, kernel, newKernelType);
1078     Value newOutput = tensor::createCanonicalRankReducingExtractSliceOp(
1079         rewriter, loc, output, newOutputType);
1080 
1081     // Rank-reduce strides and dilations too.
1082     // TODO: dropDim 1-liner helper.
1083     auto strides = llvm::to_vector<4>(convOp.strides().getValues<int64_t>());
1084     strides.erase(strides.begin() + (removeH ? 0 : 1));
1085     auto stridesAttr = rewriter.getI64VectorAttr(strides);
1086 
1087     auto dilations =
1088         llvm::to_vector<4>(convOp.dilations().getValues<int64_t>());
1089     dilations.erase(dilations.begin() + (removeH ? 0 : 1));
1090     auto dilationsAttr = rewriter.getI64VectorAttr(dilations);
1091 
1092     auto conv1DOp = rewriter.create<DepthwiseConv1DNwcWcOp>(
1093         loc, newOutputType, ValueRange{newInput, newKernel},
1094         ValueRange{newOutput}, stridesAttr, dilationsAttr);
1095 
1096     // Insert back.
1097     Value inserted = tensor::createCanonicalRankReducingInsertSliceOp(
1098         rewriter, loc, conv1DOp.getResult(0), output);
1099     rewriter.replaceOp(convOp, inserted);
1100 
1101     filter.replaceLinalgTransformationFilter(rewriter, conv1DOp);
1102     return success();
1103   };
1104 
1105 private:
1106   /// LinalgTransformMarker handles special attribute manipulations.
1107   LinalgTransformationFilter filter;
1108 };
1109 
1110 } // namespace
1111 
1112 void linalg::populateDecomposeConvolutionPatterns(
1113     RewritePatternSet &patterns, const LinalgTransformationFilter &filter,
1114     PatternBenefit benefit) {
1115   patterns.add<DownscaleSizeOneWindowed2DConvolution,
1116                DownscaleDepthwiseConv2DNhwcHwcOp>(patterns.getContext(), filter,
1117                                                   benefit);
1118 }
1119