1 //===- LinalgTransforms.cpp - Linalg transformations as patterns ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements logic and helpers to expose Linalg transforms as rewrite
10 // patterns.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
15 #include "mlir/Dialect/Affine/Utils.h"
16 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
17 #include "mlir/Dialect/Linalg/IR/LinalgOps.h"
18 #include "mlir/Dialect/Linalg/Utils/Utils.h"
19 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
20 #include "mlir/Dialect/Vector/VectorOps.h"
21 #include "mlir/IR/AffineExpr.h"
22 #include "mlir/IR/Matchers.h"
23 #include "mlir/Pass/Pass.h"
24 #include "mlir/Support/LLVM.h"
25 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
26 #include "llvm/ADT/ScopeExit.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include <type_traits>
30 
31 #define DEBUG_TYPE "linalg-transforms"
32 
33 using namespace mlir;
34 using namespace mlir::linalg;
35 
36 #define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE << "]: ")
37 
38 //===----------------------------------------------------------------------===//
39 // Transformations exposed as rewrite patterns.
40 //===----------------------------------------------------------------------===//
41 // Marker used as attribute name in generated Linalg rewriting transformations.
42 const StringLiteral mlir::linalg::LinalgTransforms::kLinalgTransformMarker =
43     "__internal_linalg_transform__";
44 
45 mlir::linalg::LinalgTransformationFilter::LinalgTransformationFilter(
46     ArrayRef<Identifier> matchDisjunction, Optional<Identifier> replacement)
47     : matchDisjunction(matchDisjunction.begin(), matchDisjunction.end()),
48       replacement(replacement) {}
49 
50 mlir::linalg::LinalgTransformationFilter::LinalgTransformationFilter(
51     FilterFunction f, ArrayRef<Identifier> matchDisjunction,
52     Optional<Identifier> replacement)
53     : filters(),
54       matchDisjunction(matchDisjunction.begin(), matchDisjunction.end()),
55       replacement(replacement) {
56   if (f)
57     filters.push_back(f);
58 }
59 
60 LogicalResult mlir::linalg::LinalgTransformationFilter::checkAndNotify(
61     PatternRewriter &rewriter, Operation *op) const {
62   if (llvm::any_of(filters,
63                    [&](const FilterFunction &f) { return failed(f(op)); }))
64     return failure();
65 
66   auto attr = op->template getAttrOfType<StringAttr>(
67       LinalgTransforms::kLinalgTransformMarker);
68 
69   if (!attr) {
70     // 1. Has no filter case and matchDisjunction is empty.
71     if (matchDisjunction.empty())
72       return success();
73 
74     // 2. Has no filter but was expecting a filter.
75     return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) {
76       diag << " does not have any filter from list: ";
77       interleaveComma(matchDisjunction, diag);
78     });
79   }
80 
81   // 4. Match explicit filter.
82   for (auto filter : matchDisjunction)
83     if (attr.getValue() == filter)
84       return success();
85 
86   // 5. Fail to match.
87   return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) {
88     diag << " does not have any filter from list: ";
89     interleaveComma(matchDisjunction, diag);
90   });
91 }
92 
93 void mlir::linalg::LinalgTransformationFilter::
94     replaceLinalgTransformationFilter(PatternRewriter &rewriter,
95                                       Operation *op) const {
96   if (replacement.hasValue())
97     op->setAttr(LinalgTransforms::kLinalgTransformMarker,
98                 rewriter.getStringAttr(replacement.getValue().strref()));
99   else
100     op->removeAttr(Identifier::get(LinalgTransforms::kLinalgTransformMarker,
101                                    rewriter.getContext()));
102 }
103 
104 LinalgTilingOptions &
105 mlir::linalg::LinalgTilingOptions::setTileSizes(ArrayRef<int64_t> ts) {
106   SmallVector<int64_t, 4> tileSizes(ts.begin(), ts.end());
107   tileSizeComputationFunction = [tileSizes](OpBuilder &b, Operation *op) {
108     OpBuilder::InsertionGuard guard(b);
109     b.setInsertionPointToStart(
110         &op->getParentOfType<FuncOp>().getBody().front());
111     return llvm::to_vector<4>(map_range(tileSizes, [&](int64_t s) {
112       Value v = b.create<ConstantIndexOp>(op->getLoc(), s);
113       return v;
114     }));
115   };
116   return *this;
117 }
118 
119 /// Try to compute a static bounding box for `operand`
120 /// Return success if either:
121 ///   1. The operand is already statically shaped, `result` is left unchanged.
122 ///   2. The operand is (partially) dynamic, `result` is the result of a freshly
123 ///      created PadTensorOp.
124 /// Return failure if the operand cannot be padded to a static shape.
125 static LogicalResult padOperandToSmallestStaticBoundingBox(
126     PatternRewriter &rewriter, linalg::LinalgOp opToPad, OpOperand &operand,
127     const LinalgTilingOptions &options, Value &result) {
128   auto tensorType = operand.get().getType().cast<RankedTensorType>();
129   // Already static shape, no need to pad.
130   if (tensorType.hasStaticShape())
131     return success();
132   auto subtensor = operand.get().getDefiningOp<SubTensorOp>();
133   // Not a subtensor, cannot construct a static bounding box.
134   if (!subtensor)
135     return failure();
136   SmallVector<int64_t> staticSizes;
137   staticSizes.reserve(tensorType.getRank());
138   auto shapedOp =
139       cast<OffsetSizeAndStrideOpInterface>(subtensor.getOperation());
140   for (auto size : shapedOp.getMixedSizes()) {
141     auto indexAttr = size.is<Attribute>()
142                          ? size.get<Attribute>().dyn_cast<IntegerAttr>()
143                          : linalg::getSmallestBoundingIndex(size.get<Value>());
144     // SmallestBoundingIndex must exist for all sizes.
145     // For now return an error if we can't find it.
146     if (!indexAttr)
147       return rewriter.notifyMatchFailure(
148           opToPad, "No constant bounding box can be found for padding");
149     staticSizes.push_back(indexAttr.getInt());
150   }
151   Value pad = options.paddingValueComputationFunction(rewriter, operand);
152   auto staticTensorType =
153       RankedTensorType::get(staticSizes, tensorType.getElementType());
154   result = linalg::PadTensorOp::createPadHighOp(
155       staticTensorType, operand.get(), pad, opToPad->getLoc(), rewriter);
156   return success();
157 }
158 
159 // Try to create a static bounding box around each operand of `res.op`.
160 // If successful, `res.op` is rewritten in static form with padded operands.
161 // `res.op` is updated to the cloned static form of the op on success.
162 static LogicalResult rewriteAsPaddedOp(PatternRewriter &rewriter,
163                                        TiledLinalgOp &res,
164                                        const LinalgTilingOptions &options) {
165   LinalgOp opToPad = res.op;
166   Location loc = opToPad->getLoc();
167 
168   // If the op is fully static, it does not need padding.
169   // TODO: there are cases where we may still want to pad to larger sizes.
170   assert(opToPad.hasTensorSemantics() &&
171          "expected operation to have tensor semantics");
172   if (!opToPad.hasDynamicShape())
173     return success();
174 
175   OpBuilder::InsertionGuard g(rewriter);
176   // Set IP after op because we also take the dims of the original output.
177   rewriter.setInsertionPointAfter(opToPad);
178   // Make a copy of the shaped operands and update it.
179   SmallVector<Value> newOperands;
180   newOperands.reserve(opToPad.getNumInputsAndOutputs());
181   for (OpOperand *opOperand : opToPad.getInputAndOutputOperands()) {
182     Value paddedOperand;
183     // If padding was requested but the shape cannot be bounded statically then
184     // the pattern fails to apply.
185     if (failed(padOperandToSmallestStaticBoundingBox(
186             rewriter, opToPad, *opOperand, options, paddedOperand))) {
187       return failure();
188     }
189     newOperands.push_back(paddedOperand ? paddedOperand : opOperand->get());
190   }
191 
192   // Clone `opToPad` to operate on the statically padded shapes.
193   auto resultTensorTypes =
194       ValueRange(newOperands).take_back(opToPad.getNumOutputs()).getTypes();
195   ValueRange otherOperands = opToPad.getAssumedNonShapedOperands();
196   newOperands.append(otherOperands.begin(), otherOperands.end());
197   linalg::LinalgOp paddedOp =
198       opToPad.clone(rewriter, loc, resultTensorTypes, newOperands);
199 
200   // Recover the subtensor out of the new static results. This keeps the
201   // original linalg op around because it uses the dims of the original results.
202   // This later folds away.
203   SmallVector<Value> paddedSubviewResults;
204   paddedSubviewResults.reserve(opToPad->getNumResults());
205   SetVector<Operation *> newUsersOfOpToPad;
206   for (auto it : llvm::zip(opToPad->getResults(), paddedOp->getResults())) {
207     auto rank = std::get<0>(it).getType().cast<RankedTensorType>().getRank();
208     SmallVector<OpFoldResult> offsets(rank, rewriter.getIndexAttr(0));
209     auto sizes = llvm::to_vector<4>(llvm::map_range(
210         llvm::seq<unsigned>(0, rank), [&](unsigned d) -> OpFoldResult {
211           auto dimOp = rewriter.create<memref::DimOp>(loc, std::get<0>(it), d);
212           newUsersOfOpToPad.insert(dimOp);
213           return dimOp.getResult();
214         }));
215     SmallVector<OpFoldResult> strides(rank, rewriter.getIndexAttr(1));
216     paddedSubviewResults.push_back(rewriter.create<SubTensorOp>(
217         loc, std::get<1>(it), offsets, sizes, strides));
218   }
219   // Replace the transient `opToPad` locally, except for uses that we just
220   // created for the purpose of extracting the dims.
221   rewriter.replaceOpWithIf(opToPad, paddedSubviewResults, [&](OpOperand &opOp) {
222     return !newUsersOfOpToPad.contains(opOp.getOwner());
223   });
224 
225   res = TiledLinalgOp{paddedOp, res.loops, res.tensorResults};
226   return success();
227 }
228 
229 /// Linalg base tiling pattern.
230 mlir::linalg::LinalgBaseTilingPattern::LinalgBaseTilingPattern(
231     StringRef opName, MLIRContext *context, LinalgTilingOptions options,
232     LinalgTransformationFilter filter, PatternBenefit benefit)
233     : RewritePattern(opName, benefit, context), filter(filter),
234       options(options) {}
235 
236 mlir::linalg::LinalgBaseTilingPattern::LinalgBaseTilingPattern(
237     MLIRContext *context, LinalgTilingOptions options,
238     LinalgTransformationFilter filter, PatternBenefit benefit)
239     : RewritePattern(MatchAnyOpTypeTag(), benefit, context), filter(filter),
240       options(options) {}
241 
242 LogicalResult mlir::linalg::LinalgBaseTilingPattern::matchAndRewriteBase(
243     Operation *op, PatternRewriter &rewriter, TiledLinalgOp &result) const {
244   LinalgOp linalgOp = dyn_cast<LinalgOp>(op);
245   if (!linalgOp)
246     return failure();
247   if (failed(filter.checkAndNotify(rewriter, linalgOp)))
248     return failure();
249 
250   Optional<TiledLinalgOp> res = tileLinalgOp(rewriter, linalgOp, options);
251 
252   if (!res)
253     return failure();
254 
255   // Setup RAII guard to return properly.
256   LinalgOp tiledOp = res->op;
257   auto guard = llvm::make_scope_exit([&]() {
258     // Return relevant information to derived pattern.
259     result = *res;
260     // Replace filter on both tiledOp and tiledAndPaddedOp, if necessary.
261     filter.replaceLinalgTransformationFilter(rewriter, tiledOp);
262     if (tiledOp != res->op)
263       filter.replaceLinalgTransformationFilter(rewriter, res->op);
264   });
265 
266   // Consider padding on the fly only if the op has tensor semantics.
267   if (!options.paddingValueComputationFunction ||
268       !linalgOp.hasTensorSemantics())
269     return success();
270 
271   // Try to pad on the fly by rewriting res->op as a padded op.
272   if (failed(rewriteAsPaddedOp(rewriter, *res, options))) {
273     // Set so RAII guard does not propagate TiledLinalgOp to `result`.
274     return failure();
275   }
276 
277   // Do not perform replacement of `linalgOp`, let the derived patterns
278   // do this as they see fit, from the resulting TiledLinalgOp.
279   return success();
280 }
281 
282 static ValueRange getTiledOpResult(TiledLinalgOp tiledOp) {
283   if (tiledOp.loops.empty())
284     return tiledOp.op.getOperation()->getResults();
285   return tiledOp.loops.front()->getResults();
286 }
287 
288 static ValueRange
289 getTiledAndFusedOpResult(TiledAndFusedLinalgOps tiledAndFusedOp) {
290   if (tiledAndFusedOp.fusedLoops.empty())
291     return tiledAndFusedOp.op.getOperation()->getResults();
292   return tiledAndFusedOp.fusedLoops.front()->getResults();
293 }
294 
295 mlir::linalg::LinalgBaseTileAndFusePattern::LinalgBaseTileAndFusePattern(
296     StringRef opName, MLIRContext *context,
297     const LinalgDependenceGraph &dependenceGraph,
298     LinalgTilingOptions tilingOptions, LinalgFusionOptions fusionOptions,
299     LinalgTransformationFilter filter, LinalgTransformationFilter fusedOpMarker,
300     LinalgTransformationFilter originalOpMarker, PatternBenefit benefit)
301     : RewritePattern(opName, benefit, context, {}),
302       dependenceGraph(dependenceGraph), tilingOptions(tilingOptions),
303       fusionOptions(fusionOptions), filter(filter),
304       fusedOpMarker(fusedOpMarker), originalOpMarker(originalOpMarker) {}
305 
306 LogicalResult mlir::linalg::LinalgBaseTileAndFusePattern::matchAndRewrite(
307     Operation *op, PatternRewriter &rewriter) const {
308   LinalgOp linalgOp = dyn_cast<LinalgOp>(op);
309   // TODO: remove hasIndexSemantics check once index ops are supported.
310   if (!linalgOp || linalgOp.hasIndexSemantics())
311     return failure();
312   if (failed(filter.checkAndNotify(rewriter, linalgOp)))
313     return failure();
314 
315   DenseSet<Operation *> producers;
316   producers.insert(linalgOp);
317   for (auto dependence : dependenceGraph.getDependentOperationsInto(linalgOp)) {
318     Optional<unsigned> operandNumber = dependence.getIndexingOpViewOperandNum();
319     // When looking at dependences into, indexingOp is always OpOperand. We
320     // could assert, but continue if this is not the case.
321     if (!operandNumber)
322       continue;
323     if (!fusionOptions.indicesToFuse.count(operandNumber.getValue()))
324       continue;
325     if (isa<LinalgOp>(dependence.getDependentOp()))
326       producers.insert(dependence.getDependentOp());
327   }
328 
329   SmallVector<LinalgOp, 1> fusionOps;
330   for (auto it = op->getBlock()->begin(), ie = Block::iterator(op); it != ie;
331        ++it) {
332     auto producerLinalgOp = dyn_cast<LinalgOp>(&(*it));
333     if (producerLinalgOp && producers.count(producerLinalgOp))
334       fusionOps.push_back(producerLinalgOp);
335   }
336   fusionOps.push_back(linalgOp);
337 
338   SmallVector<Value, 4> tileSizes =
339       tilingOptions.tileSizeComputationFunction(rewriter, op);
340   LinalgTilingOptions instanceTilingOptions = tilingOptions;
341   instanceTilingOptions.setTileSizes(tileSizes);
342   Optional<TiledAndFusedLinalgOps> tiledAndFusedOps = tileAndFuseLinalgOps(
343       rewriter, fusionOps, dependenceGraph, instanceTilingOptions);
344   if (!tiledAndFusedOps)
345     return failure();
346 
347   // Tile the unfused loops;
348   SmallVector<Value, 4> unfusedLoopTileSizes;
349   Value zero = rewriter.create<ConstantIndexOp>(op->getLoc(), 0);
350   for (auto tileSize : enumerate(tileSizes)) {
351     if (tiledAndFusedOps->fusedLoopDims.count(tileSize.index()))
352       unfusedLoopTileSizes.push_back(zero);
353     else
354       unfusedLoopTileSizes.push_back(tileSize.value());
355   }
356   // Tile the loop only if there is a non-zero tile size.
357   if (unfusedLoopTileSizes.size() > linalgOp.getNumLoops())
358     unfusedLoopTileSizes.resize(linalgOp.getNumLoops());
359   if (llvm::any_of(unfusedLoopTileSizes, [](Value val) {
360         if (auto cst = val.getDefiningOp<ConstantIndexOp>())
361           return cst.getValue() != 0;
362         return true;
363       })) {
364     LinalgTilingOptions unfusedTilingOptions = tilingOptions;
365     unfusedTilingOptions.setTileSizes(unfusedLoopTileSizes);
366     Optional<TiledLinalgOp> unfusedTiledOp =
367         tileLinalgOp(rewriter, tiledAndFusedOps->op, unfusedTilingOptions);
368     if (!unfusedTiledOp)
369       return failure();
370     rewriter.replaceOp(tiledAndFusedOps->op,
371                        getTiledOpResult(unfusedTiledOp.getValue()));
372     tiledAndFusedOps->op = unfusedTiledOp->op;
373   }
374   op->replaceAllUsesWith(getTiledAndFusedOpResult(tiledAndFusedOps.getValue()));
375 
376   filter.replaceLinalgTransformationFilter(rewriter,
377                                            tiledAndFusedOps->op.getOperation());
378   for (auto fusedOp : tiledAndFusedOps->fusedProducers) {
379     fusedOpMarker.replaceLinalgTransformationFilter(rewriter,
380                                                     fusedOp.getOperation());
381   }
382   for (auto origProducerOp : ArrayRef<LinalgOp>(fusionOps).drop_back()) {
383     originalOpMarker.replaceLinalgTransformationFilter(
384         rewriter, origProducerOp.getOperation());
385   }
386   rewriter.updateRootInPlace(op, [&]() {
387     originalOpMarker.replaceLinalgTransformationFilter(rewriter, op);
388   });
389   return success();
390 }
391 
392 /// Linalg generic interchange pattern.
393 mlir::linalg::GenericOpInterchangePattern::GenericOpInterchangePattern(
394     MLIRContext *context, ArrayRef<unsigned> interchangeVector,
395     LinalgTransformationFilter filter, PatternBenefit benefit)
396     : OpRewritePattern(context, benefit), filter(filter),
397       interchangeVector(interchangeVector.begin(), interchangeVector.end()) {}
398 
399 LogicalResult mlir::linalg::GenericOpInterchangePattern::matchAndRewrite(
400     GenericOp genericOp, PatternRewriter &rewriter) const {
401   if (failed(filter.checkAndNotify(rewriter, genericOp)))
402     return failure();
403   if (failed(interchangeGenericOpPrecondition(genericOp, interchangeVector)))
404     return failure();
405 
406   // TODO: figure out how this interplays with named ops. In particular this
407   // should break the named op property.
408   rewriter.updateRootInPlace(genericOp, [&]() {
409     interchangeGenericOp(rewriter, genericOp, interchangeVector);
410     // New filter if specified.
411     filter.replaceLinalgTransformationFilter(rewriter, genericOp);
412   });
413   return success();
414 }
415 
416 mlir::linalg::LinalgBasePromotionPattern::LinalgBasePromotionPattern(
417     StringRef opName, MLIRContext *context, LinalgPromotionOptions options,
418     LinalgTransformationFilter filter, PatternBenefit benefit)
419     : RewritePattern(opName, benefit, context, {}), filter(filter),
420       options(options) {}
421 
422 LogicalResult mlir::linalg::LinalgBasePromotionPattern::matchAndRewrite(
423     Operation *op, PatternRewriter &rewriter) const {
424   if (failed(filter.checkAndNotify(rewriter, op)))
425     return failure();
426   if (failed(promoteSubviewsPrecondition(op, options)))
427     return failure();
428 
429   // TODO: We cannot use root update here. This pattern is creating other ops,
430   // so if the promotion fails, those need to be cleaned up, which doesnt seem
431   // to be happening here. So to fail properly, we should be cloning the op and
432   // deleting the previous op. This needs more investigation.
433   rewriter.startRootUpdate(op);
434   Optional<LinalgOp> promotedOp = promoteSubViews(rewriter, op, options);
435   if (!promotedOp) {
436     rewriter.cancelRootUpdate(op);
437     return op->emitError("subview promotion failed");
438   }
439   rewriter.finalizeRootUpdate(op);
440   filter.replaceLinalgTransformationFilter(rewriter, op);
441   return success();
442 }
443 
444 mlir::linalg::LinalgBaseVectorizationPattern::LinalgBaseVectorizationPattern(
445     MLIRContext *context, LinalgTransformationFilter filter,
446     PatternBenefit benefit)
447     : RewritePattern(MatchAnyOpTypeTag(), benefit, context), filter(filter) {}
448 
449 mlir::linalg::LinalgBaseVectorizationPattern::LinalgBaseVectorizationPattern(
450     StringRef opName, MLIRContext *context, LinalgTransformationFilter filter,
451     PatternBenefit benefit)
452     : RewritePattern(opName, benefit, context, {}), filter(filter) {}
453 
454 LogicalResult mlir::linalg::LinalgBaseVectorizationPattern::matchAndRewrite(
455     Operation *op, PatternRewriter &rewriter) const {
456   LinalgOp linalgOp = dyn_cast<LinalgOp>(op);
457   if (!linalgOp)
458     return failure();
459   if (failed(filter.checkAndNotify(rewriter, linalgOp)))
460     return failure();
461   SmallVector<Value> newResults;
462   if (failed(vectorizeLinalgOp(rewriter, op, newResults)))
463     return failure();
464   if (!newResults.empty())
465     rewriter.replaceOp(op, newResults);
466   else
467     rewriter.eraseOp(op);
468   return success();
469 }
470 
471 LogicalResult mlir::linalg::applyStagedPatterns(
472     Operation *op, ArrayRef<FrozenRewritePatternSet> stage1Patterns,
473     const FrozenRewritePatternSet &stage2Patterns,
474     function_ref<LogicalResult(Operation *)> stage3Lambda) {
475   unsigned iteration = 0;
476   (void)iteration;
477   for (const auto &patterns : stage1Patterns) {
478     LLVM_DEBUG(DBGS() << "Before 1st stage, iter: " << ++iteration << "\n"
479                       << *op);
480     if (failed(applyPatternsAndFoldGreedily(op, patterns))) {
481       LLVM_DEBUG(DBGS() << "Underlying first stage rewrite did not converge");
482       return failure();
483     }
484     LLVM_DEBUG(DBGS() << "After 1st stage, iter: " << ++iteration << "\n"
485                       << *op);
486     if (failed(applyPatternsAndFoldGreedily(op, stage2Patterns))) {
487       LLVM_DEBUG(DBGS() << "Underlying 2nd stage rewrite did not converge");
488       return failure();
489     }
490     LLVM_DEBUG(DBGS() << "After 2nd stage, iter : " << iteration << "\n"
491                       << *op);
492     if (stage3Lambda) {
493       if (failed(stage3Lambda(op)))
494         return failure();
495       LLVM_DEBUG(DBGS() << "After 3rd stage, iter : " << iteration << "\n"
496                         << *op);
497     }
498   }
499   return success();
500 }
501 
502 /// Traverse the `dims` and substitute known min or max expressions returned by
503 /// the lambda |getMinMaxExpr|.
504 static AffineMap substitute(AffineMap map, SmallVectorImpl<Value> &dims,
505                             SmallVectorImpl<Value> &symbols,
506                             GetMinMaxExprFn getMinMaxExpr) {
507   auto exprs = llvm::to_vector<4>(map.getResults());
508   for (AffineExpr &expr : exprs) {
509     bool substituted = true;
510     while (substituted) {
511       substituted = false;
512       for (unsigned dimIdx = 0; dimIdx < dims.size(); ++dimIdx) {
513         Value dim = dims[dimIdx];
514         auto minMax = getMinMaxExpr(dim, dims, symbols);
515         if (!minMax)
516           continue;
517         AffineExpr dimExpr = getAffineDimExpr(dimIdx, expr.getContext());
518         LLVM_DEBUG(DBGS() << "Subst: " << dim << " @ " << dimExpr << "\n");
519         LLVM_DEBUG(DBGS() << "Before: " << expr << "\n");
520         // Substitute occurrences of `dimExpr` by either the min expression or
521         // the max expression depending on whether the value is used with a
522         // positive or negative  coefficient.
523         AffineExpr substitutedExpr =
524             substWithMin(expr, dimExpr, minMax->first, minMax->second);
525         LLVM_DEBUG(DBGS() << "After: " << substitutedExpr << "\n");
526         substituted = (substitutedExpr != expr);
527         expr = substitutedExpr;
528       }
529     }
530 
531     // Cleanup and simplify the results.
532     // This needs to happen outside of the loop iterating on dims.size() since
533     // it modifies dims.
534     SmallVector<Value, 4> operands(dims.begin(), dims.end());
535     operands.append(symbols.begin(), symbols.end());
536     auto map = AffineMap::get(dims.size(), symbols.size(), exprs,
537                               exprs.front().getContext());
538 
539     LLVM_DEBUG({
540       DBGS() << "Map to simplify: " << map << "\n";
541       DBGS() << "Operands:\n";
542       for (Value v : operands)
543         DBGS() << v << "\n";
544     });
545 
546     // Pull in affine.apply operations and compose them fully into the
547     // result.
548     fullyComposeAffineMapAndOperands(&map, &operands);
549     canonicalizeMapAndOperands(&map, &operands);
550     map = simplifyAffineMap(map);
551     // Assign the results.
552     exprs.assign(map.getResults().begin(), map.getResults().end());
553     dims.assign(operands.begin(), operands.begin() + map.getNumDims());
554     symbols.assign(operands.begin() + map.getNumDims(), operands.end());
555 
556     LLVM_DEBUG(DBGS() << "Map simplified: " << map << "\n");
557   }
558 
559   assert(!exprs.empty() && "Unexpected empty exprs");
560   return AffineMap::get(dims.size(), symbols.size(), exprs, map.getContext());
561 }
562 
563 /// Traverse the dims of the AffineMap of `affineMinOp` and substitute
564 /// dimensions with known range by new expressions involving the min or max
565 /// expression:
566 ///   - If the AffineDimExpr mapped to a known value has a positive sign, it
567 ///     is replaced by the min expression.
568 ///   - If the AffineDimExpr mapped to a known value has a negative sign, it is
569 ///     replaced by the max expression.
570 /// All known values are iteratively replaced.
571 /// This is used as an intermediate step in computing bounding boxes and
572 /// canonicalize AffineMinOps. All dim and symbol operands are assumed to have
573 /// positive values (positive orthant assumptions).
574 /// Return a new AffineMap, dims and symbols that have been canonicalized and
575 /// simplified.
576 AffineMapAndOperands
577 mlir::linalg::substituteMin(AffineMinOp affineMinOp,
578                             GetMinMaxExprFn getMinMaxExpr) {
579   AffineMapAndOperands res{affineMinOp.getAffineMap(),
580                            SmallVector<Value>(affineMinOp.getDimOperands()),
581                            SmallVector<Value>(affineMinOp.getSymbolOperands())};
582   res.map = substitute(affineMinOp.getAffineMap(), res.dims, res.symbols,
583                        getMinMaxExpr);
584   return res;
585 }
586 
587 LogicalResult AffineMinRangeCanonicalizationPattern::matchAndRewrite(
588     AffineMinOp minOp, PatternRewriter &rewriter) const {
589   LLVM_DEBUG(DBGS() << "Canonicalize AffineMinSCF: " << *minOp.getOperation()
590                     << "\n");
591 
592   auto affineMapAndOperands = substituteMin(minOp, getMinMaxFn);
593   AffineMap map = affineMapAndOperands.map;
594 
595   LLVM_DEBUG(DBGS() << "Resulting map: " << map << "\n");
596 
597   // Check whether any of the expressions, when subtracted from all other
598   // expressions, produces only >= 0 constants. If so, it is the min.
599   for (auto e : minOp.getAffineMap().getResults()) {
600     LLVM_DEBUG(DBGS() << "Candidate min: " << e << "\n");
601     if (!e.isSymbolicOrConstant())
602       continue;
603 
604     auto isNonPositive = [](AffineExpr e) {
605       if (auto cst = e.dyn_cast<AffineConstantExpr>())
606         return cst.getValue() < 0;
607       return true;
608     };
609 
610     // Build the subMap and check everything is statically known to be
611     // positive.
612     SmallVector<AffineExpr, 4> subExprs;
613     subExprs.reserve(map.getNumResults());
614     for (auto ee : map.getResults())
615       subExprs.push_back(ee - e);
616     MLIRContext *ctx = minOp.getContext();
617     AffineMap subMap = simplifyAffineMap(
618         AffineMap::get(map.getNumDims(), map.getNumSymbols(), subExprs, ctx));
619     LLVM_DEBUG(DBGS() << "simplified subMap: " << subMap << "\n");
620     if (llvm::any_of(subMap.getResults(), isNonPositive))
621       continue;
622 
623     // Static min found.
624     if (auto cst = e.dyn_cast<AffineConstantExpr>()) {
625       rewriter.replaceOpWithNewOp<ConstantIndexOp>(minOp, cst.getValue());
626     } else {
627       auto resultMap = AffineMap::get(0, map.getNumSymbols(), {e}, ctx);
628       SmallVector<Value> resultOperands = affineMapAndOperands.dims;
629       llvm::append_range(resultOperands, affineMapAndOperands.symbols);
630       canonicalizeMapAndOperands(&resultMap, &resultOperands);
631       resultMap = simplifyAffineMap(resultMap);
632       rewriter.replaceOpWithNewOp<AffineApplyOp>(minOp, resultMap,
633                                                  resultOperands);
634     }
635     return success();
636   }
637 
638   return failure();
639 }
640 
641 static SmallVector<StringRef> getNParallelLoopsAttrs(unsigned nParallelLoops) {
642   return SmallVector<StringRef>(nParallelLoops, getParallelIteratorTypeName());
643 }
644 
645 /// Rewrite a PadTensorOp into a sequence of InitTensorOp, FillOp (to initialize
646 /// with pad_val) and GenericOp (to copy contents).
647 LogicalResult PadTensorOpTransformationPattern::matchAndRewrite(
648     linalg::PadTensorOp padOp, PatternRewriter &rewriter) const {
649 
650   auto inputShapedType = padOp.source().getType().cast<ShapedType>();
651   auto resultShapedType = padOp.result().getType().cast<ShapedType>();
652 
653   // Bail on non-static shapes.
654   if (!inputShapedType.hasStaticShape())
655     return failure();
656   if (!resultShapedType.hasStaticShape())
657     return failure();
658 
659   // Only support padding with a constant for now, i.e. either:
660   //   1. A BBarg from a different block.
661   //   2. A value defined outside of the current block.
662   Block &block = padOp.region().front();
663   auto yieldOp = cast<YieldOp>(block.getTerminator());
664   assert(yieldOp.getNumOperands() == 1 && "expected single operand yield");
665   Value padValue = yieldOp.values().front();
666   Operation *definingOp = padValue.getDefiningOp();
667   if (definingOp && definingOp->getBlock() == &block)
668     return failure();
669   if (!definingOp && padValue.cast<BlockArgument>().getOwner() == &block)
670     return failure();
671 
672   // Create tensor with the padded shape
673   Location loc = padOp.getLoc();
674   SmallVector<Value> indices(resultShapedType.getRank(),
675                              rewriter.create<ConstantIndexOp>(loc, 0));
676   Value initTensor = rewriter.create<InitTensorOp>(
677       loc, resultShapedType.getShape(), resultShapedType.getElementType());
678 
679   // Initialize tensor with the pad value
680   Value tmpTensor =
681       rewriter.create<linalg::FillOp>(loc, initTensor, padValue).result();
682 
683   // Copy original contents into new tensor
684   // Uses linalg.generic, but could be done with std.subtensor_insert
685   SmallVector<AffineExpr, 4> outputExprs;
686   for (unsigned i = 0; i < resultShapedType.getRank(); ++i) {
687     outputExprs.push_back(getAffineDimExpr(i, rewriter.getContext()) +
688                           padOp.static_low()[i].cast<IntegerAttr>().getInt());
689   }
690 
691   SmallVector<AffineMap, 2> transferMaps = {
692       rewriter.getMultiDimIdentityMap(inputShapedType.getRank()),
693       AffineMap::get(resultShapedType.getRank(),
694                      /*symbolCount=*/0, outputExprs, rewriter.getContext())};
695 
696   rewriter.replaceOpWithNewOp<linalg::GenericOp>(
697       padOp, resultShapedType, padOp.source(), tmpTensor, transferMaps,
698       getNParallelLoopsAttrs(resultShapedType.getRank()),
699       [&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange args) {
700         nestedBuilder.create<linalg::YieldOp>(nestedLoc, args[0]);
701       });
702 
703   return success();
704 }
705