1 //===- LinalgTransforms.cpp - Linalg transformations as patterns ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements logic and helpers to expose Linalg transforms as rewrite
10 // patterns.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
15 #include "mlir/Dialect/Affine/Utils.h"
16 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
17 #include "mlir/Dialect/Linalg/IR/LinalgOps.h"
18 #include "mlir/Dialect/Linalg/Utils/Utils.h"
19 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
20 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
21 #include "mlir/Dialect/Vector/EDSC/Intrinsics.h"
22 #include "mlir/Dialect/Vector/VectorOps.h"
23 #include "mlir/IR/AffineExpr.h"
24 #include "mlir/IR/Matchers.h"
25 #include "mlir/Pass/Pass.h"
26 #include "mlir/Support/LLVM.h"
27 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
28 #include "llvm/ADT/ScopeExit.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <type_traits>
32 
33 #define DEBUG_TYPE "linalg-transforms"
34 
35 using namespace mlir;
36 using namespace mlir::edsc;
37 using namespace mlir::edsc::intrinsics;
38 using namespace mlir::linalg;
39 
40 #define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE << "]: ")
41 
42 //===----------------------------------------------------------------------===//
43 // Transformations exposed as rewrite patterns.
44 //===----------------------------------------------------------------------===//
45 // Marker used as attribute name in generated Linalg rewriting transformations.
46 const StringLiteral mlir::linalg::LinalgTransforms::kLinalgTransformMarker =
47     "__internal_linalg_transform__";
48 
49 mlir::linalg::LinalgTransformationFilter::LinalgTransformationFilter(
50     ArrayRef<Identifier> matchDisjunction, Optional<Identifier> replacement)
51     : matchDisjunction(matchDisjunction.begin(), matchDisjunction.end()),
52       replacement(replacement) {}
53 
54 mlir::linalg::LinalgTransformationFilter::LinalgTransformationFilter(
55     FilterFunction f, ArrayRef<Identifier> matchDisjunction,
56     Optional<Identifier> replacement)
57     : filters(),
58       matchDisjunction(matchDisjunction.begin(), matchDisjunction.end()),
59       replacement(replacement) {
60   if (f)
61     filters.push_back(f);
62 }
63 
64 LogicalResult mlir::linalg::LinalgTransformationFilter::checkAndNotify(
65     PatternRewriter &rewriter, Operation *op) const {
66   if (llvm::any_of(filters,
67                    [&](const FilterFunction &f) { return failed(f(op)); }))
68     return failure();
69 
70   auto attr = op->template getAttrOfType<StringAttr>(
71       LinalgTransforms::kLinalgTransformMarker);
72 
73   if (!attr) {
74     // 1. Has no filter case and matchDisjunction is empty.
75     if (matchDisjunction.empty())
76       return success();
77 
78     // 2. Has no filter but was expecting a filter.
79     return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) {
80       diag << " does not have any filter from list: ";
81       interleaveComma(matchDisjunction, diag);
82     });
83   }
84 
85   // 4. Match explicit filter.
86   for (auto filter : matchDisjunction)
87     if (attr.getValue() == filter)
88       return success();
89 
90   // 5. Fail to match.
91   return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) {
92     diag << " does not have any filter from list: ";
93     interleaveComma(matchDisjunction, diag);
94   });
95 }
96 
97 void mlir::linalg::LinalgTransformationFilter::
98     replaceLinalgTransformationFilter(PatternRewriter &rewriter,
99                                       Operation *op) const {
100   if (replacement.hasValue())
101     op->setAttr(LinalgTransforms::kLinalgTransformMarker,
102                 rewriter.getStringAttr(replacement.getValue()));
103   else
104     op->removeAttr(Identifier::get(LinalgTransforms::kLinalgTransformMarker,
105                                    rewriter.getContext()));
106 }
107 
108 LinalgTilingOptions &
109 mlir::linalg::LinalgTilingOptions::setTileSizes(ArrayRef<int64_t> ts) {
110   SmallVector<int64_t, 4> tileSizes(ts.begin(), ts.end());
111   tileSizeComputationFunction = [tileSizes](OpBuilder &b, Operation *op) {
112     OpBuilder::InsertionGuard guard(b);
113     b.setInsertionPointToStart(
114         &op->getParentOfType<FuncOp>().getBody().front());
115     return llvm::to_vector<4>(map_range(tileSizes, [&](int64_t s) {
116       Value v = b.create<ConstantIndexOp>(op->getLoc(), s);
117       return v;
118     }));
119   };
120   return *this;
121 }
122 
123 /// Try to compute a static bounding box for `operand`
124 /// Return success if either:
125 ///   1. The operand is already statically shaped, `result` is left unchanged.
126 ///   2. The operand is (partially) dynamic, `result` is the result of a freshly
127 ///      created PadTensorOp.
128 /// Return failure if the operand cannot be padded to a static shape.
129 static LogicalResult padOperandToSmallestStaticBoundingBox(
130     PatternRewriter &rewriter, linalg::LinalgOp opToPad, OpOperand &operand,
131     const LinalgTilingOptions &options, Value &result) {
132   auto tensorType = operand.get().getType().cast<RankedTensorType>();
133   // Already static shape, no need to pad.
134   if (tensorType.hasStaticShape())
135     return success();
136   auto subtensor = operand.get().getDefiningOp<SubTensorOp>();
137   // Not a subtensor, cannot construct a static bounding box.
138   if (!subtensor)
139     return failure();
140   SmallVector<int64_t> staticSizes;
141   staticSizes.reserve(tensorType.getRank());
142   auto shapedOp =
143       cast<OffsetSizeAndStrideOpInterface>(subtensor.getOperation());
144   for (auto size : shapedOp.getMixedSizes()) {
145     auto indexAttr = size.is<Attribute>()
146                          ? size.get<Attribute>().dyn_cast<IntegerAttr>()
147                          : linalg::getSmallestBoundingIndex(size.get<Value>());
148     // SmallestBoundingIndex must exist for all sizes.
149     // For now return an error if we can't find it.
150     if (!indexAttr)
151       return rewriter.notifyMatchFailure(
152           opToPad, "No constant bounding box can be found for padding");
153     staticSizes.push_back(indexAttr.getInt());
154   }
155   Value pad = options.paddingValueComputationFunction(rewriter, operand);
156   auto staticTensorType =
157       RankedTensorType::get(staticSizes, tensorType.getElementType());
158   result = linalg::PadTensorOp::createPadHighOp(
159       staticTensorType, operand.get(), pad, opToPad->getLoc(), rewriter);
160   return success();
161 }
162 
163 // Try to create a static bounding box around each operand of `res.op`.
164 // If successful, `res.op` is rewritten in static form with padded operands.
165 // `res.op` is updated to the cloned static form of the op on success.
166 static LogicalResult rewriteAsPaddedOp(PatternRewriter &rewriter,
167                                        TiledLinalgOp &res,
168                                        const LinalgTilingOptions &options) {
169   LinalgOp opToPad = res.op;
170   Location loc = opToPad->getLoc();
171 
172   // If the op is fully static, it does not need padding.
173   // TODO: there are cases where we may still want to pad to larger sizes.
174   if (llvm::all_of(opToPad.getShapedOperands(), [](Value v) {
175         return v.getType().cast<RankedTensorType>().hasStaticShape();
176       }))
177     return success();
178 
179   OpBuilder::InsertionGuard g(rewriter);
180   // Set IP after op because we also take the dims of the original output.
181   rewriter.setInsertionPointAfter(opToPad);
182   // Make a copy of the shaped operands and update it.
183   SmallVector<Value> newOperands;
184   newOperands.reserve(opToPad.getNumShapedOperands());
185   for (OpOperand &operand : opToPad.getShapedOpOperands()) {
186     Value paddedOperand;
187     // If padding was requested but the shape cannot be bounded statically then
188     // the pattern fails to apply.
189     if (failed(padOperandToSmallestStaticBoundingBox(rewriter, opToPad, operand,
190                                                      options, paddedOperand))) {
191       return failure();
192     }
193     newOperands.push_back(paddedOperand ? paddedOperand : operand.get());
194   }
195 
196   // Clone `opToPad` to operate on the statically padded shapes.
197   auto resultTensorTypes =
198       ValueRange(newOperands).take_back(opToPad.getNumOutputs()).getTypes();
199   ValueRange otherOperands = opToPad.getAssumedNonShapedOperands();
200   newOperands.append(otherOperands.begin(), otherOperands.end());
201   linalg::LinalgOp paddedOp =
202       opToPad.clone(rewriter, loc, resultTensorTypes, newOperands);
203 
204   // Recover the subtensor out of the new static results. This keeps the
205   // original linalg op around because it uses the dims of the original results.
206   // This later folds away.
207   SmallVector<Value> paddedSubviewResults;
208   paddedSubviewResults.reserve(opToPad->getNumResults());
209   llvm::SetVector<Operation *> newUsersOfOpToPad;
210   for (auto it : llvm::zip(opToPad->getResults(), paddedOp->getResults())) {
211     auto rank = std::get<0>(it).getType().cast<RankedTensorType>().getRank();
212     SmallVector<OpFoldResult> offsets(rank, rewriter.getIndexAttr(0));
213     auto sizes = llvm::to_vector<4>(llvm::map_range(
214         llvm::seq<unsigned>(0, rank), [&](unsigned d) -> OpFoldResult {
215           auto dimOp = rewriter.create<memref::DimOp>(loc, std::get<0>(it), d);
216           newUsersOfOpToPad.insert(dimOp);
217           return dimOp.getResult();
218         }));
219     SmallVector<OpFoldResult> strides(rank, rewriter.getIndexAttr(1));
220     paddedSubviewResults.push_back(rewriter.create<SubTensorOp>(
221         loc, std::get<1>(it), offsets, sizes, strides));
222   }
223   // Replace the transient `opToPad` locally, except for uses that we just
224   // created for the purpose of extracting the dims.
225   rewriter.replaceOpWithIf(opToPad, paddedSubviewResults, [&](OpOperand &opOp) {
226     return !newUsersOfOpToPad.contains(opOp.getOwner());
227   });
228 
229   res = TiledLinalgOp{paddedOp, res.loops, res.tensorResults};
230   return success();
231 }
232 
233 /// Linalg base tiling pattern.
234 mlir::linalg::LinalgBaseTilingPattern::LinalgBaseTilingPattern(
235     StringRef opName, MLIRContext *context, LinalgTilingOptions options,
236     LinalgTransformationFilter filter, PatternBenefit benefit)
237     : RewritePattern(opName, benefit, context), filter(filter),
238       options(options) {}
239 
240 mlir::linalg::LinalgBaseTilingPattern::LinalgBaseTilingPattern(
241     MLIRContext *context, LinalgTilingOptions options,
242     LinalgTransformationFilter filter, PatternBenefit benefit)
243     : RewritePattern(MatchAnyOpTypeTag(), benefit, context), filter(filter),
244       options(options) {}
245 
246 LogicalResult mlir::linalg::LinalgBaseTilingPattern::matchAndRewriteBase(
247     Operation *op, PatternRewriter &rewriter, TiledLinalgOp &result) const {
248   LinalgOp linalgOp = dyn_cast<LinalgOp>(op);
249   if (!linalgOp)
250     return failure();
251   if (failed(filter.checkAndNotify(rewriter, linalgOp)))
252     return failure();
253 
254   Optional<TiledLinalgOp> res = tileLinalgOp(rewriter, linalgOp, options);
255 
256   if (!res)
257     return failure();
258 
259   // Setup RAII guard to return properly.
260   bool succeeded = true;
261   LinalgOp tiledOp = res->op;
262   auto guard = llvm::make_scope_exit([&]() {
263     if (!succeeded)
264       return;
265     // Return relevant information to derived pattern.
266     result = *res;
267     // Replace filter on both tiledOp and tiledAndPaddedOp, if necessary.
268     filter.replaceLinalgTransformationFilter(rewriter, tiledOp);
269     if (tiledOp != res->op)
270       filter.replaceLinalgTransformationFilter(rewriter, res->op);
271   });
272 
273   // Consider padding on the fly only if the op has tensor semantics.
274   if (!options.paddingValueComputationFunction ||
275       !linalgOp.hasTensorSemantics())
276     return success();
277 
278   // Try to pad on the fly by rewriting res->op as a padded op.
279   if (failed(rewriteAsPaddedOp(rewriter, *res, options))) {
280     // Set so RAII guard does not propagate TiledLinalgOp to `result`.
281     succeeded = false;
282     return failure();
283   }
284 
285   // Do not perform replacement of `linalgOp`, let the derived patterns
286   // do this as they see fit, from the resulting TiledLinalgOp.
287   return success();
288 }
289 
290 static ValueRange getTiledOpResult(TiledLinalgOp tiledOp) {
291   if (tiledOp.loops.empty())
292     return tiledOp.op.getOperation()->getResults();
293   return tiledOp.loops.front()->getResults();
294 }
295 
296 static ValueRange
297 getTiledAndFusedOpResult(TiledAndFusedLinalgOps tiledAndFusedOp) {
298   if (tiledAndFusedOp.fusedLoops.empty())
299     return tiledAndFusedOp.op.getOperation()->getResults();
300   return tiledAndFusedOp.fusedLoops.front()->getResults();
301 }
302 
303 mlir::linalg::LinalgBaseTileAndFusePattern::LinalgBaseTileAndFusePattern(
304     StringRef opName, MLIRContext *context,
305     const LinalgDependenceGraph &dependenceGraph,
306     LinalgTilingOptions tilingOptions, LinalgFusionOptions fusionOptions,
307     LinalgTransformationFilter filter, LinalgTransformationFilter fusedOpMarker,
308     LinalgTransformationFilter originalOpMarker, PatternBenefit benefit)
309     : RewritePattern(opName, benefit, context, {}),
310       dependenceGraph(dependenceGraph), tilingOptions(tilingOptions),
311       fusionOptions(fusionOptions), filter(filter),
312       fusedOpMarker(fusedOpMarker), originalOpMarker(originalOpMarker) {}
313 
314 LogicalResult mlir::linalg::LinalgBaseTileAndFusePattern::matchAndRewrite(
315     Operation *op, PatternRewriter &rewriter) const {
316   LinalgOp linalgOp = dyn_cast<LinalgOp>(op);
317   if (!linalgOp)
318     return failure();
319   if (failed(filter.checkAndNotify(rewriter, linalgOp)))
320     return failure();
321 
322   DenseSet<Operation *> producers;
323   producers.insert(linalgOp);
324   for (auto dependence : dependenceGraph.getDependentOperationsInto(linalgOp)) {
325     Optional<unsigned> operandNumber = dependence.getIndexingOpViewOperandNum();
326     // When looking at dependences into, indexingOp is always OpOperand. We
327     // could assert, but continue if this is not the case.
328     if (!operandNumber)
329       continue;
330     if (!fusionOptions.indicesToFuse.count(operandNumber.getValue()))
331       continue;
332     if (isa<LinalgOp>(dependence.getDependentOp()))
333       producers.insert(dependence.getDependentOp());
334   }
335 
336   SmallVector<LinalgOp, 1> fusionOps;
337   for (auto it = op->getBlock()->begin(), ie = Block::iterator(op); it != ie;
338        ++it) {
339     auto producerLinalgOp = dyn_cast<LinalgOp>(&(*it));
340     if (producerLinalgOp && producers.count(producerLinalgOp))
341       fusionOps.push_back(producerLinalgOp);
342   }
343   fusionOps.push_back(linalgOp);
344 
345   SmallVector<Value, 4> tileSizes =
346       tilingOptions.tileSizeComputationFunction(rewriter, op);
347   LinalgTilingOptions instanceTilingOptions = tilingOptions;
348   instanceTilingOptions.setTileSizes(tileSizes);
349   Optional<TiledAndFusedLinalgOps> tiledAndFusedOps = tileAndFuseLinalgOps(
350       rewriter, fusionOps, dependenceGraph, instanceTilingOptions);
351   if (!tiledAndFusedOps)
352     return failure();
353 
354   // Tile the unfused loops;
355   SmallVector<Value, 4> unfusedLoopTileSizes;
356   Value zero = rewriter.create<ConstantIndexOp>(op->getLoc(), 0);
357   for (auto tileSize : enumerate(tileSizes)) {
358     if (tiledAndFusedOps->fusedLoopDims.count(tileSize.index()))
359       unfusedLoopTileSizes.push_back(zero);
360     else
361       unfusedLoopTileSizes.push_back(tileSize.value());
362   }
363   // Tile the loop only if there is a non-zero tile size.
364   if (unfusedLoopTileSizes.size() > linalgOp.getNumLoops())
365     unfusedLoopTileSizes.resize(linalgOp.getNumLoops());
366   if (llvm::any_of(unfusedLoopTileSizes, [](Value val) {
367         if (auto cst = val.getDefiningOp<ConstantIndexOp>())
368           return cst.getValue() != 0;
369         return true;
370       })) {
371     LinalgTilingOptions unfusedTilingOptions = tilingOptions;
372     unfusedTilingOptions.setTileSizes(unfusedLoopTileSizes);
373     Optional<TiledLinalgOp> unfusedTiledOp =
374         tileLinalgOp(rewriter, tiledAndFusedOps->op, unfusedTilingOptions);
375     if (!unfusedTiledOp)
376       return failure();
377     rewriter.replaceOp(tiledAndFusedOps->op,
378                        getTiledOpResult(unfusedTiledOp.getValue()));
379     tiledAndFusedOps->op = unfusedTiledOp->op;
380   }
381   op->replaceAllUsesWith(getTiledAndFusedOpResult(tiledAndFusedOps.getValue()));
382 
383   filter.replaceLinalgTransformationFilter(rewriter,
384                                            tiledAndFusedOps->op.getOperation());
385   for (auto fusedOp : tiledAndFusedOps->fusedProducers) {
386     fusedOpMarker.replaceLinalgTransformationFilter(rewriter,
387                                                     fusedOp.getOperation());
388   }
389   for (auto origProducerOp : ArrayRef<LinalgOp>(fusionOps).drop_back()) {
390     originalOpMarker.replaceLinalgTransformationFilter(
391         rewriter, origProducerOp.getOperation());
392   }
393   rewriter.updateRootInPlace(op, [&]() {
394     originalOpMarker.replaceLinalgTransformationFilter(rewriter, op);
395   });
396   return success();
397 }
398 
399 /// Linalg base interchange pattern.
400 mlir::linalg::LinalgBaseInterchangePattern::LinalgBaseInterchangePattern(
401     StringRef opName, MLIRContext *context,
402     ArrayRef<unsigned> interchangeVector, LinalgTransformationFilter filter,
403     PatternBenefit benefit)
404     : RewritePattern(opName, benefit, context, {}), filter(filter),
405       interchangeVector(interchangeVector.begin(), interchangeVector.end()) {}
406 
407 LogicalResult mlir::linalg::LinalgBaseInterchangePattern::matchAndRewrite(
408     Operation *op, PatternRewriter &rewriter) const {
409   LinalgOp linalgOp = dyn_cast<LinalgOp>(op);
410   if (!linalgOp)
411     return failure();
412   if (failed(filter.checkAndNotify(rewriter, linalgOp)))
413     return failure();
414   if (failed(interchangeGenericLinalgOpPrecondition(op, interchangeVector)))
415     return failure();
416 
417   // TODO: figure out how this interplays with named ops. In particular this
418   // should break the named op property.
419   rewriter.updateRootInPlace(op, [&]() {
420     interchange(linalgOp, interchangeVector);
421     // New filter if specified.
422     filter.replaceLinalgTransformationFilter(rewriter, op);
423   });
424   return success();
425 }
426 
427 mlir::linalg::LinalgBasePromotionPattern::LinalgBasePromotionPattern(
428     StringRef opName, MLIRContext *context, LinalgPromotionOptions options,
429     LinalgTransformationFilter filter, PatternBenefit benefit)
430     : RewritePattern(opName, benefit, context, {}), filter(filter),
431       options(options) {}
432 
433 LogicalResult mlir::linalg::LinalgBasePromotionPattern::matchAndRewrite(
434     Operation *op, PatternRewriter &rewriter) const {
435   if (failed(filter.checkAndNotify(rewriter, op)))
436     return failure();
437   if (failed(promoteSubviewsPrecondition(op, options)))
438     return failure();
439 
440   // TODO: We cannot use root update here. This pattern is creating other ops,
441   // so if the promotion fails, those need to be cleaned up, which doesnt seem
442   // to be happening here. So to fail properly, we should be cloning the op and
443   // deleting the previous op. This needs more investigation.
444   rewriter.startRootUpdate(op);
445   Optional<LinalgOp> promotedOp = promoteSubViews(rewriter, op, options);
446   if (!promotedOp) {
447     rewriter.cancelRootUpdate(op);
448     return op->emitError("subview promotion failed");
449   }
450   rewriter.finalizeRootUpdate(op);
451   filter.replaceLinalgTransformationFilter(rewriter, op);
452   return success();
453 }
454 
455 mlir::linalg::LinalgBaseVectorizationPattern::LinalgBaseVectorizationPattern(
456     MLIRContext *context, LinalgTransformationFilter filter,
457     PatternBenefit benefit)
458     : RewritePattern(MatchAnyOpTypeTag(), benefit, context), filter(filter) {}
459 
460 mlir::linalg::LinalgBaseVectorizationPattern::LinalgBaseVectorizationPattern(
461     StringRef opName, MLIRContext *context, LinalgTransformationFilter filter,
462     PatternBenefit benefit)
463     : RewritePattern(opName, benefit, context, {}), filter(filter) {}
464 
465 LogicalResult mlir::linalg::LinalgBaseVectorizationPattern::matchAndRewrite(
466     Operation *op, PatternRewriter &rewriter) const {
467   LinalgOp linalgOp = dyn_cast<LinalgOp>(op);
468   if (!linalgOp)
469     return failure();
470   if (failed(filter.checkAndNotify(rewriter, linalgOp)))
471     return failure();
472   SmallVector<Value> newResults;
473   if (failed(vectorizeLinalgOp(rewriter, op, newResults)))
474     return failure();
475   if (!newResults.empty())
476     rewriter.replaceOp(op, newResults);
477   else
478     rewriter.eraseOp(op);
479   return success();
480 }
481 
482 LogicalResult mlir::linalg::applyStagedPatterns(
483     Operation *op, ArrayRef<FrozenRewritePatternSet> stage1Patterns,
484     const FrozenRewritePatternSet &stage2Patterns,
485     function_ref<LogicalResult(Operation *)> stage3Lambda) {
486   unsigned iteration = 0;
487   (void)iteration;
488   for (const auto &patterns : stage1Patterns) {
489     LLVM_DEBUG(DBGS() << "Before 1st stage, iter: " << ++iteration << "\n"
490                       << *op);
491     if (failed(applyPatternsAndFoldGreedily(op, patterns))) {
492       LLVM_DEBUG(DBGS() << "Underlying first stage rewrite did not converge");
493       return failure();
494     }
495     LLVM_DEBUG(DBGS() << "After 1st stage, iter: " << ++iteration << "\n"
496                       << *op);
497     if (failed(applyPatternsAndFoldGreedily(op, stage2Patterns))) {
498       LLVM_DEBUG(DBGS() << "Underlying 2nd stage rewrite did not converge");
499       return failure();
500     }
501     LLVM_DEBUG(DBGS() << "After 2nd stage, iter : " << iteration << "\n"
502                       << *op);
503     if (stage3Lambda) {
504       if (failed(stage3Lambda(op)))
505         return failure();
506       LLVM_DEBUG(DBGS() << "After 3rd stage, iter : " << iteration << "\n"
507                         << *op);
508     }
509   }
510   return success();
511 }
512 
513 /// Given the `lbVal`, `ubVal` and `stepVal` of a loop, append `lbVal` and
514 /// `ubVal` to `dims` and `stepVal` to `symbols`.
515 /// Create new AffineDimExpr (`%lb` and `%ub`) and AffineSymbolExpr (`%step`)
516 /// with positions matching the newly appended values. Substitute occurrences of
517 /// `dimExpr` by either the min expression (i.e. `%lb`) or the max expression
518 /// (i.e. `%lb + %step * floordiv(%ub -1 - %lb, %step)`), depending on whether
519 /// the induction variable is used with a positive or negative  coefficient.
520 static AffineExpr substituteLoopInExpr(AffineExpr expr, AffineExpr dimExpr,
521                                        Value lbVal, Value ubVal, Value stepVal,
522                                        SmallVectorImpl<Value> &dims,
523                                        SmallVectorImpl<Value> &symbols) {
524   MLIRContext *ctx = lbVal.getContext();
525   AffineExpr lb = getAffineDimExpr(dims.size(), ctx);
526   dims.push_back(lbVal);
527   AffineExpr ub = getAffineDimExpr(dims.size(), ctx);
528   dims.push_back(ubVal);
529   AffineExpr step = getAffineSymbolExpr(symbols.size(), ctx);
530   symbols.push_back(stepVal);
531   LLVM_DEBUG(DBGS() << "Before: " << expr << "\n");
532   AffineExpr ee = substWithMin(expr, dimExpr, lb,
533                                lb + step * ((ub - 1) - lb).floorDiv(step));
534   LLVM_DEBUG(DBGS() << "After: " << expr << "\n");
535   return ee;
536 }
537 
538 /// Traverse the `dims` and substitute known min or max expressions in place of
539 /// induction variables in `exprs`.
540 static AffineMap substitute(
541     AffineMap map, SmallVectorImpl<Value> &dims,
542     SmallVectorImpl<Value> &symbols,
543     llvm::function_ref<bool(Operation *)> substituteOperation = nullptr) {
544   auto exprs = llvm::to_vector<4>(map.getResults());
545   for (AffineExpr &expr : exprs) {
546     bool substituted = true;
547     while (substituted) {
548       substituted = false;
549       for (unsigned dimIdx = 0; dimIdx < dims.size(); ++dimIdx) {
550         Value dim = dims[dimIdx];
551         AffineExpr dimExpr = getAffineDimExpr(dimIdx, expr.getContext());
552         LLVM_DEBUG(DBGS() << "Subst: " << dim << " @ " << dimExpr << "\n");
553         AffineExpr substitutedExpr;
554         if (auto forOp = scf::getForInductionVarOwner(dim))
555           if (!substituteOperation || substituteOperation(forOp))
556             substitutedExpr = substituteLoopInExpr(
557                 expr, dimExpr, forOp.lowerBound(), forOp.upperBound(),
558                 forOp.step(), dims, symbols);
559 
560         if (auto parallelForOp = scf::getParallelForInductionVarOwner(dim))
561           if (!substituteOperation || substituteOperation(parallelForOp))
562             for (unsigned idx = 0, e = parallelForOp.getNumLoops(); idx < e;
563                  ++idx)
564               substitutedExpr = substituteLoopInExpr(
565                   expr, dimExpr, parallelForOp.lowerBound()[idx],
566                   parallelForOp.upperBound()[idx], parallelForOp.step()[idx],
567                   dims, symbols);
568 
569         if (!substitutedExpr)
570           continue;
571 
572         substituted = (substitutedExpr != expr);
573         expr = substitutedExpr;
574       }
575     }
576 
577     // Cleanup and simplify the results.
578     // This needs to happen outside of the loop iterating on dims.size() since
579     // it modifies dims.
580     SmallVector<Value, 4> operands(dims.begin(), dims.end());
581     operands.append(symbols.begin(), symbols.end());
582     auto map = AffineMap::get(dims.size(), symbols.size(), exprs,
583                               exprs.front().getContext());
584 
585     LLVM_DEBUG({
586       DBGS() << "Map to simplify: " << map << "\n";
587       DBGS() << "Operands:\n";
588       for (Value v : operands)
589         DBGS() << v << "\n";
590     });
591 
592     // Pull in affine.apply operations and compose them fully into the
593     // result.
594     fullyComposeAffineMapAndOperands(&map, &operands);
595     canonicalizeMapAndOperands(&map, &operands);
596     map = simplifyAffineMap(map);
597     // Assign the results.
598     exprs.assign(map.getResults().begin(), map.getResults().end());
599     dims.assign(operands.begin(), operands.begin() + map.getNumDims());
600     symbols.assign(operands.begin() + map.getNumDims(), operands.end());
601 
602     LLVM_DEBUG(DBGS() << "Map simplified: " << map << "\n");
603   }
604 
605   assert(!exprs.empty() && "Unexpected empty exprs");
606   return AffineMap::get(dims.size(), symbols.size(), exprs, map.getContext());
607 }
608 
609 /// Traverse the dims of the AffineMap of `affineMinOp` and substitute scf loop
610 /// induction variables by new expressions involving the lower or upper bound:
611 ///   - If the AffineDimExpr mapped to a loop IV has a positive sign, it is
612 ///     replaced by the loop upper bound.
613 ///   - If the AffineDimExpr mapped to a loop IV has a negative sign, it is
614 ///     replaced by the loop lower bound.
615 /// All loop induction variables are iteratively replaced, unless a
616 /// `substituteOperation` hook is passed to more finely determine which
617 /// operations are substituted.
618 /// This is used as an intermediate step in computing bounding boxes and
619 /// canonicalize AffineMinOps. All dim and symbol operands are assumed to have
620 /// positive values (positive orthant assumptions).
621 /// Return a new AffineMap, dims and symbols that have been canonicalized and
622 /// simplified.
623 AffineMapAndOperands mlir::linalg::substituteMin(
624     AffineMinOp affineMinOp,
625     llvm::function_ref<bool(Operation *)> substituteOperation) {
626   AffineMapAndOperands res{affineMinOp.getAffineMap(),
627                            SmallVector<Value>(affineMinOp.getDimOperands()),
628                            SmallVector<Value>(affineMinOp.getSymbolOperands())};
629   res.map = substitute(affineMinOp.getAffineMap(), res.dims, res.symbols,
630                        substituteOperation);
631   return res;
632 }
633 
634 LogicalResult AffineMinSCFCanonicalizationPattern::matchAndRewrite(
635     AffineMinOp minOp, PatternRewriter &rewriter) const {
636   LLVM_DEBUG(DBGS() << "Canonicalize AffineMinSCF: " << *minOp.getOperation()
637                     << "\n");
638 
639   auto affineMapAndOperands = substituteMin(minOp);
640   AffineMap map = affineMapAndOperands.map;
641 
642   LLVM_DEBUG(DBGS() << "Resulting map: " << map << "\n");
643 
644   // Check whether any of the expressions, when subtracted from all other
645   // expressions, produces only >= 0 constants. If so, it is the min.
646   for (auto e : minOp.getAffineMap().getResults()) {
647     LLVM_DEBUG(DBGS() << "Candidate min: " << e << "\n");
648     if (!e.isSymbolicOrConstant())
649       continue;
650 
651     auto isNonPositive = [](AffineExpr e) {
652       if (auto cst = e.dyn_cast<AffineConstantExpr>())
653         return cst.getValue() < 0;
654       return true;
655     };
656 
657     // Build the subMap and check everything is statically known to be
658     // positive.
659     SmallVector<AffineExpr, 4> subExprs;
660     subExprs.reserve(map.getNumResults());
661     for (auto ee : map.getResults())
662       subExprs.push_back(ee - e);
663     MLIRContext *ctx = minOp.getContext();
664     AffineMap subMap = simplifyAffineMap(
665         AffineMap::get(map.getNumDims(), map.getNumSymbols(), subExprs, ctx));
666     LLVM_DEBUG(DBGS() << "simplified subMap: " << subMap << "\n");
667     if (llvm::any_of(subMap.getResults(), isNonPositive))
668       continue;
669 
670     // Static min found.
671     if (auto cst = e.dyn_cast<AffineConstantExpr>()) {
672       rewriter.replaceOpWithNewOp<ConstantIndexOp>(minOp, cst.getValue());
673     } else {
674       auto resultMap = AffineMap::get(0, map.getNumSymbols(), {e}, ctx);
675       SmallVector<Value> resultOperands = affineMapAndOperands.dims;
676       llvm::append_range(resultOperands, affineMapAndOperands.symbols);
677       canonicalizeMapAndOperands(&resultMap, &resultOperands);
678       resultMap = simplifyAffineMap(resultMap);
679       rewriter.replaceOpWithNewOp<AffineApplyOp>(minOp, resultMap,
680                                                  resultOperands);
681     }
682     return success();
683   }
684 
685   return failure();
686 }
687