1 //===- LinalgTransforms.cpp - Linalg transformations as patterns ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements logic and helpers to expose Linalg transforms as rewrite 10 // patterns. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 15 #include "mlir/Dialect/Affine/Utils.h" 16 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" 17 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 18 #include "mlir/Dialect/Linalg/Utils/Utils.h" 19 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h" 20 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 21 #include "mlir/Dialect/Vector/EDSC/Intrinsics.h" 22 #include "mlir/Dialect/Vector/VectorOps.h" 23 #include "mlir/IR/AffineExpr.h" 24 #include "mlir/IR/Matchers.h" 25 #include "mlir/Pass/Pass.h" 26 #include "mlir/Support/LLVM.h" 27 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 28 #include "llvm/ADT/ScopeExit.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <type_traits> 32 33 #define DEBUG_TYPE "linalg-transforms" 34 35 using namespace mlir; 36 using namespace mlir::edsc; 37 using namespace mlir::edsc::intrinsics; 38 using namespace mlir::linalg; 39 40 #define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE << "]: ") 41 42 //===----------------------------------------------------------------------===// 43 // Transformations exposed as rewrite patterns. 44 //===----------------------------------------------------------------------===// 45 // Marker used as attribute name in generated Linalg rewriting transformations. 46 const StringLiteral mlir::linalg::LinalgTransforms::kLinalgTransformMarker = 47 "__internal_linalg_transform__"; 48 49 mlir::linalg::LinalgTransformationFilter::LinalgTransformationFilter( 50 ArrayRef<Identifier> matchDisjunction, Optional<Identifier> replacement) 51 : matchDisjunction(matchDisjunction.begin(), matchDisjunction.end()), 52 replacement(replacement) {} 53 54 mlir::linalg::LinalgTransformationFilter::LinalgTransformationFilter( 55 FilterFunction f, ArrayRef<Identifier> matchDisjunction, 56 Optional<Identifier> replacement) 57 : filters(), 58 matchDisjunction(matchDisjunction.begin(), matchDisjunction.end()), 59 replacement(replacement) { 60 if (f) 61 filters.push_back(f); 62 } 63 64 LogicalResult mlir::linalg::LinalgTransformationFilter::checkAndNotify( 65 PatternRewriter &rewriter, Operation *op) const { 66 if (llvm::any_of(filters, 67 [&](const FilterFunction &f) { return failed(f(op)); })) 68 return failure(); 69 70 auto attr = op->template getAttrOfType<StringAttr>( 71 LinalgTransforms::kLinalgTransformMarker); 72 73 if (!attr) { 74 // 1. Has no filter case and matchDisjunction is empty. 75 if (matchDisjunction.empty()) 76 return success(); 77 78 // 2. Has no filter but was expecting a filter. 79 return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) { 80 diag << " does not have any filter from list: "; 81 interleaveComma(matchDisjunction, diag); 82 }); 83 } 84 85 // 4. Match explicit filter. 86 for (auto filter : matchDisjunction) 87 if (attr.getValue() == filter) 88 return success(); 89 90 // 5. Fail to match. 91 return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) { 92 diag << " does not have any filter from list: "; 93 interleaveComma(matchDisjunction, diag); 94 }); 95 } 96 97 void mlir::linalg::LinalgTransformationFilter:: 98 replaceLinalgTransformationFilter(PatternRewriter &rewriter, 99 Operation *op) const { 100 if (replacement.hasValue()) 101 op->setAttr(LinalgTransforms::kLinalgTransformMarker, 102 rewriter.getStringAttr(replacement.getValue())); 103 else 104 op->removeAttr(Identifier::get(LinalgTransforms::kLinalgTransformMarker, 105 rewriter.getContext())); 106 } 107 108 LinalgTilingOptions & 109 mlir::linalg::LinalgTilingOptions::setTileSizes(ArrayRef<int64_t> ts) { 110 SmallVector<int64_t, 4> tileSizes(ts.begin(), ts.end()); 111 tileSizeComputationFunction = [tileSizes](OpBuilder &b, Operation *op) { 112 OpBuilder::InsertionGuard guard(b); 113 b.setInsertionPointToStart( 114 &op->getParentOfType<FuncOp>().getBody().front()); 115 return llvm::to_vector<4>(map_range(tileSizes, [&](int64_t s) { 116 Value v = b.create<ConstantIndexOp>(op->getLoc(), s); 117 return v; 118 })); 119 }; 120 return *this; 121 } 122 123 /// Try to compute a static bounding box for `operand` 124 /// Return success if either: 125 /// 1. The operand is already statically shaped, `result` is left unchanged. 126 /// 2. The operand is (partially) dynamic, `result` is the result of a freshly 127 /// created PadTensorOp. 128 /// Return failure if the operand cannot be padded to a static shape. 129 static LogicalResult padOperandToSmallestStaticBoundingBox( 130 PatternRewriter &rewriter, linalg::LinalgOp opToPad, OpOperand &operand, 131 const LinalgTilingOptions &options, Value &result) { 132 auto tensorType = operand.get().getType().cast<RankedTensorType>(); 133 // Already static shape, no need to pad. 134 if (tensorType.hasStaticShape()) 135 return success(); 136 auto subtensor = operand.get().getDefiningOp<SubTensorOp>(); 137 // Not a subtensor, cannot construct a static bounding box. 138 if (!subtensor) 139 return failure(); 140 SmallVector<int64_t> staticSizes; 141 staticSizes.reserve(tensorType.getRank()); 142 auto shapedOp = 143 cast<OffsetSizeAndStrideOpInterface>(subtensor.getOperation()); 144 for (auto size : shapedOp.getMixedSizes()) { 145 auto indexAttr = size.is<Attribute>() 146 ? size.get<Attribute>().dyn_cast<IntegerAttr>() 147 : linalg::getSmallestBoundingIndex(size.get<Value>()); 148 // SmallestBoundingIndex must exist for all sizes. 149 // For now return an error if we can't find it. 150 if (!indexAttr) 151 return rewriter.notifyMatchFailure( 152 opToPad, "No constant bounding box can be found for padding"); 153 staticSizes.push_back(indexAttr.getInt()); 154 } 155 Value pad = options.paddingValueComputationFunction(rewriter, operand); 156 auto staticTensorType = 157 RankedTensorType::get(staticSizes, tensorType.getElementType()); 158 result = linalg::PadTensorOp::createPadHighOp( 159 staticTensorType, operand.get(), pad, opToPad->getLoc(), rewriter); 160 return success(); 161 } 162 163 // Try to create a static bounding box around each operand of `res.op`. 164 // If successful, `res.op` is rewritten in static form with padded operands. 165 // `res.op` is updated to the cloned static form of the op on success. 166 static LogicalResult rewriteAsPaddedOp(PatternRewriter &rewriter, 167 TiledLinalgOp &res, 168 const LinalgTilingOptions &options) { 169 LinalgOp opToPad = res.op; 170 Location loc = opToPad->getLoc(); 171 172 // If the op is fully static, it does not need padding. 173 // TODO: there are cases where we may still want to pad to larger sizes. 174 if (llvm::all_of(opToPad.getShapedOperands(), [](Value v) { 175 return v.getType().cast<RankedTensorType>().hasStaticShape(); 176 })) 177 return success(); 178 179 OpBuilder::InsertionGuard g(rewriter); 180 // Set IP after op because we also take the dims of the original output. 181 rewriter.setInsertionPointAfter(opToPad); 182 // Make a copy of the shaped operands and update it. 183 SmallVector<Value> newOperands; 184 newOperands.reserve(opToPad.getNumShapedOperands()); 185 for (OpOperand &operand : opToPad.getShapedOpOperands()) { 186 Value paddedOperand; 187 // If padding was requested but the shape cannot be bounded statically then 188 // the pattern fails to apply. 189 if (failed(padOperandToSmallestStaticBoundingBox(rewriter, opToPad, operand, 190 options, paddedOperand))) { 191 return failure(); 192 } 193 newOperands.push_back(paddedOperand ? paddedOperand : operand.get()); 194 } 195 196 // Clone `opToPad` to operate on the statically padded shapes. 197 auto resultTensorTypes = 198 ValueRange(newOperands).take_back(opToPad.getNumOutputs()).getTypes(); 199 ValueRange otherOperands = opToPad.getAssumedNonShapedOperands(); 200 newOperands.append(otherOperands.begin(), otherOperands.end()); 201 linalg::LinalgOp paddedOp = 202 opToPad.clone(rewriter, loc, resultTensorTypes, newOperands); 203 204 // Recover the subtensor out of the new static results. This keeps the 205 // original linalg op around because it uses the dims of the original results. 206 // This later folds away. 207 SmallVector<Value> paddedSubviewResults; 208 paddedSubviewResults.reserve(opToPad->getNumResults()); 209 llvm::SetVector<Operation *> newUsersOfOpToPad; 210 for (auto it : llvm::zip(opToPad->getResults(), paddedOp->getResults())) { 211 auto rank = std::get<0>(it).getType().cast<RankedTensorType>().getRank(); 212 SmallVector<OpFoldResult> offsets(rank, rewriter.getIndexAttr(0)); 213 auto sizes = llvm::to_vector<4>(llvm::map_range( 214 llvm::seq<unsigned>(0, rank), [&](unsigned d) -> OpFoldResult { 215 auto dimOp = rewriter.create<memref::DimOp>(loc, std::get<0>(it), d); 216 newUsersOfOpToPad.insert(dimOp); 217 return dimOp.getResult(); 218 })); 219 SmallVector<OpFoldResult> strides(rank, rewriter.getIndexAttr(1)); 220 paddedSubviewResults.push_back(rewriter.create<SubTensorOp>( 221 loc, std::get<1>(it), offsets, sizes, strides)); 222 } 223 // Replace the transient `opToPad` locally, except for uses that we just 224 // created for the purpose of extracting the dims. 225 rewriter.replaceOpWithIf(opToPad, paddedSubviewResults, [&](OpOperand &opOp) { 226 return !newUsersOfOpToPad.contains(opOp.getOwner()); 227 }); 228 229 res = TiledLinalgOp{paddedOp, res.loops, res.tensorResults}; 230 return success(); 231 } 232 233 /// Linalg base tiling pattern. 234 mlir::linalg::LinalgBaseTilingPattern::LinalgBaseTilingPattern( 235 StringRef opName, MLIRContext *context, LinalgTilingOptions options, 236 LinalgTransformationFilter filter, PatternBenefit benefit) 237 : RewritePattern(opName, benefit, context), filter(filter), 238 options(options) {} 239 240 mlir::linalg::LinalgBaseTilingPattern::LinalgBaseTilingPattern( 241 MLIRContext *context, LinalgTilingOptions options, 242 LinalgTransformationFilter filter, PatternBenefit benefit) 243 : RewritePattern(MatchAnyOpTypeTag(), benefit, context), filter(filter), 244 options(options) {} 245 246 LogicalResult mlir::linalg::LinalgBaseTilingPattern::matchAndRewriteBase( 247 Operation *op, PatternRewriter &rewriter, TiledLinalgOp &result) const { 248 LinalgOp linalgOp = dyn_cast<LinalgOp>(op); 249 if (!linalgOp) 250 return failure(); 251 if (failed(filter.checkAndNotify(rewriter, linalgOp))) 252 return failure(); 253 254 Optional<TiledLinalgOp> res = tileLinalgOp(rewriter, linalgOp, options); 255 256 if (!res) 257 return failure(); 258 259 // Setup RAII guard to return properly. 260 bool succeeded = true; 261 LinalgOp tiledOp = res->op; 262 auto guard = llvm::make_scope_exit([&]() { 263 if (!succeeded) 264 return; 265 // Return relevant information to derived pattern. 266 result = *res; 267 // Replace filter on both tiledOp and tiledAndPaddedOp, if necessary. 268 filter.replaceLinalgTransformationFilter(rewriter, tiledOp); 269 if (tiledOp != res->op) 270 filter.replaceLinalgTransformationFilter(rewriter, res->op); 271 }); 272 273 // Consider padding on the fly only if the op has tensor semantics. 274 if (!options.paddingValueComputationFunction || 275 !linalgOp.hasTensorSemantics()) 276 return success(); 277 278 // Try to pad on the fly by rewriting res->op as a padded op. 279 if (failed(rewriteAsPaddedOp(rewriter, *res, options))) { 280 // Set so RAII guard does not propagate TiledLinalgOp to `result`. 281 succeeded = false; 282 return failure(); 283 } 284 285 // Do not perform replacement of `linalgOp`, let the derived patterns 286 // do this as they see fit, from the resulting TiledLinalgOp. 287 return success(); 288 } 289 290 static ValueRange getTiledOpResult(TiledLinalgOp tiledOp) { 291 if (tiledOp.loops.empty()) 292 return tiledOp.op.getOperation()->getResults(); 293 return tiledOp.loops.front()->getResults(); 294 } 295 296 static ValueRange 297 getTiledAndFusedOpResult(TiledAndFusedLinalgOps tiledAndFusedOp) { 298 if (tiledAndFusedOp.fusedLoops.empty()) 299 return tiledAndFusedOp.op.getOperation()->getResults(); 300 return tiledAndFusedOp.fusedLoops.front()->getResults(); 301 } 302 303 mlir::linalg::LinalgBaseTileAndFusePattern::LinalgBaseTileAndFusePattern( 304 StringRef opName, MLIRContext *context, 305 const LinalgDependenceGraph &dependenceGraph, 306 LinalgTilingOptions tilingOptions, LinalgFusionOptions fusionOptions, 307 LinalgTransformationFilter filter, LinalgTransformationFilter fusedOpMarker, 308 LinalgTransformationFilter originalOpMarker, PatternBenefit benefit) 309 : RewritePattern(opName, benefit, context, {}), 310 dependenceGraph(dependenceGraph), tilingOptions(tilingOptions), 311 fusionOptions(fusionOptions), filter(filter), 312 fusedOpMarker(fusedOpMarker), originalOpMarker(originalOpMarker) {} 313 314 LogicalResult mlir::linalg::LinalgBaseTileAndFusePattern::matchAndRewrite( 315 Operation *op, PatternRewriter &rewriter) const { 316 LinalgOp linalgOp = dyn_cast<LinalgOp>(op); 317 if (!linalgOp) 318 return failure(); 319 if (failed(filter.checkAndNotify(rewriter, linalgOp))) 320 return failure(); 321 322 DenseSet<Operation *> producers; 323 producers.insert(linalgOp); 324 for (auto dependence : dependenceGraph.getDependentOperationsInto(linalgOp)) { 325 Optional<unsigned> operandNumber = dependence.getIndexingOpViewOperandNum(); 326 // When looking at dependences into, indexingOp is always OpOperand. We 327 // could assert, but continue if this is not the case. 328 if (!operandNumber) 329 continue; 330 if (!fusionOptions.indicesToFuse.count(operandNumber.getValue())) 331 continue; 332 if (isa<LinalgOp>(dependence.getDependentOp())) 333 producers.insert(dependence.getDependentOp()); 334 } 335 336 SmallVector<LinalgOp, 1> fusionOps; 337 for (auto it = op->getBlock()->begin(), ie = Block::iterator(op); it != ie; 338 ++it) { 339 auto producerLinalgOp = dyn_cast<LinalgOp>(&(*it)); 340 if (producerLinalgOp && producers.count(producerLinalgOp)) 341 fusionOps.push_back(producerLinalgOp); 342 } 343 fusionOps.push_back(linalgOp); 344 345 SmallVector<Value, 4> tileSizes = 346 tilingOptions.tileSizeComputationFunction(rewriter, op); 347 LinalgTilingOptions instanceTilingOptions = tilingOptions; 348 instanceTilingOptions.setTileSizes(tileSizes); 349 Optional<TiledAndFusedLinalgOps> tiledAndFusedOps = tileAndFuseLinalgOps( 350 rewriter, fusionOps, dependenceGraph, instanceTilingOptions); 351 if (!tiledAndFusedOps) 352 return failure(); 353 354 // Tile the unfused loops; 355 SmallVector<Value, 4> unfusedLoopTileSizes; 356 Value zero = rewriter.create<ConstantIndexOp>(op->getLoc(), 0); 357 for (auto tileSize : enumerate(tileSizes)) { 358 if (tiledAndFusedOps->fusedLoopDims.count(tileSize.index())) 359 unfusedLoopTileSizes.push_back(zero); 360 else 361 unfusedLoopTileSizes.push_back(tileSize.value()); 362 } 363 // Tile the loop only if there is a non-zero tile size. 364 if (unfusedLoopTileSizes.size() > linalgOp.getNumLoops()) 365 unfusedLoopTileSizes.resize(linalgOp.getNumLoops()); 366 if (llvm::any_of(unfusedLoopTileSizes, [](Value val) { 367 if (auto cst = val.getDefiningOp<ConstantIndexOp>()) 368 return cst.getValue() != 0; 369 return true; 370 })) { 371 LinalgTilingOptions unfusedTilingOptions = tilingOptions; 372 unfusedTilingOptions.setTileSizes(unfusedLoopTileSizes); 373 Optional<TiledLinalgOp> unfusedTiledOp = 374 tileLinalgOp(rewriter, tiledAndFusedOps->op, unfusedTilingOptions); 375 if (!unfusedTiledOp) 376 return failure(); 377 rewriter.replaceOp(tiledAndFusedOps->op, 378 getTiledOpResult(unfusedTiledOp.getValue())); 379 tiledAndFusedOps->op = unfusedTiledOp->op; 380 } 381 op->replaceAllUsesWith(getTiledAndFusedOpResult(tiledAndFusedOps.getValue())); 382 383 filter.replaceLinalgTransformationFilter(rewriter, 384 tiledAndFusedOps->op.getOperation()); 385 for (auto fusedOp : tiledAndFusedOps->fusedProducers) { 386 fusedOpMarker.replaceLinalgTransformationFilter(rewriter, 387 fusedOp.getOperation()); 388 } 389 for (auto origProducerOp : ArrayRef<LinalgOp>(fusionOps).drop_back()) { 390 originalOpMarker.replaceLinalgTransformationFilter( 391 rewriter, origProducerOp.getOperation()); 392 } 393 rewriter.updateRootInPlace(op, [&]() { 394 originalOpMarker.replaceLinalgTransformationFilter(rewriter, op); 395 }); 396 return success(); 397 } 398 399 /// Linalg base interchange pattern. 400 mlir::linalg::LinalgBaseInterchangePattern::LinalgBaseInterchangePattern( 401 StringRef opName, MLIRContext *context, 402 ArrayRef<unsigned> interchangeVector, LinalgTransformationFilter filter, 403 PatternBenefit benefit) 404 : RewritePattern(opName, benefit, context, {}), filter(filter), 405 interchangeVector(interchangeVector.begin(), interchangeVector.end()) {} 406 407 LogicalResult mlir::linalg::LinalgBaseInterchangePattern::matchAndRewrite( 408 Operation *op, PatternRewriter &rewriter) const { 409 LinalgOp linalgOp = dyn_cast<LinalgOp>(op); 410 if (!linalgOp) 411 return failure(); 412 if (failed(filter.checkAndNotify(rewriter, linalgOp))) 413 return failure(); 414 if (failed(interchangeGenericLinalgOpPrecondition(op, interchangeVector))) 415 return failure(); 416 417 // TODO: figure out how this interplays with named ops. In particular this 418 // should break the named op property. 419 rewriter.updateRootInPlace(op, [&]() { 420 interchange(linalgOp, interchangeVector); 421 // New filter if specified. 422 filter.replaceLinalgTransformationFilter(rewriter, op); 423 }); 424 return success(); 425 } 426 427 mlir::linalg::LinalgBasePromotionPattern::LinalgBasePromotionPattern( 428 StringRef opName, MLIRContext *context, LinalgPromotionOptions options, 429 LinalgTransformationFilter filter, PatternBenefit benefit) 430 : RewritePattern(opName, benefit, context, {}), filter(filter), 431 options(options) {} 432 433 LogicalResult mlir::linalg::LinalgBasePromotionPattern::matchAndRewrite( 434 Operation *op, PatternRewriter &rewriter) const { 435 if (failed(filter.checkAndNotify(rewriter, op))) 436 return failure(); 437 if (failed(promoteSubviewsPrecondition(op, options))) 438 return failure(); 439 440 // TODO: We cannot use root update here. This pattern is creating other ops, 441 // so if the promotion fails, those need to be cleaned up, which doesnt seem 442 // to be happening here. So to fail properly, we should be cloning the op and 443 // deleting the previous op. This needs more investigation. 444 rewriter.startRootUpdate(op); 445 Optional<LinalgOp> promotedOp = promoteSubViews(rewriter, op, options); 446 if (!promotedOp) { 447 rewriter.cancelRootUpdate(op); 448 return op->emitError("subview promotion failed"); 449 } 450 rewriter.finalizeRootUpdate(op); 451 filter.replaceLinalgTransformationFilter(rewriter, op); 452 return success(); 453 } 454 455 mlir::linalg::LinalgBaseVectorizationPattern::LinalgBaseVectorizationPattern( 456 MLIRContext *context, LinalgTransformationFilter filter, 457 PatternBenefit benefit) 458 : RewritePattern(MatchAnyOpTypeTag(), benefit, context), filter(filter) {} 459 460 mlir::linalg::LinalgBaseVectorizationPattern::LinalgBaseVectorizationPattern( 461 StringRef opName, MLIRContext *context, LinalgTransformationFilter filter, 462 PatternBenefit benefit) 463 : RewritePattern(opName, benefit, context, {}), filter(filter) {} 464 465 LogicalResult mlir::linalg::LinalgBaseVectorizationPattern::matchAndRewrite( 466 Operation *op, PatternRewriter &rewriter) const { 467 LinalgOp linalgOp = dyn_cast<LinalgOp>(op); 468 if (!linalgOp) 469 return failure(); 470 if (failed(filter.checkAndNotify(rewriter, linalgOp))) 471 return failure(); 472 SmallVector<Value> newResults; 473 if (failed(vectorizeLinalgOp(rewriter, op, newResults))) 474 return failure(); 475 if (!newResults.empty()) 476 rewriter.replaceOp(op, newResults); 477 else 478 rewriter.eraseOp(op); 479 return success(); 480 } 481 482 LogicalResult mlir::linalg::applyStagedPatterns( 483 Operation *op, ArrayRef<FrozenRewritePatternSet> stage1Patterns, 484 const FrozenRewritePatternSet &stage2Patterns, 485 function_ref<LogicalResult(Operation *)> stage3Lambda) { 486 unsigned iteration = 0; 487 (void)iteration; 488 for (const auto &patterns : stage1Patterns) { 489 LLVM_DEBUG(DBGS() << "Before 1st stage, iter: " << ++iteration << "\n" 490 << *op); 491 if (failed(applyPatternsAndFoldGreedily(op, patterns))) { 492 LLVM_DEBUG(DBGS() << "Underlying first stage rewrite did not converge"); 493 return failure(); 494 } 495 LLVM_DEBUG(DBGS() << "After 1st stage, iter: " << ++iteration << "\n" 496 << *op); 497 if (failed(applyPatternsAndFoldGreedily(op, stage2Patterns))) { 498 LLVM_DEBUG(DBGS() << "Underlying 2nd stage rewrite did not converge"); 499 return failure(); 500 } 501 LLVM_DEBUG(DBGS() << "After 2nd stage, iter : " << iteration << "\n" 502 << *op); 503 if (stage3Lambda) { 504 if (failed(stage3Lambda(op))) 505 return failure(); 506 LLVM_DEBUG(DBGS() << "After 3rd stage, iter : " << iteration << "\n" 507 << *op); 508 } 509 } 510 return success(); 511 } 512 513 /// Given the `lbVal`, `ubVal` and `stepVal` of a loop, append `lbVal` and 514 /// `ubVal` to `dims` and `stepVal` to `symbols`. 515 /// Create new AffineDimExpr (`%lb` and `%ub`) and AffineSymbolExpr (`%step`) 516 /// with positions matching the newly appended values. Substitute occurrences of 517 /// `dimExpr` by either the min expression (i.e. `%lb`) or the max expression 518 /// (i.e. `%lb + %step * floordiv(%ub -1 - %lb, %step)`), depending on whether 519 /// the induction variable is used with a positive or negative coefficient. 520 static AffineExpr substituteLoopInExpr(AffineExpr expr, AffineExpr dimExpr, 521 Value lbVal, Value ubVal, Value stepVal, 522 SmallVectorImpl<Value> &dims, 523 SmallVectorImpl<Value> &symbols) { 524 MLIRContext *ctx = lbVal.getContext(); 525 AffineExpr lb = getAffineDimExpr(dims.size(), ctx); 526 dims.push_back(lbVal); 527 AffineExpr ub = getAffineDimExpr(dims.size(), ctx); 528 dims.push_back(ubVal); 529 AffineExpr step = getAffineSymbolExpr(symbols.size(), ctx); 530 symbols.push_back(stepVal); 531 LLVM_DEBUG(DBGS() << "Before: " << expr << "\n"); 532 AffineExpr ee = substWithMin(expr, dimExpr, lb, 533 lb + step * ((ub - 1) - lb).floorDiv(step)); 534 LLVM_DEBUG(DBGS() << "After: " << expr << "\n"); 535 return ee; 536 } 537 538 /// Traverse the `dims` and substitute known min or max expressions in place of 539 /// induction variables in `exprs`. 540 static AffineMap substitute( 541 AffineMap map, SmallVectorImpl<Value> &dims, 542 SmallVectorImpl<Value> &symbols, 543 llvm::function_ref<bool(Operation *)> substituteOperation = nullptr) { 544 auto exprs = llvm::to_vector<4>(map.getResults()); 545 for (AffineExpr &expr : exprs) { 546 bool substituted = true; 547 while (substituted) { 548 substituted = false; 549 for (unsigned dimIdx = 0; dimIdx < dims.size(); ++dimIdx) { 550 Value dim = dims[dimIdx]; 551 AffineExpr dimExpr = getAffineDimExpr(dimIdx, expr.getContext()); 552 LLVM_DEBUG(DBGS() << "Subst: " << dim << " @ " << dimExpr << "\n"); 553 AffineExpr substitutedExpr; 554 if (auto forOp = scf::getForInductionVarOwner(dim)) 555 if (!substituteOperation || substituteOperation(forOp)) 556 substitutedExpr = substituteLoopInExpr( 557 expr, dimExpr, forOp.lowerBound(), forOp.upperBound(), 558 forOp.step(), dims, symbols); 559 560 if (auto parallelForOp = scf::getParallelForInductionVarOwner(dim)) 561 if (!substituteOperation || substituteOperation(parallelForOp)) 562 for (unsigned idx = 0, e = parallelForOp.getNumLoops(); idx < e; 563 ++idx) 564 substitutedExpr = substituteLoopInExpr( 565 expr, dimExpr, parallelForOp.lowerBound()[idx], 566 parallelForOp.upperBound()[idx], parallelForOp.step()[idx], 567 dims, symbols); 568 569 if (!substitutedExpr) 570 continue; 571 572 substituted = (substitutedExpr != expr); 573 expr = substitutedExpr; 574 } 575 } 576 577 // Cleanup and simplify the results. 578 // This needs to happen outside of the loop iterating on dims.size() since 579 // it modifies dims. 580 SmallVector<Value, 4> operands(dims.begin(), dims.end()); 581 operands.append(symbols.begin(), symbols.end()); 582 auto map = AffineMap::get(dims.size(), symbols.size(), exprs, 583 exprs.front().getContext()); 584 585 LLVM_DEBUG({ 586 DBGS() << "Map to simplify: " << map << "\n"; 587 DBGS() << "Operands:\n"; 588 for (Value v : operands) 589 DBGS() << v << "\n"; 590 }); 591 592 // Pull in affine.apply operations and compose them fully into the 593 // result. 594 fullyComposeAffineMapAndOperands(&map, &operands); 595 canonicalizeMapAndOperands(&map, &operands); 596 map = simplifyAffineMap(map); 597 // Assign the results. 598 exprs.assign(map.getResults().begin(), map.getResults().end()); 599 dims.assign(operands.begin(), operands.begin() + map.getNumDims()); 600 symbols.assign(operands.begin() + map.getNumDims(), operands.end()); 601 602 LLVM_DEBUG(DBGS() << "Map simplified: " << map << "\n"); 603 } 604 605 assert(!exprs.empty() && "Unexpected empty exprs"); 606 return AffineMap::get(dims.size(), symbols.size(), exprs, map.getContext()); 607 } 608 609 /// Traverse the dims of the AffineMap of `affineMinOp` and substitute scf loop 610 /// induction variables by new expressions involving the lower or upper bound: 611 /// - If the AffineDimExpr mapped to a loop IV has a positive sign, it is 612 /// replaced by the loop upper bound. 613 /// - If the AffineDimExpr mapped to a loop IV has a negative sign, it is 614 /// replaced by the loop lower bound. 615 /// All loop induction variables are iteratively replaced, unless a 616 /// `substituteOperation` hook is passed to more finely determine which 617 /// operations are substituted. 618 /// This is used as an intermediate step in computing bounding boxes and 619 /// canonicalize AffineMinOps. All dim and symbol operands are assumed to have 620 /// positive values (positive orthant assumptions). 621 /// Return a new AffineMap, dims and symbols that have been canonicalized and 622 /// simplified. 623 AffineMapAndOperands mlir::linalg::substituteMin( 624 AffineMinOp affineMinOp, 625 llvm::function_ref<bool(Operation *)> substituteOperation) { 626 AffineMapAndOperands res{affineMinOp.getAffineMap(), 627 SmallVector<Value>(affineMinOp.getDimOperands()), 628 SmallVector<Value>(affineMinOp.getSymbolOperands())}; 629 res.map = substitute(affineMinOp.getAffineMap(), res.dims, res.symbols, 630 substituteOperation); 631 return res; 632 } 633 634 LogicalResult AffineMinSCFCanonicalizationPattern::matchAndRewrite( 635 AffineMinOp minOp, PatternRewriter &rewriter) const { 636 LLVM_DEBUG(DBGS() << "Canonicalize AffineMinSCF: " << *minOp.getOperation() 637 << "\n"); 638 639 auto affineMapAndOperands = substituteMin(minOp); 640 AffineMap map = affineMapAndOperands.map; 641 642 LLVM_DEBUG(DBGS() << "Resulting map: " << map << "\n"); 643 644 // Check whether any of the expressions, when subtracted from all other 645 // expressions, produces only >= 0 constants. If so, it is the min. 646 for (auto e : minOp.getAffineMap().getResults()) { 647 LLVM_DEBUG(DBGS() << "Candidate min: " << e << "\n"); 648 if (!e.isSymbolicOrConstant()) 649 continue; 650 651 auto isNonPositive = [](AffineExpr e) { 652 if (auto cst = e.dyn_cast<AffineConstantExpr>()) 653 return cst.getValue() < 0; 654 return true; 655 }; 656 657 // Build the subMap and check everything is statically known to be 658 // positive. 659 SmallVector<AffineExpr, 4> subExprs; 660 subExprs.reserve(map.getNumResults()); 661 for (auto ee : map.getResults()) 662 subExprs.push_back(ee - e); 663 MLIRContext *ctx = minOp.getContext(); 664 AffineMap subMap = simplifyAffineMap( 665 AffineMap::get(map.getNumDims(), map.getNumSymbols(), subExprs, ctx)); 666 LLVM_DEBUG(DBGS() << "simplified subMap: " << subMap << "\n"); 667 if (llvm::any_of(subMap.getResults(), isNonPositive)) 668 continue; 669 670 // Static min found. 671 if (auto cst = e.dyn_cast<AffineConstantExpr>()) { 672 rewriter.replaceOpWithNewOp<ConstantIndexOp>(minOp, cst.getValue()); 673 } else { 674 auto resultMap = AffineMap::get(0, map.getNumSymbols(), {e}, ctx); 675 SmallVector<Value> resultOperands = affineMapAndOperands.dims; 676 llvm::append_range(resultOperands, affineMapAndOperands.symbols); 677 canonicalizeMapAndOperands(&resultMap, &resultOperands); 678 resultMap = simplifyAffineMap(resultMap); 679 rewriter.replaceOpWithNewOp<AffineApplyOp>(minOp, resultMap, 680 resultOperands); 681 } 682 return success(); 683 } 684 685 return failure(); 686 } 687