1 //===- Transforms.cpp - Linalg transformations as patterns ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements logic and helpers to expose Linalg transforms as rewrite 10 // patterns. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 15 #include "mlir/Dialect/Affine/IR/AffineOps.h" 16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 17 #include "mlir/Dialect/Func/IR/FuncOps.h" 18 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" 19 #include "mlir/Dialect/Linalg/IR/Linalg.h" 20 #include "mlir/Dialect/Linalg/Transforms/HoistPadding.h" 21 #include "mlir/Dialect/Linalg/Utils/Utils.h" 22 #include "mlir/Dialect/SCF/Transforms/Transforms.h" 23 #include "mlir/Dialect/Tensor/IR/Tensor.h" 24 #include "mlir/Dialect/Tensor/IR/TensorTilingInterfaceImpl.h" 25 #include "mlir/Dialect/Utils/StaticValueUtils.h" 26 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 27 #include "mlir/Dialect/Vector/IR/VectorOps.h" 28 #include "mlir/IR/AffineExpr.h" 29 #include "mlir/IR/Matchers.h" 30 #include "mlir/Pass/Pass.h" 31 #include "mlir/Support/LLVM.h" 32 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 33 #include "llvm/ADT/ScopeExit.h" 34 #include "llvm/ADT/TypeSwitch.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <type_traits> 38 #include <utility> 39 40 #define DEBUG_TYPE "linalg-transforms" 41 42 using namespace mlir; 43 using namespace mlir::linalg; 44 45 #define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE << "]: ") 46 47 //===----------------------------------------------------------------------===// 48 // Transformations exposed as rewrite patterns. 49 //===----------------------------------------------------------------------===// 50 // Marker used as attribute name in generated Linalg rewriting transformations. 51 const StringLiteral mlir::linalg::LinalgTransforms::kLinalgTransformMarker = 52 "__internal_linalg_transform__"; 53 54 mlir::linalg::LinalgTransformationFilter::LinalgTransformationFilter( 55 ArrayRef<StringAttr> matchDisjunction, Optional<StringAttr> replacement) 56 : matchDisjunction(matchDisjunction.begin(), matchDisjunction.end()), 57 replacement(replacement), matchByDefault(false) {} 58 59 mlir::linalg::LinalgTransformationFilter::LinalgTransformationFilter( 60 const FilterFunction &f, ArrayRef<StringAttr> matchDisjunction, 61 Optional<StringAttr> replacement) 62 : filters(), 63 matchDisjunction(matchDisjunction.begin(), matchDisjunction.end()), 64 replacement(replacement), matchByDefault(false) { 65 if (f) 66 filters.push_back(f); 67 } 68 69 LogicalResult mlir::linalg::LinalgTransformationFilter::checkAndNotify( 70 PatternRewriter &rewriter, Operation *op) const { 71 if (llvm::any_of(filters, 72 [&](const FilterFunction &f) { return failed(f(op)); })) 73 return failure(); 74 75 auto attr = op->template getAttrOfType<StringAttr>( 76 LinalgTransforms::kLinalgTransformMarker); 77 78 if (!attr) { 79 // 1. Has no filter case and matchDisjunction is empty. 80 if (matchDisjunction.empty() || matchByDefault) 81 return success(); 82 83 // 2. Has no filter but was expecting a filter. 84 return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) { 85 diag << " does not have any filter from list: "; 86 interleaveComma(matchDisjunction, diag); 87 }); 88 } 89 90 // 4. Match explicit filter. 91 for (auto filter : matchDisjunction) 92 if (attr.getValue() == filter) 93 return success(); 94 95 // 5. Fail to match. 96 return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) { 97 diag << " does not have any filter from list: "; 98 interleaveComma(matchDisjunction, diag); 99 }); 100 } 101 102 void mlir::linalg::LinalgTransformationFilter:: 103 replaceLinalgTransformationFilter(PatternRewriter &rewriter, 104 Operation *op) const { 105 if (replacement.has_value()) 106 op->setAttr(LinalgTransforms::kLinalgTransformMarker, replacement.value()); 107 else 108 op->removeAttr( 109 rewriter.getStringAttr(LinalgTransforms::kLinalgTransformMarker)); 110 } 111 112 bool mlir::linalg::LinalgTransformationFilter::hasReplacementFilter( 113 Operation *op) const { 114 if (!replacement) 115 return false; 116 auto attr = op->getAttr(LinalgTransforms::kLinalgTransformMarker) 117 .dyn_cast<StringAttr>(); 118 return attr && attr == *replacement; 119 } 120 121 LinalgTilingOptions & 122 mlir::linalg::LinalgTilingOptions::setTileSizes(ArrayRef<int64_t> ts) { 123 assert(!tileSizeComputationFunction && "tile sizes already set"); 124 SmallVector<int64_t, 4> tileSizes(ts.begin(), ts.end()); 125 tileSizeComputationFunction = [tileSizes](OpBuilder &b, Operation *op) { 126 OpBuilder::InsertionGuard guard(b); 127 b.setInsertionPointToStart( 128 &op->getParentOfType<func::FuncOp>().getBody().front()); 129 return llvm::to_vector<4>(map_range(tileSizes, [&](int64_t s) { 130 Value v = b.create<arith::ConstantIndexOp>(op->getLoc(), s); 131 return v; 132 })); 133 }; 134 return *this; 135 } 136 137 LinalgTilingOptions &mlir::linalg::LinalgTilingOptions::scalarizeDynamicDims() { 138 assert(!tileSizeComputationFunction && "tile sizes already set"); 139 tileSizeComputationFunction = [](OpBuilder &b, Operation *op) { 140 SmallVector<Value, 4> tileSizes; 141 auto linalgOp = dyn_cast<LinalgOp>(op); 142 if (!linalgOp) 143 return tileSizes; 144 Location loc = linalgOp.getLoc(); 145 auto allShapeSizes = linalgOp.createFlatListOfOperandDims(b, loc); 146 AffineMap map = linalgOp.getShapesToLoopsMap(); 147 if (!map) 148 return tileSizes; 149 auto shapeSizes = applyMapToValues(b, loc, map, allShapeSizes); 150 // If the shape size is dynamic, tile by 1. Otherwise, do not tile (tile 151 // size 0). 152 for (Value shapeSize : shapeSizes) 153 tileSizes.push_back(getConstantIntValue(shapeSize) 154 ? b.create<arith::ConstantIndexOp>(loc, 0) 155 : b.create<arith::ConstantIndexOp>(loc, 1)); 156 return tileSizes; 157 }; 158 return *this; 159 } 160 161 /// Pad the `opOperand` in the `paddingDimensions` using the padding value and 162 /// the nofold flag found in `paddingValues` and `packPaddings`, respectively. 163 /// Exit early and return the `opOperand` value if the shape dimensions that 164 /// match `paddingDimensions` have a static size and the nofold flag is not set. 165 /// Otherwise, try to pad the shape dimensions that match the iterator 166 /// dimensions `paddingDimensions` and return the tensor::PadOp result if 167 /// padding succeeds or failure otherwise. 168 static FailureOr<Value> padOperandToSmallestStaticBoundingBox( 169 OpBuilder &b, linalg::LinalgOp opToPad, OpOperand *opOperand, 170 ArrayRef<int64_t> paddingDimensions, ArrayRef<Attribute> paddingValues, 171 ArrayRef<bool> packPaddings) { 172 AffineMap indexingMap = opToPad.getTiedIndexingMap(opOperand); 173 ArrayRef<int64_t> shape = opToPad.getShape(opOperand); 174 175 // Collect the shape dimension that are a function of the `paddingDimensions`. 176 llvm::SmallDenseSet<int64_t> shapeDimsToPad; 177 for (int64_t dim : paddingDimensions) 178 for (const auto &en : enumerate(indexingMap.getResults())) 179 if (en.value().isFunctionOfDim(dim)) 180 shapeDimsToPad.insert(en.index()); 181 182 // Return the unpadded operand if padding to a static shape is not needed and 183 // if the nofold flag is not set. 184 bool nofold = opOperand->getOperandNumber() < packPaddings.size() 185 ? packPaddings[opOperand->getOperandNumber()] 186 : false; 187 bool hasStaticShape = llvm::none_of(shapeDimsToPad, [&](int64_t dim) { 188 return ShapedType::isDynamic(shape[dim]); 189 }); 190 if (!nofold && hasStaticShape) 191 return opOperand->get(); 192 193 // Fail if `paddingValues` specifies no padding value. 194 if (opOperand->getOperandNumber() >= paddingValues.size()) 195 return failure(); 196 Attribute paddingAttr = paddingValues[opOperand->getOperandNumber()]; 197 Value paddingValue = b.create<arith::ConstantOp>( 198 opToPad.getLoc(), paddingAttr.getType(), paddingAttr); 199 200 // Follow the use-def chain if `currOpOperand` is defined by a LinalgOp. 201 OpOperand *currOpOperand = opOperand; 202 while (auto linalgOp = currOpOperand->get().getDefiningOp<LinalgOp>()) { 203 OpResult result = currOpOperand->get().cast<OpResult>(); 204 currOpOperand = linalgOp.getOutputOperand(result.getResultNumber()); 205 } 206 207 // Fail if `currOpOperand` is not defined by an ExtractSliceOp. 208 auto sliceOp = currOpOperand->get().getDefiningOp<tensor::ExtractSliceOp>(); 209 if (!sliceOp) 210 return failure(); 211 212 // Compute the dropped dimensions if `sliceOp` is ranke-reducing. 213 llvm::SmallBitVector droppedDims = sliceOp.getDroppedDims(); 214 OffsetSizeAndStrideOpInterface shapedOp = sliceOp; 215 216 // Upper bound the `sliceOp` sizes to obtain a static bounding box. 217 SmallVector<int64_t> paddedShape(shape.begin(), shape.end()); 218 int64_t shapeIdx = 0; 219 for (const auto &en : enumerate(shapedOp.getMixedSizes())) { 220 // Skip dropped dimensions. 221 if (droppedDims.test(en.index())) 222 continue; 223 // Skip dimensions that do not require padding. 224 if (!shapeDimsToPad.contains(shapeIdx)) { 225 shapeIdx++; 226 continue; 227 } 228 // If the size is an attribute add it directly to `paddedShape`. 229 if (en.value().is<Attribute>()) { 230 paddedShape[shapeIdx++] = 231 en.value().get<Attribute>().dyn_cast<IntegerAttr>().getInt(); 232 continue; 233 } 234 // Otherwise, try to compute a constant upper bound for the size value. 235 FailureOr<int64_t> upperBound = 236 getConstantUpperBoundForIndex(en.value().get<Value>()); 237 if (failed(upperBound)) { 238 LLVM_DEBUG(DBGS() << "No constant bounding box can be found for padding"); 239 return failure(); 240 } 241 paddedShape[shapeIdx++] = *upperBound; 242 } 243 assert(shapeIdx == static_cast<int64_t>(shape.size()) && 244 "expect the dynamic and static ranks to match"); 245 246 // Pad the operand to the bounding box defined by `paddedShape`. 247 auto paddedTensorType = RankedTensorType::get( 248 paddedShape, getElementTypeOrSelf(opOperand->get())); 249 return makeComposedPadHighOp(b, opToPad->getLoc(), paddedTensorType, 250 opOperand->get(), paddingValue, nofold); 251 } 252 253 FailureOr<SmallVector<Value>> 254 linalg::rewriteAsPaddedOp(OpBuilder &b, LinalgOp opToPad, 255 ArrayRef<int64_t> paddingDimensions, 256 ArrayRef<Attribute> paddingValues, 257 ArrayRef<bool> packPaddings, LinalgOp &paddedOp) { 258 Location loc = opToPad->getLoc(); 259 260 // TODO: there are cases where we may still want to pad to larger sizes. 261 assert(opToPad.hasTensorSemantics() && 262 "expected operation to have tensor semantics"); 263 264 OpBuilder::InsertionGuard g(b); 265 // Set IP after op because we also take the dims of the original output. 266 b.setInsertionPointAfter(opToPad); 267 // Make a copy of the shaped operands and update it. 268 SmallVector<Value> newOperands; 269 newOperands.reserve(opToPad.getNumInputsAndOutputs()); 270 for (OpOperand *opOperand : opToPad.getInputAndOutputOperands()) { 271 FailureOr<Value> paddedOperand = padOperandToSmallestStaticBoundingBox( 272 b, opToPad, opOperand, paddingDimensions, paddingValues, packPaddings); 273 // Exit if `paddingDimensions` cannot be bounded statically. 274 if (failed(paddedOperand)) 275 return failure(); 276 newOperands.push_back(*paddedOperand); 277 } 278 279 SmallVector<SmallVector<Value>> reifiedResultShapes; 280 if (failed(cast<ReifyRankedShapedTypeOpInterface>(opToPad.getOperation()) 281 .reifyResultShapes(b, reifiedResultShapes))) 282 return failure(); 283 assert(reifiedResultShapes.size() == opToPad->getNumResults() && 284 "expected same number of results"); 285 286 // Clone `opToPad` to operate on the statically padded shapes. 287 auto resultTensorTypes = 288 ValueRange(newOperands).take_back(opToPad.getNumOutputs()).getTypes(); 289 paddedOp = opToPad.clone(b, loc, resultTensorTypes, newOperands); 290 291 // Recover the slice out of the new static results. This keeps the original 292 // linalg op around because it uses the dims of the original results. 293 SmallVector<Value> paddedSubviewResults; 294 paddedSubviewResults.reserve(opToPad->getNumResults()); 295 for (const auto &en : llvm::enumerate(paddedOp->getResults())) { 296 Value paddedResult = en.value(); 297 int64_t resultNumber = en.index(); 298 int64_t rank = paddedResult.getType().cast<RankedTensorType>().getRank(); 299 SmallVector<OpFoldResult> offsets(rank, b.getIndexAttr(0)); 300 SmallVector<OpFoldResult> sizes; 301 for (Value v : reifiedResultShapes[resultNumber]) 302 sizes.push_back(getAsOpFoldResult(v)); 303 SmallVector<OpFoldResult> strides(rank, b.getIndexAttr(1)); 304 paddedSubviewResults.push_back(b.create<tensor::ExtractSliceOp>( 305 loc, paddedResult, offsets, sizes, strides)); 306 } 307 return paddedSubviewResults; 308 } 309 310 /// Try to peel a loop `op` and return the new result. 311 // TODO: Add support for scf.parallel and affine.for loops. 312 static SmallVector<Value, 4> peelLoop(RewriterBase &rewriter, Operation *op) { 313 return llvm::TypeSwitch<Operation *, SmallVector<Value, 4>>(op) 314 .Case<scf::ForOp>([&](scf::ForOp forOp) { 315 scf::ForOp partialIteration; 316 if (succeeded(scf::peelAndCanonicalizeForLoop(rewriter, forOp, 317 partialIteration))) 318 return partialIteration->getResults(); 319 assert(!partialIteration && "expected that loop was not peeled"); 320 return forOp->getResults(); 321 }) 322 .Default([&](Operation *op) { return op->getResults(); }); 323 } 324 325 /// Peel and canonicalize 'loops'. 326 void mlir::linalg::peelLoops(RewriterBase &rewriter, 327 ArrayRef<scf::ForOp> loops) { 328 for (auto loopOp : loops) { 329 SmallVector<Value, 4> loopResults; 330 loopResults = peelLoop(rewriter, loopOp); 331 } 332 } 333 334 /// Peel loops after tiling. 335 void mlir::linalg::peelTiledLinalgOp(RewriterBase &rewriter, TiledLinalgOp &res, 336 ArrayRef<int64_t> peeledLoops, 337 LinalgTilingLoopType loopType) { 338 for (int64_t loop : peeledLoops) { 339 assert(loop < static_cast<int64_t>(res.loops.size()) && 340 "requested peeling of non-existing loop"); 341 SmallVector<Value, 4> loopResults; 342 Operation *loopOp = res.loops[loop]; 343 loopResults = peelLoop(rewriter, loopOp); 344 345 // The result of the loop nest may change with peeling. 346 if (res.tensorResults.size() == loopOp->getNumResults() && 347 std::equal(res.tensorResults.begin(), res.tensorResults.end(), 348 loopOp->getResults().begin())) 349 res.tensorResults = loopResults; 350 } 351 } 352 353 /// Linalg tiling pattern. 354 mlir::linalg::LinalgTilingPattern::LinalgTilingPattern( 355 MLIRContext *context, LinalgTilingOptions options, 356 LinalgTransformationFilter f, PatternBenefit benefit) 357 : OpInterfaceRewritePattern<LinalgOp>(context, benefit), 358 filter(std::move(f)), options(std::move(options)) {} 359 360 mlir::linalg::LinalgTilingPattern::LinalgTilingPattern( 361 StringRef opName, MLIRContext *context, LinalgTilingOptions options, 362 LinalgTransformationFilter f, PatternBenefit benefit) 363 : OpInterfaceRewritePattern<LinalgOp>(context, benefit), 364 filter(f.addOpNameFilter(opName)), options(std::move(options)) {} 365 366 FailureOr<TiledLinalgOp> 367 mlir::linalg::LinalgTilingPattern::returningMatchAndRewrite( 368 LinalgOp op, PatternRewriter &rewriter) const { 369 if (failed(filter.checkAndNotify(rewriter, op))) 370 return failure(); 371 372 FailureOr<TiledLinalgOp> res = tileLinalgOp(rewriter, op, options); 373 if (failed(res)) 374 return failure(); 375 376 // Clear filter to stop recursive pattern application. 377 // This must be done here to properly propagate to peeling branches. 378 filter.replaceLinalgTransformationFilter(rewriter, res->op); 379 380 // Peel the loops of the TiledLinalgOp. 381 peelTiledLinalgOp(rewriter, *res, options.peeledLoops, options.loopType); 382 383 if (res->tensorResults.empty()) 384 rewriter.eraseOp(op); 385 else 386 rewriter.replaceOp(op, res->tensorResults); 387 388 return res; 389 } 390 391 /// Linalg padding pattern. 392 mlir::linalg::LinalgPaddingPattern::LinalgPaddingPattern( 393 MLIRContext *context, LinalgPaddingOptions options, 394 LinalgTransformationFilter f, PatternBenefit benefit) 395 : OpInterfaceRewritePattern<LinalgOp>(context, benefit), 396 filter(std::move(f)), options(std::move(options)) {} 397 398 mlir::linalg::LinalgPaddingPattern::LinalgPaddingPattern( 399 StringRef opName, MLIRContext *context, LinalgPaddingOptions options, 400 LinalgTransformationFilter f, PatternBenefit benefit) 401 : OpInterfaceRewritePattern<LinalgOp>(context, benefit), 402 filter(f.addOpNameFilter(opName)), options(std::move(options)) {} 403 404 FailureOr<LinalgOp> 405 mlir::linalg::LinalgPaddingPattern::returningMatchAndRewrite( 406 LinalgOp linalgOp, PatternRewriter &rewriter) const { 407 if (!linalgOp.hasTensorSemantics()) 408 return failure(); 409 if (failed(filter.checkAndNotify(rewriter, linalgOp))) 410 return failure(); 411 412 // Pad the operation. 413 LinalgOp paddedOp; 414 FailureOr<SmallVector<Value>> newResults = 415 rewriteAsPaddedOp(rewriter, linalgOp, options.paddingDimensions, 416 options.paddingValues, options.packPaddings, paddedOp); 417 if (failed(newResults)) 418 return failure(); 419 420 // Hoist the padding. 421 for (const auto &en : enumerate(options.hoistPaddings)) { 422 if (static_cast<int64_t>(en.index()) >= paddedOp.getNumInputsAndOutputs()) 423 break; 424 OpOperand *opOperand = &paddedOp->getOpOperand(en.index()); 425 auto padOp = opOperand->get().getDefiningOp<tensor::PadOp>(); 426 if (!padOp || en.value() == 0) 427 continue; 428 429 // Fail hoisting if the operand shape is not fully static. 430 if (llvm::any_of(paddedOp.getShape(opOperand), ShapedType::isDynamic)) 431 return failure(); 432 433 tensor::PadOp hoistedOp; 434 SmallVector<GenericOp> transposeOps; 435 SmallVector<int64_t> transposeVector = 436 en.index() < options.transposePaddings.size() 437 ? options.transposePaddings[en.index()] 438 : SmallVector<int64_t>{}; 439 440 FailureOr<Value> newResult = hoistPaddingOnTensors( 441 padOp, en.value(), transposeVector, hoistedOp, transposeOps); 442 if (failed(newResult)) 443 continue; 444 rewriter.replaceOp(padOp, *newResult); 445 446 // Do not apply hoist padding to the newly introduced transpose operations. 447 for (GenericOp transposeOp : transposeOps) 448 filter.replaceLinalgTransformationFilter(rewriter, transposeOp); 449 } 450 451 // Replace the original operation to pad. 452 rewriter.replaceOp(linalgOp, *newResults); 453 filter.replaceLinalgTransformationFilter(rewriter, paddedOp); 454 455 return paddedOp; 456 } 457 458 /// Linalg tile and fuse tensor ops pattern. 459 mlir::linalg::LinalgTileAndFuseTensorOpsPattern:: 460 LinalgTileAndFuseTensorOpsPattern(MLIRContext *context, 461 LinalgTilingAndFusionOptions options, 462 LinalgTransformationFilter f, 463 PatternBenefit benefit) 464 : RewritePattern(MatchAnyOpTypeTag(), benefit, context), 465 filter(std::move(f)), options(std::move(options)) {} 466 467 mlir::linalg::LinalgTileAndFuseTensorOpsPattern:: 468 LinalgTileAndFuseTensorOpsPattern(StringRef opName, MLIRContext *context, 469 LinalgTilingAndFusionOptions options, 470 LinalgTransformationFilter f, 471 PatternBenefit benefit) 472 : RewritePattern(opName, benefit, context), filter(std::move(f)), 473 options(std::move(options)) {} 474 475 FailureOr<mlir::linalg::TileLoopNest> 476 mlir::linalg::LinalgTileAndFuseTensorOpsPattern::returningMatchAndRewrite( 477 Operation *op, PatternRewriter &rewriter) const { 478 LinalgOp rootOp = dyn_cast<LinalgOp>(op); 479 if (!rootOp) 480 return failure(); 481 if (failed(filter.checkAndNotify(rewriter, op))) 482 return failure(); 483 484 // Check `tileSizes` contains a tile size for every `rootOp` loop dimension. 485 if (options.tileSizes.size() < rootOp.getNumLoops()) 486 return rewriter.notifyMatchFailure(op, "expect #tile sizes >= #loops"); 487 488 // Check `tileInterchange` contains no entries or as many as `tileSizes`. 489 if (!options.tileInterchange.empty() && 490 options.tileInterchange.size() != options.tileSizes.size()) 491 return rewriter.notifyMatchFailure( 492 op, "expect the number of tile sizes and interchange dims to match"); 493 494 // Copy the `tileSizes` and `tileInterchange` prefixes needed for `rootOp`. 495 SmallVector<int64_t> rootTileSizes(options.tileSizes.begin(), 496 options.tileSizes.begin() + 497 rootOp.getNumLoops()); 498 SmallVector<int64_t> rootInterchange = 499 options.tileInterchange.empty() 500 ? llvm::to_vector<6>(llvm::seq<int64_t>(0, rootOp.getNumLoops())) 501 : SmallVector<int64_t>(options.tileInterchange.begin(), 502 options.tileInterchange.begin() + 503 rootOp.getNumLoops()); 504 505 // Check `rootTileSizes` contains non-zero tile sizes. 506 if (llvm::count(rootTileSizes, 0) == static_cast<long>(rootTileSizes.size())) 507 return rewriter.notifyMatchFailure( 508 op, "expect at least one non-zero tile size"); 509 510 // Check `rootInterchange` is a permutation of the `rootOp` loop dimensions. 511 // It has to be a permutation since the tiling cannot tile the same loop 512 // dimension multiple times. 513 if (!isPermutation(rootInterchange)) 514 return rewriter.notifyMatchFailure( 515 op, "expect the tile interchange permutes the root loops"); 516 517 // Tile `rootOp` and fuse its producers. 518 FailureOr<TileLoopNest> tileLoopNest = 519 tileConsumerAndFuseProducers(rewriter, rootOp, rootTileSizes, 520 rootInterchange, options.tileDistribution); 521 if (failed(tileLoopNest)) 522 return rewriter.notifyMatchFailure( 523 op, "tileConsumerAndFuseProducers failed unexpectedly"); 524 525 // Replace all uses of the tiled loop operation. 526 rootOp->replaceAllUsesWith(tileLoopNest->getRootOpReplacementResults()); 527 528 // Apply the filter if specified. 529 for (LinalgOp linalgOp : tileLoopNest->getAllTiledAndFusedOps()) 530 filter.replaceLinalgTransformationFilter(rewriter, linalgOp); 531 return tileLoopNest; 532 } 533 534 /// Linalg generic interchange pattern. 535 mlir::linalg::GenericOpInterchangePattern::GenericOpInterchangePattern( 536 MLIRContext *context, ArrayRef<unsigned> interchangeVector, 537 LinalgTransformationFilter f, PatternBenefit benefit) 538 : OpRewritePattern(context, benefit), filter(std::move(f)), 539 interchangeVector(interchangeVector.begin(), interchangeVector.end()) {} 540 541 FailureOr<GenericOp> 542 mlir::linalg::GenericOpInterchangePattern::returningMatchAndRewrite( 543 GenericOp genericOp, PatternRewriter &rewriter) const { 544 if (failed(filter.checkAndNotify(rewriter, genericOp))) 545 return failure(); 546 547 FailureOr<GenericOp> transformedOp = 548 interchangeGenericOp(rewriter, genericOp, interchangeVector); 549 if (failed(transformedOp)) 550 return failure(); 551 552 // New filter if specified. 553 filter.replaceLinalgTransformationFilter(rewriter, genericOp); 554 return transformedOp; 555 } 556 557 /// Linalg generalization pattern. 558 mlir::linalg::LinalgGeneralizationPattern::LinalgGeneralizationPattern( 559 MLIRContext *context, LinalgTransformationFilter f, PatternBenefit benefit) 560 : OpInterfaceRewritePattern<LinalgOp>(context, benefit), 561 filter(std::move(f)) {} 562 563 mlir::linalg::LinalgGeneralizationPattern::LinalgGeneralizationPattern( 564 StringRef opName, MLIRContext *context, LinalgTransformationFilter f, 565 PatternBenefit benefit) 566 : OpInterfaceRewritePattern<LinalgOp>(context, benefit), 567 filter(f.addOpNameFilter(opName)) {} 568 569 FailureOr<GenericOp> 570 mlir::linalg::LinalgGeneralizationPattern::returningMatchAndRewrite( 571 LinalgOp linalgOp, PatternRewriter &rewriter) const { 572 if (failed(filter.checkAndNotify(rewriter, linalgOp))) 573 return failure(); 574 FailureOr<GenericOp> genericOp = generalizeNamedOp(rewriter, linalgOp); 575 if (failed(genericOp)) 576 return failure(); 577 filter.replaceLinalgTransformationFilter(rewriter, *genericOp); 578 return genericOp; 579 } 580 581 mlir::linalg::LinalgPeelingPattern::LinalgPeelingPattern( 582 MLIRContext *context, LinalgTransformationFilter f, 583 LinalgPeelOptions options, PatternBenefit benefit) 584 : OpInterfaceRewritePattern<LinalgOp>(context, benefit), 585 filter(std::move(f)), options(std::move(options)) {} 586 587 mlir::linalg::LinalgPeelingPattern::LinalgPeelingPattern( 588 StringRef opName, MLIRContext *context, LinalgPeelOptions options, 589 LinalgTransformationFilter f, PatternBenefit benefit) 590 : OpInterfaceRewritePattern<LinalgOp>(context, benefit), 591 filter(f.addOpNameFilter(opName)), options(std::move(options)) {} 592 593 LogicalResult mlir::linalg::LinalgPeelingPattern::matchAndRewrite( 594 LinalgOp linalgOp, PatternRewriter &rewriter) const { 595 if (failed(filter.checkAndNotify(rewriter, linalgOp))) 596 return failure(); 597 598 // Increase marker counter even if peeling doesn't happen for this op. 599 filter.replaceLinalgTransformationFilter(rewriter, linalgOp); 600 601 if (!options.loopsToPeelComputationFunction) 602 return failure(); 603 604 SmallVector<scf::ForOp, 4> loopsToPeel; 605 options.loopsToPeelComputationFunction(rewriter, linalgOp, loopsToPeel); 606 peelLoops(rewriter, loopsToPeel); 607 return success(); 608 } 609 610 mlir::linalg::LinalgVectorizationPattern::LinalgVectorizationPattern( 611 MLIRContext *context, LinalgTransformationFilter f, 612 LinalgVectorizationOptions options, PatternBenefit benefit) 613 : OpInterfaceRewritePattern<LinalgOp>(context, benefit), 614 filter(std::move(f)) {} 615 616 mlir::linalg::LinalgVectorizationPattern::LinalgVectorizationPattern( 617 StringRef opName, MLIRContext *context, LinalgVectorizationOptions options, 618 LinalgTransformationFilter f, PatternBenefit benefit) 619 : OpInterfaceRewritePattern<LinalgOp>(context, benefit), 620 filter(f.addOpNameFilter(opName)) {} 621 622 LogicalResult mlir::linalg::LinalgVectorizationPattern::matchAndRewrite( 623 LinalgOp linalgOp, PatternRewriter &rewriter) const { 624 if (failed(filter.checkAndNotify(rewriter, linalgOp))) 625 return failure(); 626 return vectorize(rewriter, linalgOp); 627 } 628 629 LogicalResult mlir::linalg::CopyVectorizationPattern::matchAndRewrite( 630 memref::CopyOp copyOp, PatternRewriter &rewriter) const { 631 return vectorizeCopy(rewriter, copyOp); 632 } 633 634 LogicalResult mlir::linalg::applyStagedPatterns( 635 Operation *op, ArrayRef<FrozenRewritePatternSet> stage1Patterns, 636 const FrozenRewritePatternSet &stage2Patterns, 637 function_ref<LogicalResult(Operation *)> stage3Lambda) { 638 unsigned iteration = 0; 639 (void)iteration; 640 for (const auto &patterns : stage1Patterns) { 641 LLVM_DEBUG(DBGS() << "Before 1st stage, iter: " << ++iteration << "\n" 642 << *op); 643 if (failed(applyPatternsAndFoldGreedily(op, patterns))) { 644 LLVM_DEBUG(DBGS() << "Underlying first stage rewrite did not converge"); 645 return failure(); 646 } 647 LLVM_DEBUG(DBGS() << "After 1st stage, iter: " << ++iteration << "\n" 648 << *op); 649 if (failed(applyPatternsAndFoldGreedily(op, stage2Patterns))) { 650 LLVM_DEBUG(DBGS() << "Underlying 2nd stage rewrite did not converge"); 651 return failure(); 652 } 653 LLVM_DEBUG(DBGS() << "After 2nd stage, iter : " << iteration << "\n" 654 << *op); 655 if (stage3Lambda) { 656 if (failed(stage3Lambda(op))) 657 return failure(); 658 LLVM_DEBUG(DBGS() << "After 3rd stage, iter : " << iteration << "\n" 659 << *op); 660 } 661 } 662 return success(); 663 } 664 665 static SmallVector<StringRef> getNParallelLoopsAttrs(unsigned nParallelLoops) { 666 return SmallVector<StringRef>(nParallelLoops, getParallelIteratorTypeName()); 667 } 668 669 /// Rewrite a tensor::PadOp into a sequence of InitTensorOp, FillOp (to 670 /// initialize with pad_val) and GenericOp (to copy contents). 671 LogicalResult 672 PadOpTransformationPattern::matchAndRewrite(tensor::PadOp padOp, 673 PatternRewriter &rewriter) const { 674 675 auto inputShapedType = padOp.getSource().getType().cast<ShapedType>(); 676 auto resultShapedType = padOp.getResult().getType().cast<ShapedType>(); 677 678 // Bail on non-static shapes. 679 if (!inputShapedType.hasStaticShape()) 680 return failure(); 681 if (!resultShapedType.hasStaticShape()) 682 return failure(); 683 684 // Only support padding with a constant for now, i.e. either: 685 // 1. A BBarg from a different block. 686 // 2. A value defined outside of the current block. 687 Block &block = padOp.getRegion().front(); 688 auto yieldOp = cast<tensor::YieldOp>(block.getTerminator()); 689 Value padValue = yieldOp.getValue(); 690 Operation *definingOp = padValue.getDefiningOp(); 691 if (definingOp && definingOp->getBlock() == &block) 692 return failure(); 693 if (!definingOp && padValue.cast<BlockArgument>().getOwner() == &block) 694 return failure(); 695 696 // Create tensor with the padded shape 697 Location loc = padOp.getLoc(); 698 SmallVector<Value> indices(resultShapedType.getRank(), 699 rewriter.create<arith::ConstantIndexOp>(loc, 0)); 700 Value initTensor = rewriter.create<InitTensorOp>( 701 loc, resultShapedType.getShape(), resultShapedType.getElementType()); 702 703 // Initialize tensor with the pad value 704 Value tmpTensor = rewriter 705 .create<linalg::FillOp>(loc, ValueRange{padValue}, 706 ValueRange{initTensor}) 707 .result(); 708 709 // Copy original contents into new tensor 710 // Uses linalg.generic, but could be done with tensor.insert_slice 711 SmallVector<AffineExpr, 4> outputExprs; 712 for (unsigned i = 0; i < resultShapedType.getRank(); ++i) { 713 outputExprs.push_back(getAffineDimExpr(i, rewriter.getContext()) + 714 padOp.getStaticLow()[i].cast<IntegerAttr>().getInt()); 715 } 716 717 SmallVector<AffineMap, 2> transferMaps = { 718 rewriter.getMultiDimIdentityMap(inputShapedType.getRank()), 719 AffineMap::get(resultShapedType.getRank(), 720 /*symbolCount=*/0, outputExprs, rewriter.getContext())}; 721 722 rewriter.replaceOpWithNewOp<linalg::GenericOp>( 723 padOp, resultShapedType, padOp.getSource(), tmpTensor, transferMaps, 724 getNParallelLoopsAttrs(resultShapedType.getRank()), 725 [&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange args) { 726 nestedBuilder.create<linalg::YieldOp>(nestedLoc, args[0]); 727 }); 728 729 return success(); 730 } 731 732 /// Filling `dest` using FillOp constant padding value if possible. 733 /// Otherwise, generate a tensor::GenerateOp. 734 Value GeneralizePadOpPattern::createFillOrGenerateOp( 735 PatternRewriter &rewriter, tensor::PadOp padOp, Value dest, 736 const SmallVector<Value> &dynSizes) const { 737 auto padValue = padOp.getConstantPaddingValue(); 738 if (padValue) 739 return rewriter.create<FillOp>(padOp.getLoc(), padValue, dest).result(); 740 741 // Fill could not be optimized: Lower to tensor::GenerateOp with region. 742 auto generateOp = rewriter.create<tensor::GenerateOp>( 743 padOp.getLoc(), padOp.getResultType(), dynSizes); 744 // Copy region to new op. 745 BlockAndValueMapping bvm; 746 padOp.getRegion().cloneInto(&generateOp.getRegion(), bvm); 747 return generateOp; 748 } 749 750 LogicalResult 751 GeneralizePadOpPattern::matchAndRewrite(tensor::PadOp padOp, 752 PatternRewriter &rewriter) const { 753 // Given an OpFoldResult, return an index-typed value. 754 auto getIdxValue = [&](OpFoldResult ofr) { 755 if (auto val = ofr.dyn_cast<Value>()) 756 return val; 757 return rewriter 758 .create<arith::ConstantIndexOp>( 759 padOp.getLoc(), ofr.get<Attribute>().cast<IntegerAttr>().getInt()) 760 .getResult(); 761 }; 762 763 auto resultType = padOp.getResultType(); 764 // Compute size of InitTensorOp. Any combination of static/dynamic is 765 // supported. 766 SmallVector<Value> dynSizes; 767 SmallVector<int64_t> staticSizes; 768 for (unsigned dim = 0; dim < resultType.getRank(); ++dim) { 769 if (resultType.isDynamicDim(dim)) { 770 auto srcSize = rewriter.createOrFold<tensor::DimOp>( 771 padOp.getLoc(), padOp.getSource(), dim); 772 // Add low and high padding value. 773 auto plusLow = rewriter.createOrFold<arith::AddIOp>( 774 padOp.getLoc(), srcSize, getIdxValue(padOp.getMixedLowPad()[dim])); 775 auto plusHigh = rewriter.createOrFold<arith::AddIOp>( 776 padOp.getLoc(), plusLow, getIdxValue(padOp.getMixedHighPad()[dim])); 777 dynSizes.push_back(plusHigh); 778 } 779 staticSizes.push_back(resultType.getDimSize(dim)); 780 } 781 782 // Init tensor and fill it with padding. 783 Value init = rewriter.create<InitTensorOp>( 784 padOp.getLoc(), dynSizes, staticSizes, resultType.getElementType()); 785 Value fill = createFillOrGenerateOp(rewriter, padOp, init, dynSizes); 786 787 // Try optimize the copy of source. 788 if (optimizeCopyFn && optimizeCopyFn(rewriter, padOp, fill).succeeded()) 789 return success(); 790 791 // tensor::PadOps cannot be optimized. Generate a InsertSliceOp instead 792 // for copying the PadOp source. 793 auto sourceType = padOp.getSourceType(); 794 // Compute size of source of tensor::PadOp. 795 SmallVector<OpFoldResult> srcSizes; 796 for (unsigned dim = 0; dim < sourceType.getRank(); ++dim) { 797 if (sourceType.isDynamicDim(dim)) { 798 srcSizes.push_back(rewriter.createOrFold<tensor::DimOp>( 799 padOp.getLoc(), padOp.getSource(), dim)); 800 } else { 801 srcSizes.push_back(rewriter.getIndexAttr(sourceType.getDimSize(dim))); 802 } 803 } 804 // Strides of InsertSliceOp are all 1. 805 SmallVector<OpFoldResult> strides(sourceType.getRank(), 806 rewriter.getIndexAttr(1)); 807 rewriter.replaceOpWithNewOp<tensor::InsertSliceOp>( 808 padOp, padOp.getSource(), fill, padOp.getMixedLowPad(), srcSizes, 809 strides); 810 811 return success(); 812 } 813 814 LogicalResult ExtractSliceOfPadTensorSwapPattern::matchAndRewrite( 815 tensor::ExtractSliceOp sliceOp, PatternRewriter &rewriter) const { 816 if (!sliceOp.hasUnitStride()) 817 return failure(); 818 819 auto padOp = sliceOp.getSource().getDefiningOp<tensor::PadOp>(); 820 if (!padOp) 821 return failure(); 822 823 bool zeroSliceGuard = true; 824 if (controlFn) { 825 if (Optional<bool> control = controlFn(sliceOp)) 826 zeroSliceGuard = *control; 827 else 828 return failure(); 829 } 830 831 Operation *tiledPadOp = 832 tensor::bubbleUpPadSlice(rewriter, padOp, sliceOp.getMixedOffsets(), 833 sliceOp.getMixedSizes(), zeroSliceGuard); 834 // All shapes are static and the data source is actually used. Rewrite into 835 // pad(extract_slice(x)). 836 rewriter.replaceOp(sliceOp, tiledPadOp->getResults()); 837 return success(); 838 } 839 840 // The following are patterns for downscaling convolution ops with size-1 841 // window dimensions. 842 // 843 // Note that we'd eventually want to write such transformations in a generic 844 // way, e.g., converting to linalg.generic, removing the size-1 dimensions, 845 // and then turning back to named ops. But for now it's fine to have a few 846 // patterns matching special ops to get started. 847 848 FailureOr<Conv1DNwcWcfOp> 849 DownscaleSizeOneWindowed2DConvolution::returningMatchAndRewrite( 850 linalg::Conv2DNhwcHwcfOp convOp, PatternRewriter &rewriter) const { 851 if (failed(filter.checkAndNotify(rewriter, convOp))) 852 return failure(); 853 if (convOp.hasBufferSemantics()) 854 return failure(); // To be implemented. 855 856 Value input = convOp.inputs().front(); 857 Value kernel = convOp.inputs().back(); 858 Value output = convOp.outputs().front(); 859 860 auto inputType = input.getType().dyn_cast<RankedTensorType>(); 861 auto kernelType = kernel.getType().dyn_cast<RankedTensorType>(); 862 auto outputType = output.getType().dyn_cast<RankedTensorType>(); 863 864 auto kernelShape = kernelType.getShape(); 865 auto outputShape = outputType.getShape(); 866 867 // Only handle the case where at least one of the window dimensions is 868 // of size 1. Other cases can rely on tiling to reduce to such cases. 869 int64_t khSize = kernelShape[0], kwSize = kernelShape[1]; 870 int64_t ohSize = outputShape[1], owSize = outputShape[2]; 871 bool removeH = (khSize == 1 && ohSize == 1); 872 bool removeW = (kwSize == 1 && owSize == 1); 873 if (!removeH && !removeW) 874 return failure(); 875 876 // Get new shapes and types for all operands by removing the size-1 877 // dimension. 878 using RTTBuilder = RankedTensorType::Builder; 879 RankedTensorType newInputType = 880 RTTBuilder(inputType).dropDim((removeH ? 1 : 2)); 881 RankedTensorType newKernelType = 882 RTTBuilder(kernelType).dropDim((removeH ? 0 : 1)); 883 RankedTensorType newOutputType = 884 RTTBuilder(outputType).dropDim(removeH ? 1 : 2); 885 886 // Rank-reduce operands. 887 Location loc = convOp.getLoc(); 888 Value newInput = tensor::createCanonicalRankReducingExtractSliceOp( 889 rewriter, loc, input, newInputType); 890 Value newKernel = tensor::createCanonicalRankReducingExtractSliceOp( 891 rewriter, loc, kernel, newKernelType); 892 Value newOutput = tensor::createCanonicalRankReducingExtractSliceOp( 893 rewriter, loc, output, newOutputType); 894 895 // Rank-reduce strides and dilations too. 896 // TODO: dropDim 1-liner helper. 897 auto strides = llvm::to_vector<4>(convOp.strides().getValues<int64_t>()); 898 strides.erase(strides.begin() + (removeH ? 0 : 1)); 899 auto stridesAttr = rewriter.getI64VectorAttr(strides); 900 901 auto dilations = llvm::to_vector<4>(convOp.dilations().getValues<int64_t>()); 902 dilations.erase(dilations.begin() + (removeH ? 0 : 1)); 903 auto dilationsAttr = rewriter.getI64VectorAttr(dilations); 904 905 auto conv1DOp = rewriter.create<linalg::Conv1DNwcWcfOp>( 906 loc, newOutputType, ValueRange{newInput, newKernel}, 907 ValueRange{newOutput}, stridesAttr, dilationsAttr); 908 909 // Insert back. 910 Value inserted = tensor::createCanonicalRankReducingInsertSliceOp( 911 rewriter, loc, conv1DOp.getResult(0), output); 912 rewriter.replaceOp(convOp, inserted); 913 914 filter.replaceLinalgTransformationFilter(rewriter, conv1DOp); 915 return conv1DOp; 916 } 917 918 FailureOr<DepthwiseConv1DNwcWcOp> 919 DownscaleDepthwiseConv2DNhwcHwcOp::returningMatchAndRewrite( 920 DepthwiseConv2DNhwcHwcOp convOp, PatternRewriter &rewriter) const { 921 if (failed(filter.checkAndNotify(rewriter, convOp))) 922 return failure(); 923 if (convOp.hasBufferSemantics()) 924 return failure(); // To be implemented. 925 926 Value input = convOp.inputs().front(); 927 Value kernel = convOp.inputs().back(); 928 Value output = convOp.outputs().front(); 929 930 auto inputType = input.getType().dyn_cast<RankedTensorType>(); 931 auto kernelType = kernel.getType().dyn_cast<RankedTensorType>(); 932 auto outputType = output.getType().dyn_cast<RankedTensorType>(); 933 934 auto kernelShape = kernelType.getShape(); 935 auto outputShape = outputType.getShape(); 936 937 // Only handle the case where at least one of the window dimensions is 938 // of size 1. Other cases can rely on tiling to reduce to such cases. 939 int64_t khSize = kernelShape[0], kwSize = kernelShape[1]; 940 int64_t ohSize = outputShape[1], owSize = outputShape[2]; 941 bool removeH = (khSize == 1 && ohSize == 1); 942 bool removeW = (kwSize == 1 && owSize == 1); 943 if (!removeH && !removeW) 944 return failure(); 945 946 // Get new shapes and types for all operands by removing the size-1 947 // dimension. 948 using RTTBuilder = RankedTensorType::Builder; 949 RankedTensorType newInputType = 950 RTTBuilder(inputType).dropDim((removeH ? 1 : 2)); 951 RankedTensorType newKernelType = 952 RTTBuilder(kernelType).dropDim((removeH ? 0 : 1)); 953 RankedTensorType newOutputType = 954 RTTBuilder(outputType).dropDim(removeH ? 1 : 2); 955 956 // Rank-reduce operands. 957 Location loc = convOp.getLoc(); 958 Value newInput = tensor::createCanonicalRankReducingExtractSliceOp( 959 rewriter, loc, input, newInputType); 960 Value newKernel = tensor::createCanonicalRankReducingExtractSliceOp( 961 rewriter, loc, kernel, newKernelType); 962 Value newOutput = tensor::createCanonicalRankReducingExtractSliceOp( 963 rewriter, loc, output, newOutputType); 964 965 // Rank-reduce strides and dilations too. 966 // TODO: dropDim 1-liner helper. 967 auto strides = llvm::to_vector<4>(convOp.strides().getValues<int64_t>()); 968 strides.erase(strides.begin() + (removeH ? 0 : 1)); 969 auto stridesAttr = rewriter.getI64VectorAttr(strides); 970 971 auto dilations = llvm::to_vector<4>(convOp.dilations().getValues<int64_t>()); 972 dilations.erase(dilations.begin() + (removeH ? 0 : 1)); 973 auto dilationsAttr = rewriter.getI64VectorAttr(dilations); 974 975 auto conv1DOp = rewriter.create<DepthwiseConv1DNwcWcOp>( 976 loc, newOutputType, ValueRange{newInput, newKernel}, 977 ValueRange{newOutput}, stridesAttr, dilationsAttr); 978 979 // Insert back. 980 Value inserted = tensor::createCanonicalRankReducingInsertSliceOp( 981 rewriter, loc, conv1DOp.getResult(0), output); 982 rewriter.replaceOp(convOp, inserted); 983 984 filter.replaceLinalgTransformationFilter(rewriter, conv1DOp); 985 return conv1DOp; 986 } 987 988 void linalg::populateDecomposeConvolutionPatterns( 989 RewritePatternSet &patterns, const LinalgTransformationFilter &filter, 990 PatternBenefit benefit) { 991 patterns.add<DownscaleSizeOneWindowed2DConvolution, 992 DownscaleDepthwiseConv2DNhwcHwcOp>(patterns.getContext(), filter, 993 benefit); 994 } 995