1 //===- LinalgTransforms.cpp - Linalg transformations as patterns ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements logic and helpers to expose Linalg transforms as rewrite 10 // patterns. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 15 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" 16 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 17 #include "mlir/Dialect/Linalg/Utils/Utils.h" 18 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h" 19 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 20 #include "mlir/Dialect/Vector/EDSC/Intrinsics.h" 21 #include "mlir/Dialect/Vector/VectorOps.h" 22 #include "mlir/IR/AffineExpr.h" 23 #include "mlir/IR/Matchers.h" 24 #include "mlir/Pass/Pass.h" 25 #include "mlir/Support/LLVM.h" 26 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include <type_traits> 30 31 #define DEBUG_TYPE "linalg-transforms" 32 33 using namespace mlir; 34 using namespace mlir::edsc; 35 using namespace mlir::edsc::intrinsics; 36 using namespace mlir::linalg; 37 38 #define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE << "]: ") 39 40 //===----------------------------------------------------------------------===// 41 // Transformations exposed as rewrite patterns. 42 //===----------------------------------------------------------------------===// 43 // Marker used as attribute name in generated Linalg rewriting transformations. 44 const StringLiteral mlir::linalg::LinalgTransforms::kLinalgTransformMarker = 45 "__internal_linalg_transform__"; 46 47 mlir::linalg::LinalgMarker::LinalgMarker(ArrayRef<Identifier> matchDisjunction, 48 Optional<Identifier> replacement) 49 : matchDisjunction(matchDisjunction.begin(), matchDisjunction.end()), 50 replacement(replacement) {} 51 52 LogicalResult 53 mlir::linalg::LinalgMarker::checkAndNotify(PatternRewriter &rewriter, 54 Operation *op) const { 55 auto attr = op->template getAttrOfType<StringAttr>( 56 LinalgTransforms::kLinalgTransformMarker); 57 58 if (!attr) { 59 // 1. Has no marker case and matchDisjunction is empty. 60 if (matchDisjunction.empty()) 61 return success(); 62 63 // 2. Has no marker but was expecting a marker. 64 return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) { 65 diag << " does not have any marker from list: "; 66 interleaveComma(matchDisjunction, diag); 67 }); 68 } 69 70 // 4. Match explicit marker. 71 for (auto marker : matchDisjunction) 72 if (attr.getValue() == marker) 73 return success(); 74 75 // 5. Fail to match. 76 return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) { 77 diag << " does not have any marker from list: "; 78 interleaveComma(matchDisjunction, diag); 79 }); 80 } 81 82 void mlir::linalg::LinalgMarker::replaceLinalgMarker(PatternRewriter &rewriter, 83 Operation *op) const { 84 if (replacement.hasValue()) 85 op->setAttr(LinalgTransforms::kLinalgTransformMarker, 86 rewriter.getStringAttr(replacement.getValue())); 87 else 88 op->removeAttr(Identifier::get(LinalgTransforms::kLinalgTransformMarker, 89 rewriter.getContext())); 90 } 91 92 LinalgTilingOptions & 93 mlir::linalg::LinalgTilingOptions::setTileSizes(ArrayRef<int64_t> ts) { 94 SmallVector<int64_t, 4> tileSizes(ts.begin(), ts.end()); 95 tileSizeComputationFunction = [tileSizes](OpBuilder &b, Operation *op) { 96 OpBuilder::InsertionGuard guard(b); 97 b.setInsertionPointToStart( 98 &op->getParentOfType<FuncOp>().getBody().front()); 99 return llvm::to_vector<4>(map_range(tileSizes, [&](int64_t s) { 100 Value v = b.create<ConstantIndexOp>(op->getLoc(), s); 101 return v; 102 })); 103 }; 104 return *this; 105 } 106 107 /// Linalg base tiling pattern. 108 mlir::linalg::LinalgBaseTilingPattern::LinalgBaseTilingPattern( 109 StringRef opName, MLIRContext *context, LinalgTilingOptions options, 110 LinalgMarker marker, PatternBenefit benefit) 111 : RewritePattern(opName, {}, benefit, context), marker(marker), 112 options(options) {} 113 114 LogicalResult mlir::linalg::LinalgBaseTilingPattern::matchAndRewriteBase( 115 Operation *op, PatternRewriter &rewriter, 116 SmallVectorImpl<Value> &tensorResults) const { 117 LinalgOp linalgOp = dyn_cast<LinalgOp>(op); 118 if (!linalgOp) 119 return failure(); 120 if (failed(marker.checkAndNotify(rewriter, linalgOp))) 121 return failure(); 122 123 // If LinalgOp has results, they must all be tied to init tensors. 124 // We enforce this to ensure all tiled ops have been rewritten in 125 // "init tensor" form. This ensures tiling has anchor values into which to 126 // subtensor / subtensor_insert. Otherwise tiling would need to allocate which 127 // is not acceptable. 128 // This would not be the case with a special terminator op that generates the 129 // whole tensor (instead of inserting a subtensor). But the generator-based 130 // abstraction has other issues. 131 if (linalgOp.getNumInitTensors() != linalgOp.getOperation()->getNumResults()) 132 return failure(); 133 134 Optional<TiledLinalgOp> res = tileLinalgOp(rewriter, linalgOp, options); 135 136 if (!res) 137 return failure(); 138 139 // Return relevant information to derived pattern. 140 tensorResults = res->tensorResults; 141 142 // New marker if specified. 143 marker.replaceLinalgMarker(rewriter, res->op.getOperation()); 144 return success(); 145 } 146 147 mlir::linalg::LinalgBaseTileAndFusePattern::LinalgBaseTileAndFusePattern( 148 StringRef opName, MLIRContext *context, 149 const LinalgDependenceGraph &dependenceGraph, 150 LinalgTilingOptions tilingOptions, LinalgFusionOptions fusionOptions, 151 LinalgMarker marker, LinalgMarker fusedOpMarker, 152 LinalgMarker originalOpMarker, PatternBenefit benefit) 153 : RewritePattern(opName, {}, benefit, context), 154 dependenceGraph(dependenceGraph), tilingOptions(tilingOptions), 155 fusionOptions(fusionOptions), marker(marker), 156 fusedOpMarker(fusedOpMarker), originalOpMarker(originalOpMarker) {} 157 158 LogicalResult mlir::linalg::LinalgBaseTileAndFusePattern::matchAndRewrite( 159 Operation *op, PatternRewriter &rewriter) const { 160 LinalgOp linalgOp = dyn_cast<LinalgOp>(op); 161 if (!linalgOp) 162 return failure(); 163 if (failed(marker.checkAndNotify(rewriter, linalgOp))) 164 return failure(); 165 if (!linalgOp.hasBufferSemantics()) 166 return failure(); 167 168 Optional<TiledAndFusedLinalgOps> tiledAndFusedOps = tileAndFuseLinalgOps( 169 rewriter, op, dependenceGraph, tilingOptions, fusionOptions); 170 if (!tiledAndFusedOps) 171 return failure(); 172 marker.replaceLinalgMarker(rewriter, tiledAndFusedOps->op.getOperation()); 173 for (auto fusedOp : tiledAndFusedOps->fusedProducers) { 174 fusedOpMarker.replaceLinalgMarker(rewriter, fusedOp.getOperation()); 175 } 176 for (auto origProducerOp : tiledAndFusedOps->originalProducers) 177 originalOpMarker.replaceLinalgMarker(rewriter, 178 origProducerOp.getOperation()); 179 rewriter.updateRootInPlace( 180 op, [&]() { originalOpMarker.replaceLinalgMarker(rewriter, op); }); 181 return success(); 182 } 183 184 /// Linalg base interchange pattern. 185 mlir::linalg::LinalgBaseInterchangePattern::LinalgBaseInterchangePattern( 186 StringRef opName, MLIRContext *context, 187 ArrayRef<unsigned> interchangeVector, LinalgMarker marker, 188 PatternBenefit benefit) 189 : RewritePattern(opName, {}, benefit, context), marker(marker), 190 interchangeVector(interchangeVector.begin(), interchangeVector.end()) {} 191 192 LogicalResult mlir::linalg::LinalgBaseInterchangePattern::matchAndRewrite( 193 Operation *op, PatternRewriter &rewriter) const { 194 LinalgOp linalgOp = dyn_cast<LinalgOp>(op); 195 if (!linalgOp) 196 return failure(); 197 if (failed(marker.checkAndNotify(rewriter, linalgOp))) 198 return failure(); 199 if (failed(interchangeGenericLinalgOpPrecondition(op, interchangeVector))) 200 return failure(); 201 202 // TODO: figure out how this interplays with named ops. In particular this 203 // should break the named op property. 204 rewriter.updateRootInPlace(op, [&]() { 205 interchange(linalgOp, interchangeVector); 206 // New marker if specified. 207 marker.replaceLinalgMarker(rewriter, op); 208 }); 209 return success(); 210 } 211 212 mlir::linalg::LinalgBasePromotionPattern::LinalgBasePromotionPattern( 213 StringRef opName, MLIRContext *context, LinalgPromotionOptions options, 214 LinalgMarker marker, PatternBenefit benefit) 215 : RewritePattern(opName, {}, benefit, context), marker(marker), 216 options(options) {} 217 218 LogicalResult mlir::linalg::LinalgBasePromotionPattern::matchAndRewrite( 219 Operation *op, PatternRewriter &rewriter) const { 220 if (failed(marker.checkAndNotify(rewriter, op))) 221 return failure(); 222 if (failed(promoteSubviewsPrecondition(op, options))) 223 return failure(); 224 225 // TODO: We cannot use root update here. This pattern is creating other ops, 226 // so if the promotion fails, those need to be cleaned up, which doesnt seem 227 // to be happening here. So to fail properly, we should be cloning the op and 228 // deleting the previous op. This needs more investigation. 229 rewriter.startRootUpdate(op); 230 Optional<LinalgOp> promotedOp = promoteSubViews(rewriter, op, options); 231 if (!promotedOp) { 232 rewriter.cancelRootUpdate(op); 233 return op->emitError("subview promotion failed"); 234 } 235 rewriter.finalizeRootUpdate(op); 236 marker.replaceLinalgMarker(rewriter, op); 237 return success(); 238 } 239 240 mlir::linalg::LinalgBaseVectorizationPattern::LinalgBaseVectorizationPattern( 241 StringRef opName, MLIRContext *context, LinalgMarker marker, 242 PatternBenefit benefit) 243 : RewritePattern(opName, {}, benefit, context), marker(marker) {} 244 245 LogicalResult mlir::linalg::LinalgBaseVectorizationPattern::matchAndRewrite( 246 Operation *op, PatternRewriter &rewriter) const { 247 LinalgOp linalgOp = dyn_cast<LinalgOp>(op); 248 if (!linalgOp) 249 return failure(); 250 if (failed(marker.checkAndNotify(rewriter, linalgOp))) 251 return failure(); 252 if (failed(vectorizeLinalgOpPrecondition(op))) 253 return failure(); 254 vectorizeLinalgOp(rewriter, op); 255 rewriter.eraseOp(op); 256 return success(); 257 } 258 259 LogicalResult mlir::linalg::applyStagedPatterns( 260 Operation *op, ArrayRef<FrozenRewritePatternList> stage1Patterns, 261 const FrozenRewritePatternList &stage2Patterns, 262 function_ref<LogicalResult(Operation *)> stage3Lambda) { 263 unsigned iteration = 0; 264 (void)iteration; 265 for (const auto &patterns : stage1Patterns) { 266 LLVM_DEBUG(DBGS() << "Before 1st stage, iter: " << ++iteration << "\n" 267 << *op); 268 if (failed(applyPatternsAndFoldGreedily(op, patterns))) { 269 LLVM_DEBUG(DBGS() << "Underlying first stage rewrite did not converge"); 270 return failure(); 271 } 272 LLVM_DEBUG(DBGS() << "After 1st stage, iter: " << ++iteration << "\n" 273 << *op); 274 if (failed(applyPatternsAndFoldGreedily(op, stage2Patterns))) { 275 LLVM_DEBUG(DBGS() << "Underlying 2nd stage rewrite did not converge"); 276 return failure(); 277 } 278 LLVM_DEBUG(DBGS() << "After 2nd stage, iter : " << iteration << "\n" 279 << *op); 280 if (stage3Lambda) { 281 if (failed(stage3Lambda(op))) 282 return failure(); 283 LLVM_DEBUG(DBGS() << "After 3rd stage, iter : " << iteration << "\n" 284 << *op); 285 } 286 } 287 return success(); 288 } 289 290 /// Traverse `e` and return an AffineExpr where all occurrences of `dim` have 291 /// been replaced by either: 292 /// - `min` if `positivePath` is true when we reach an occurrence of `dim` 293 /// - `max` if `positivePath` is true when we reach an occurrence of `dim` 294 /// `positivePath` is negated each time we hit a multiplicative or divisive 295 /// binary op with a constant negative coefficient. 296 static AffineExpr substWithMin(AffineExpr e, AffineExpr dim, AffineExpr min, 297 AffineExpr max, bool positivePath = true) { 298 if (e == dim) 299 return positivePath ? min : max; 300 if (auto bin = e.dyn_cast<AffineBinaryOpExpr>()) { 301 AffineExpr lhs = bin.getLHS(); 302 AffineExpr rhs = bin.getRHS(); 303 if (bin.getKind() == mlir::AffineExprKind::Add) 304 return substWithMin(lhs, dim, min, max, positivePath) + 305 substWithMin(rhs, dim, min, max, positivePath); 306 307 auto c1 = bin.getLHS().dyn_cast<AffineConstantExpr>(); 308 auto c2 = bin.getRHS().dyn_cast<AffineConstantExpr>(); 309 if (c1 && c1.getValue() < 0) 310 return getAffineBinaryOpExpr( 311 bin.getKind(), c1, substWithMin(rhs, dim, min, max, !positivePath)); 312 if (c2 && c2.getValue() < 0) 313 return getAffineBinaryOpExpr( 314 bin.getKind(), substWithMin(lhs, dim, min, max, !positivePath), c2); 315 return getAffineBinaryOpExpr( 316 bin.getKind(), substWithMin(lhs, dim, min, max, positivePath), 317 substWithMin(rhs, dim, min, max, positivePath)); 318 } 319 return e; 320 } 321 322 /// Given the `lbVal`, `ubVal` and `stepVal` of a loop, append `lbVal` and 323 /// `ubVal` to `dims` and `stepVal` to `symbols`. 324 /// Create new AffineDimExpr (`%lb` and `%ub`) and AffineSymbolExpr (`%step`) 325 /// with positions matching the newly appended values. Substitute occurrences of 326 /// `dimExpr` by either the min expression (i.e. `%lb`) or the max expression 327 /// (i.e. `%lb + %step * floordiv(%ub -1 - %lb, %step)`), depending on whether 328 /// the induction variable is used with a positive or negative coefficient. 329 static AffineExpr substituteLoopInExpr(AffineExpr expr, AffineExpr dimExpr, 330 Value lbVal, Value ubVal, Value stepVal, 331 SmallVectorImpl<Value> &dims, 332 SmallVectorImpl<Value> &symbols) { 333 MLIRContext *ctx = lbVal.getContext(); 334 AffineExpr lb = getAffineDimExpr(dims.size(), ctx); 335 dims.push_back(lbVal); 336 AffineExpr ub = getAffineDimExpr(dims.size(), ctx); 337 dims.push_back(ubVal); 338 AffineExpr step = getAffineSymbolExpr(symbols.size(), ctx); 339 symbols.push_back(stepVal); 340 LLVM_DEBUG(DBGS() << "Before: " << expr << "\n"); 341 AffineExpr ee = substWithMin(expr, dimExpr, lb, 342 lb + step * ((ub - 1) - lb).floorDiv(step)); 343 LLVM_DEBUG(DBGS() << "After: " << expr << "\n"); 344 return ee; 345 } 346 347 /// Traverse the `dims` and substitute known min or max expressions in place of 348 /// induction variables in `exprs`. 349 static AffineMap substitute(AffineMap map, SmallVectorImpl<Value> &dims, 350 SmallVectorImpl<Value> &symbols) { 351 auto exprs = llvm::to_vector<4>(map.getResults()); 352 for (AffineExpr &expr : exprs) { 353 bool substituted = true; 354 while (substituted) { 355 substituted = false; 356 for (unsigned dimIdx = 0; dimIdx < dims.size(); ++dimIdx) { 357 Value dim = dims[dimIdx]; 358 AffineExpr dimExpr = getAffineDimExpr(dimIdx, expr.getContext()); 359 LLVM_DEBUG(DBGS() << "Subst: " << dim << " @ " << dimExpr << "\n"); 360 AffineExpr substitutedExpr; 361 if (auto forOp = scf::getForInductionVarOwner(dim)) 362 substitutedExpr = substituteLoopInExpr( 363 expr, dimExpr, forOp.lowerBound(), forOp.upperBound(), 364 forOp.step(), dims, symbols); 365 366 if (auto parallelForOp = scf::getParallelForInductionVarOwner(dim)) 367 for (unsigned idx = 0, e = parallelForOp.getNumLoops(); idx < e; 368 ++idx) 369 substitutedExpr = substituteLoopInExpr( 370 expr, dimExpr, parallelForOp.lowerBound()[idx], 371 parallelForOp.upperBound()[idx], parallelForOp.step()[idx], 372 dims, symbols); 373 374 if (!substitutedExpr) 375 continue; 376 377 substituted = (substitutedExpr != expr); 378 expr = substitutedExpr; 379 } 380 } 381 382 // Cleanup and simplify the results. 383 // This needs to happen outside of the loop iterating on dims.size() since 384 // it modifies dims. 385 SmallVector<Value, 4> operands(dims.begin(), dims.end()); 386 operands.append(symbols.begin(), symbols.end()); 387 auto map = AffineMap::get(dims.size(), symbols.size(), exprs, 388 exprs.front().getContext()); 389 390 LLVM_DEBUG(DBGS() << "Map to simplify: " << map << "\n"); 391 392 // Pull in affine.apply operations and compose them fully into the 393 // result. 394 fullyComposeAffineMapAndOperands(&map, &operands); 395 canonicalizeMapAndOperands(&map, &operands); 396 map = simplifyAffineMap(map); 397 // Assign the results. 398 exprs.assign(map.getResults().begin(), map.getResults().end()); 399 dims.assign(operands.begin(), operands.begin() + map.getNumDims()); 400 symbols.assign(operands.begin() + map.getNumDims(), operands.end()); 401 402 LLVM_DEBUG(DBGS() << "Map simplified: " << map << "\n"); 403 } 404 405 assert(!exprs.empty() && "Unexpected empty exprs"); 406 return AffineMap::get(dims.size(), symbols.size(), exprs, map.getContext()); 407 } 408 409 LogicalResult AffineMinSCFCanonicalizationPattern::matchAndRewrite( 410 AffineMinOp minOp, PatternRewriter &rewriter) const { 411 LLVM_DEBUG(DBGS() << "Canonicalize AffineMinSCF: " << *minOp.getOperation() 412 << "\n"); 413 414 SmallVector<Value, 4> dims(minOp.getDimOperands()), 415 symbols(minOp.getSymbolOperands()); 416 AffineMap map = substitute(minOp.getAffineMap(), dims, symbols); 417 418 LLVM_DEBUG(DBGS() << "Resulting map: " << map << "\n"); 419 420 // Check whether any of the expressions, when subtracted from all other 421 // expressions, produces only >= 0 constants. If so, it is the min. 422 for (auto e : minOp.getAffineMap().getResults()) { 423 LLVM_DEBUG(DBGS() << "Candidate min: " << e << "\n"); 424 if (!e.isSymbolicOrConstant()) 425 continue; 426 427 auto isNonPositive = [](AffineExpr e) { 428 if (auto cst = e.dyn_cast<AffineConstantExpr>()) 429 return cst.getValue() < 0; 430 return true; 431 }; 432 433 // Build the subMap and check everything is statically known to be 434 // positive. 435 SmallVector<AffineExpr, 4> subExprs; 436 subExprs.reserve(map.getNumResults()); 437 for (auto ee : map.getResults()) 438 subExprs.push_back(ee - e); 439 MLIRContext *ctx = minOp.getContext(); 440 AffineMap subMap = simplifyAffineMap( 441 AffineMap::get(map.getNumDims(), map.getNumSymbols(), subExprs, ctx)); 442 LLVM_DEBUG(DBGS() << "simplified subMap: " << subMap << "\n"); 443 if (llvm::any_of(subMap.getResults(), isNonPositive)) 444 continue; 445 446 // Static min found. 447 if (auto cst = e.dyn_cast<AffineConstantExpr>()) { 448 rewriter.replaceOpWithNewOp<ConstantIndexOp>(minOp, cst.getValue()); 449 } else { 450 auto resultMap = AffineMap::get(0, map.getNumSymbols(), {e}, ctx); 451 SmallVector<Value, 4> resultOperands = dims; 452 resultOperands.append(symbols.begin(), symbols.end()); 453 canonicalizeMapAndOperands(&resultMap, &resultOperands); 454 resultMap = simplifyAffineMap(resultMap); 455 rewriter.replaceOpWithNewOp<AffineApplyOp>(minOp, resultMap, 456 resultOperands); 457 } 458 return success(); 459 } 460 461 return failure(); 462 } 463