1 //===- Tiling.cpp - Implementation of linalg Tiling -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the linalg dialect Tiling pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Dialect/Affine/EDSC/Intrinsics.h" 14 #include "mlir/Dialect/Linalg/EDSC/Intrinsics.h" 15 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h" 16 #include "mlir/Dialect/Linalg/Passes.h" 17 #include "mlir/Dialect/Linalg/Utils/Utils.h" 18 #include "mlir/Dialect/LoopOps/EDSC/Builders.h" 19 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h" 20 #include "mlir/IR/AffineExpr.h" 21 #include "mlir/IR/AffineExprVisitor.h" 22 #include "mlir/IR/AffineMap.h" 23 #include "mlir/IR/OpImplementation.h" 24 #include "mlir/Pass/Pass.h" 25 #include "mlir/Support/Functional.h" 26 #include "mlir/Support/LLVM.h" 27 #include "mlir/Support/STLExtras.h" 28 #include "mlir/Transforms/FoldUtils.h" 29 30 #include "llvm/Support/CommandLine.h" 31 32 using namespace mlir; 33 using namespace mlir::edsc; 34 using namespace mlir::edsc::intrinsics; 35 using namespace mlir::linalg; 36 using namespace mlir::loop; 37 38 using folded_affine_min = folded::ValueBuilder<AffineMinOp>; 39 40 #define DEBUG_TYPE "linalg-tiling" 41 42 static bool isZero(Value v) { 43 return isa_and_nonnull<ConstantIndexOp>(v.getDefiningOp()) && 44 cast<ConstantIndexOp>(v.getDefiningOp()).getValue() == 0; 45 } 46 47 using LoopIndexToRangeIndexMap = DenseMap<int, int>; 48 49 // Creates a number of ranges equal to the number of non-zero in `tileSizes`. 50 // One for each loop of the LinalgOp that is tiled. The `tileSizes` argument has 51 // one entry per surrounding loop. It uses zero as the convention that a 52 // particular loop is not tiled. This convention simplifies implementations by 53 // avoiding affine map manipulations. 54 // The returned ranges correspond to the loop ranges, in the proper order, that 55 // are tiled and for which new loops will be created. Also the function returns 56 // a map from loop indices of the LinalgOp to the corresponding non-empty range 57 // indices of newly created loops. 58 static std::tuple<SmallVector<SubViewOp::Range, 4>, LoopIndexToRangeIndexMap> 59 makeTiledLoopRanges(OpBuilder &b, Location loc, AffineMap map, 60 ArrayRef<Value> allViewSizes, ArrayRef<Value> allTileSizes, 61 OperationFolder *folder) { 62 assert(allTileSizes.size() == map.getNumResults()); 63 // Apply `map` to get view sizes in loop order. 64 auto viewSizes = applyMapToValues(b, loc, map, allViewSizes, folder); 65 SmallVector<Value, 4> tileSizes(allTileSizes.begin(), allTileSizes.end()); 66 67 // Traverse the tile sizes, which are in loop order, erase zeros everywhere. 68 LoopIndexToRangeIndexMap loopIndexToRangeIndex; 69 for (int idx = 0, e = tileSizes.size(), zerosCount = 0; idx < e; ++idx) { 70 if (isZero(tileSizes[idx - zerosCount])) { 71 viewSizes.erase(viewSizes.begin() + idx - zerosCount); 72 tileSizes.erase(tileSizes.begin() + idx - zerosCount); 73 ++zerosCount; 74 continue; 75 } 76 loopIndexToRangeIndex[idx] = idx - zerosCount; 77 } 78 79 // Create a new range with the applied tile sizes. 80 SmallVector<SubViewOp::Range, 4> res; 81 for (unsigned idx = 0, e = tileSizes.size(); idx < e; ++idx) { 82 res.push_back(SubViewOp::Range{folded_std_constant_index(folder, 0), 83 viewSizes[idx], tileSizes[idx]}); 84 } 85 return std::make_tuple(res, loopIndexToRangeIndex); 86 } 87 88 namespace { 89 90 // Helper visitor to determine whether an AffineExpr is tiled. 91 // This is achieved by traversing every AffineDimExpr with position `pos` and 92 // checking whether the corresponding `tileSizes[pos]` is non-zero. 93 // This also enforces only positive coefficients occur in multiplications. 94 // 95 // Example: 96 // `d0 + 2 * d1 + d3` is tiled by [0, 0, 0, 2] but not by [0, 0, 2, 0] 97 // 98 struct TileCheck : public AffineExprVisitor<TileCheck> { 99 TileCheck(ArrayRef<Value> tileSizes) : isTiled(false), tileSizes(tileSizes) {} 100 101 void visitDimExpr(AffineDimExpr expr) { 102 isTiled |= !isZero(tileSizes[expr.getPosition()]); 103 } 104 void visitAffineBinaryOpExpr(AffineBinaryOpExpr expr) { 105 visit(expr.getLHS()); 106 visit(expr.getRHS()); 107 if (expr.getKind() == mlir::AffineExprKind::Mul) 108 assert(expr.getRHS().cast<AffineConstantExpr>().getValue() > 0 && 109 "nonpositive multiplying coefficient"); 110 } 111 bool isTiled; 112 ArrayRef<Value> tileSizes; 113 }; 114 115 } // namespace 116 117 // IndexedGenericOp explicitly uses induction variables in the loop body. The 118 // values of the indices that are used in the loop body for any given access of 119 // input/output memref before `subview` op was applied should be invariant with 120 // respect to tiling. 121 // 122 // Therefore, if the operation is tiled, we have to transform the indices 123 // accordingly, i.e. offset them by the values of the corresponding induction 124 // variables that are captured implicitly in the body of the op. 125 // 126 // Example. `linalg.indexed_generic` before tiling: 127 // 128 // #id_2d = (i, j) -> (i, j) 129 // #pointwise_2d_trait = { 130 // indexing_maps = [#id_2d, #id_2d], 131 // iterator_types = ["parallel", "parallel"], 132 // n_views = [1, 1] 133 // } 134 // linalg.indexed_generic #pointwise_2d_trait %operand, %result { 135 // ^bb0(%i: index, %j: index, %operand_in: f32, %result_in: f32): 136 // <some operations that use %i, %j> 137 // }: memref<50x100xf32>, memref<50x100xf32> 138 // 139 // After tiling pass with tiles sizes 10 and 25: 140 // 141 // #strided = (i, j)[s0, s1, s2] -> (i * s1 + s0 + j * s2) 142 // 143 // %c1 = constant 1 : index 144 // %c0 = constant 0 : index 145 // %c25 = constant 25 : index 146 // %c10 = constant 10 : index 147 // operand_dim_0 = dim %operand, 0 : memref<50x100xf32> 148 // operand_dim_1 = dim %operand, 1 : memref<50x100xf32> 149 // loop.for %k = %c0 to operand_dim_0 step %c10 { 150 // loop.for %l = %c0 to operand_dim_1 step %c25 { 151 // %4 = std.subview %operand[%k, %l][%c10, %c25][%c1, %c1] 152 // : memref<50x100xf32> to memref<?x?xf32, #strided> 153 // %5 = std.subview %result[%k, %l][%c10, %c25][%c1, %c1] 154 // : memref<50x100xf32> to memref<?x?xf32, #strided> 155 // linalg.indexed_generic pointwise_2d_trait %4, %5 { 156 // ^bb0(%i: index, %j: index, %operand_in: f32, %result_in: f32): 157 // // Indices `k` and `l` are implicitly captured in the body. 158 // %transformed_i = addi %i, %k : index // index `i` is offset by %k 159 // %transformed_j = addi %j, %l : index // index `j` is offset by %l 160 // // Every use of %i, %j is replaced with %transformed_i, %transformed_j 161 // <some operations that use %transformed_i, %transformed_j> 162 // }: memref<?x?xf32, #strided>, memref<?x?xf32, #strided> 163 // } 164 // } 165 // 166 // TODO(pifon, ntv): Investigate whether mixing implicit and explicit indices 167 // does not lead to losing information. 168 static void transformIndexedGenericOpIndices( 169 OpBuilder &b, LinalgOp op, ArrayRef<ValueHandle *> pivs, 170 const LoopIndexToRangeIndexMap &loopIndexToRangeIndex) { 171 assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics"); 172 auto indexedGenericOp = dyn_cast<IndexedGenericOp>(op.getOperation()); 173 if (!indexedGenericOp) 174 return; 175 176 // `linalg.indexed_generic` comes in two flavours. One has a region with a 177 // single block that defines the loop body. The other has a `fun` attribute 178 // that refers to an existing function symbol. The `fun` function call will be 179 // inserted in the loop body in that case. 180 // 181 // TODO(pifon): Add support for `linalg.indexed_generic` with `fun` attribute. 182 auto ®ion = indexedGenericOp.region(); 183 if (region.empty()) { 184 indexedGenericOp.emitOpError("expected a region"); 185 return; 186 } 187 auto &block = region.getBlocks().front(); 188 189 OpBuilder::InsertionGuard g(b); 190 b.setInsertionPointToStart(&block); 191 for (unsigned i = 0; i < indexedGenericOp.getNumLoops(); ++i) { 192 auto rangeIndex = loopIndexToRangeIndex.find(i); 193 if (rangeIndex == loopIndexToRangeIndex.end()) 194 continue; 195 Value oldIndex = block.getArgument(i); 196 // Offset the index argument `i` by the value of the corresponding induction 197 // variable and replace all uses of the previous value. 198 Value newIndex = b.create<AddIOp>(indexedGenericOp.getLoc(), oldIndex, 199 pivs[rangeIndex->second]->getValue()); 200 for (auto &use : oldIndex.getUses()) { 201 if (use.getOwner() == newIndex.getDefiningOp()) 202 continue; 203 use.set(newIndex); 204 } 205 } 206 } 207 208 static bool isTiled(AffineExpr expr, ArrayRef<Value> tileSizes) { 209 if (!expr) 210 return false; 211 TileCheck t(tileSizes); 212 t.visit(expr); 213 return t.isTiled; 214 } 215 216 // Checks whether the view with index `viewIndex` within `linalgOp` varies with 217 // respect to a non-zero `tileSize`. 218 static bool isTiled(AffineMap map, ArrayRef<Value> tileSizes) { 219 if (!map) 220 return false; 221 for (unsigned r = 0; r < map.getNumResults(); ++r) 222 if (isTiled(map.getResult(r), tileSizes)) 223 return true; 224 return false; 225 } 226 227 static SmallVector<Value, 4> 228 makeTiledViews(OpBuilder &b, Location loc, LinalgOp linalgOp, 229 ArrayRef<Value> ivs, ArrayRef<Value> tileSizes, 230 ArrayRef<Value> viewSizes, OperationFolder *folder) { 231 assert(linalgOp.hasBufferSemantics() && 232 "expected linalg op with buffer semantics"); 233 assert(ivs.size() == static_cast<size_t>(llvm::count_if( 234 llvm::make_range(tileSizes.begin(), tileSizes.end()), 235 [](Value v) { return !isZero(v); })) && 236 "expected as many ivs as non-zero sizes"); 237 238 using namespace edsc::op; 239 240 // Construct (potentially temporary) mins and maxes on which to apply maps 241 // that define tile subviews. 242 SmallVector<Value, 8> lbs, subViewSizes; 243 for (unsigned idx = 0, idxIvs = 0, e = tileSizes.size(); idx < e; ++idx) { 244 bool isTiled = !isZero(tileSizes[idx]); 245 lbs.push_back(isTiled ? ivs[idxIvs++] 246 : (Value)folded_std_constant_index(folder, 0)); 247 subViewSizes.push_back(isTiled ? tileSizes[idx] : viewSizes[idx]); 248 } 249 250 auto *op = linalgOp.getOperation(); 251 252 SmallVector<Value, 4> res; 253 res.reserve(op->getNumOperands()); 254 auto viewIteratorBegin = linalgOp.getInputsAndOutputBuffers().begin(); 255 for (unsigned viewIndex = 0; viewIndex < linalgOp.getNumInputsAndOutputs(); 256 ++viewIndex) { 257 Value view = *(viewIteratorBegin + viewIndex); 258 auto viewType = view.getType().cast<MemRefType>(); 259 unsigned rank = viewType.getRank(); 260 auto mapAttr = linalgOp.indexing_maps()[viewIndex]; 261 auto map = mapAttr.cast<AffineMapAttr>().getValue(); 262 // If the view is not tiled, we can use it as is. 263 if (!isTiled(map, tileSizes)) { 264 res.push_back(view); 265 continue; 266 } 267 268 // Construct a new subview for the tile. 269 SmallVector<Value, 4> offsets, sizes, strides; 270 offsets.reserve(rank); 271 sizes.reserve(rank); 272 strides.reserve(rank); 273 for (unsigned r = 0; r < rank; ++r) { 274 if (!isTiled(map.getSubMap({r}), tileSizes)) { 275 offsets.push_back(folded_std_constant_index(folder, 0)); 276 sizes.push_back(std_dim(view, r)); 277 strides.push_back(folded_std_constant_index(folder, 1)); 278 continue; 279 } 280 281 // Tiling creates a new slice at the proper index, the slice step is 1 282 // (i.e. the slice view does not subsample, stepping occurs in the loop). 283 auto m = map.getSubMap({r}); 284 auto offset = applyMapToValues(b, loc, m, lbs, folder).front(); 285 offsets.push_back(offset); 286 auto size = applyMapToValues(b, loc, m, subViewSizes, folder).front(); 287 288 // The size of the subview should be trimmed to avoid out-of-bounds 289 // accesses, unless we statically know the subview size divides the view 290 // size evenly. 291 int64_t viewSize = viewType.getDimSize(r); 292 auto sizeCst = dyn_cast_or_null<ConstantIndexOp>(size.getDefiningOp()); 293 if (ShapedType::isDynamic(viewSize) || !sizeCst || 294 (viewSize % sizeCst.getValue()) != 0) { 295 // Compute min(size, dim - offset) to avoid out-of-bounds accesses. 296 auto minMap = AffineMap::get( 297 /*dimCount=*/3, /*symbolCount=*/0, 298 {getAffineDimExpr(/*position=*/0, b.getContext()), 299 getAffineDimExpr(/*position=*/1, b.getContext()) - 300 getAffineDimExpr(/*position=*/2, b.getContext())}); 301 auto d = folded_std_dim(folder, view, r); 302 size = folded_affine_min(folder, b.getIndexType(), minMap, 303 ValueRange{size, d, offset}); 304 } 305 306 sizes.push_back(size); 307 strides.push_back(folded_std_constant_index(folder, 1)); 308 } 309 310 res.push_back(b.create<SubViewOp>(loc, view, offsets, sizes, strides)); 311 } 312 313 // Traverse the mins/maxes and erase those that don't have uses left. 314 // This is a special type of folding that we only apply when `folder` is 315 // defined. 316 if (folder) 317 for (auto v : llvm::concat<Value>(lbs, subViewSizes)) 318 if (v.use_empty()) 319 v.getDefiningOp()->erase(); 320 321 return res; 322 } 323 324 template <typename LoopTy> 325 Optional<TiledLinalgOp> static tileLinalgOpImpl(OpBuilder &b, LinalgOp op, 326 ArrayRef<Value> tileSizes, 327 ArrayRef<unsigned> permutation, 328 OperationFolder *folder) { 329 assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics"); 330 // 1. Enforce the convention that "tiling by zero" skips tiling a particular 331 // dimension. This convention is significantly simpler to handle instead of 332 // adjusting affine maps to account for missing dimensions. 333 assert(op.getNumParallelLoops() + op.getNumReductionLoops() + 334 op.getNumWindowLoops() == 335 tileSizes.size() && 336 "expected matching number of tile sizes and loops"); 337 338 if (auto convOp = dyn_cast<linalg::ConvOp>(op.getOperation())) { 339 // For conv op only support tiling along batch dimension (which is the first 340 // loop). 341 if (convOp.padding() && 342 !llvm::all_of(tileSizes.drop_front(), 343 [](Value val) { return isZero(val); })) 344 return llvm::None; 345 } 346 347 // If permutation is empty, use the identity. Build the permutation map 348 // otherwise. 349 auto invPermutationMap = AffineMap::getMultiDimIdentityMap( 350 tileSizes.size(), ScopedContext::getContext()); 351 if (!permutation.empty()) 352 invPermutationMap = inversePermutation( 353 AffineMap::getPermutationMap(permutation, ScopedContext::getContext())); 354 355 OpBuilder::InsertionGuard g(b); 356 b.setInsertionPoint(op); 357 ScopedContext scope(b, op.getLoc()); 358 // 2. Build the tiled loop ranges. 359 auto viewSizes = getViewSizes(b, op); 360 // The flattened loopToOperandRangesMaps is expected to be an invertible 361 // permutation map (asserted in the inverse calculation). 362 auto mapsRange = op.indexing_maps().getAsRange<AffineMapAttr>(); 363 auto maps = 364 functional::map([](AffineMapAttr a) { return a.getValue(); }, mapsRange); 365 auto viewSizesToLoopsMap = inversePermutation(concatAffineMaps(maps)); 366 assert(viewSizesToLoopsMap && "expected invertible map"); 367 368 SmallVector<SubViewOp::Range, 4> loopRanges; 369 LoopIndexToRangeIndexMap loopIndexToRangeIndex; 370 std::tie(loopRanges, loopIndexToRangeIndex) = 371 makeTiledLoopRanges(b, scope.getLocation(), viewSizesToLoopsMap, 372 viewSizes, tileSizes, folder); 373 if (!permutation.empty()) 374 applyPermutationToVector(loopRanges, permutation); 375 376 // 3. Create the tiled loops. 377 LinalgOp res = op; 378 auto ivs = ValueHandle::makeIndexHandles(loopRanges.size()); 379 auto pivs = makeHandlePointers(MutableArrayRef<ValueHandle>(ivs)); 380 // Convert SubViewOp::Range to linalg_range. 381 SmallVector<Value, 4> linalgRanges; 382 for (auto &range : loopRanges) { 383 linalgRanges.push_back( 384 linalg_range(range.offset, range.size, range.stride)); 385 } 386 GenericLoopNestRangeBuilder<LoopTy>(pivs, linalgRanges)([&] { 387 auto b = ScopedContext::getBuilder(); 388 auto loc = ScopedContext::getLocation(); 389 SmallVector<Value, 4> ivValues(ivs.begin(), ivs.end()); 390 391 // If we have to apply a permutation to the tiled loop nest, we have to 392 // reorder the induction variables This permutation is the right one 393 // assuming that loopRanges have previously been permuted by 394 // (i,j,k)->(k,i,j) So this permutation should be the inversePermutation of 395 // that one: (d0,d1,d2)->(d2,d0,d1) 396 if (!permutation.empty()) 397 ivValues = applyMapToValues(b, loc, invPermutationMap, ivValues, folder); 398 399 auto views = 400 makeTiledViews(b, loc, op, ivValues, tileSizes, viewSizes, folder); 401 auto operands = getAssumedNonViewOperands(op); 402 views.append(operands.begin(), operands.end()); 403 res = op.clone(b, loc, views); 404 }); 405 406 // 4. Transforms index arguments of `linalg.generic` w.r.t. to the tiling. 407 transformIndexedGenericOpIndices(b, res, pivs, loopIndexToRangeIndex); 408 409 // 5. Gather the newly created loops and return them with the new op. 410 SmallVector<Operation *, 8> loops; 411 loops.reserve(ivs.size()); 412 for (auto iv : ivs) 413 loops.push_back(loop::getForInductionVarOwner(iv)); 414 415 return TiledLinalgOp{res, loops}; 416 } 417 418 template <typename LoopTy> 419 static Optional<TiledLinalgOp> 420 tileLinalgOpImpl(OpBuilder &b, LinalgOp op, ArrayRef<int64_t> tileSizes, 421 ArrayRef<unsigned> permutation, OperationFolder *folder) { 422 assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics"); 423 if (tileSizes.empty()) 424 return llvm::None; 425 426 // The following uses the convention that "tiling by zero" skips tiling a 427 // particular dimension. This convention is significantly simpler to handle 428 // instead of adjusting affine maps to account for missing dimensions. 429 auto nLoops = op.getNumParallelLoops() + op.getNumReductionLoops() + 430 op.getNumWindowLoops(); 431 tileSizes = tileSizes.take_front(nLoops); 432 // If only 0 tilings are left, then return. 433 if (llvm::all_of(tileSizes, [](int64_t v) { return v == 0; })) 434 return llvm::None; 435 436 if (auto convOp = dyn_cast<linalg::ConvOp>(op.getOperation())) { 437 // For conv op only support tiling along batch dimension (which is the first 438 // loop). 439 if (convOp.padding() && !llvm::all_of(tileSizes.drop_front(), 440 [](int64_t val) { return val == 0; })) 441 return llvm::None; 442 } 443 444 // Create a builder for tile size constants. 445 OpBuilder::InsertionGuard g(b); 446 b.setInsertionPoint(op); 447 ScopedContext scope(b, op.getLoc()); 448 449 // Materialize concrete tile size values to pass the generic tiling function. 450 SmallVector<Value, 8> tileSizeValues; 451 tileSizeValues.reserve(tileSizes.size()); 452 for (auto ts : tileSizes) 453 tileSizeValues.push_back(folded_std_constant_index(folder, ts)); 454 // Pad tile sizes with zero values to enforce our convention. 455 if (tileSizeValues.size() < nLoops) { 456 for (unsigned i = tileSizeValues.size(); i < nLoops; ++i) 457 tileSizeValues.push_back(folded_std_constant_index(folder, 0)); 458 } 459 460 return tileLinalgOpImpl<LoopTy>(b, op, tileSizeValues, permutation, folder); 461 } 462 463 Optional<TiledLinalgOp> 464 mlir::linalg::tileLinalgOp(OpBuilder &b, LinalgOp op, ArrayRef<Value> tileSizes, 465 ArrayRef<unsigned> permutation, 466 OperationFolder *folder) { 467 return tileLinalgOpImpl<loop::ForOp>(b, op, tileSizes, permutation, folder); 468 } 469 470 Optional<TiledLinalgOp> mlir::linalg::tileLinalgOpToParallelLoops( 471 OpBuilder &b, LinalgOp op, ArrayRef<Value> tileSizes, 472 ArrayRef<unsigned> permutation, OperationFolder *folder) { 473 return tileLinalgOpImpl<loop::ParallelOp>(b, op, tileSizes, permutation, 474 folder); 475 } 476 477 Optional<TiledLinalgOp> mlir::linalg::tileLinalgOp( 478 OpBuilder &b, LinalgOp op, ArrayRef<int64_t> tileSizes, 479 ArrayRef<unsigned> permutation, OperationFolder *folder) { 480 return tileLinalgOpImpl<loop::ForOp>(b, op, tileSizes, permutation, folder); 481 } 482 483 Optional<TiledLinalgOp> mlir::linalg::tileLinalgOpToParallelLoops( 484 OpBuilder &b, LinalgOp op, ArrayRef<int64_t> tileSizes, 485 ArrayRef<unsigned> permutation, OperationFolder *folder) { 486 return tileLinalgOpImpl<loop::ParallelOp>(b, op, tileSizes, permutation, 487 folder); 488 } 489 490 template <typename LoopTy> 491 static void tileLinalgOps(FuncOp f, ArrayRef<int64_t> tileSizes) { 492 OpBuilder b(f); 493 OperationFolder folder(f.getContext()); 494 f.walk([tileSizes, &b, &folder](LinalgOp op) { 495 if (!op.hasBufferSemantics()) 496 return; 497 auto opLoopsPair = 498 tileLinalgOpImpl<LoopTy>(b, op, tileSizes, /*permutation=*/{}, &folder); 499 // If tiling occurred successfully, erase old op. 500 if (opLoopsPair) 501 op.erase(); 502 }); 503 f.walk([](LinalgOp op) { 504 if (isOpTriviallyDead(op)) 505 op.erase(); 506 }); 507 } 508 509 namespace { 510 511 template <typename LoopTy> 512 struct LinalgTilingPass : public FunctionPass<LinalgTilingPass<LoopTy>> { 513 LinalgTilingPass() = default; 514 LinalgTilingPass(const LinalgTilingPass &) {} 515 LinalgTilingPass(ArrayRef<int64_t> sizes) { 516 this->tileSizes->assign(sizes.begin(), sizes.end()); 517 } 518 519 void runOnFunction() override { 520 tileLinalgOps<LoopTy>(this->getFunction(), tileSizes); 521 } 522 523 Pass::ListOption<int64_t> tileSizes{ 524 *this, "linalg-tile-sizes", 525 llvm::cl::desc("Tile sizes by which to tile linalg operations"), 526 llvm::cl::ZeroOrMore, llvm::cl::MiscFlags::CommaSeparated}; 527 }; 528 529 } // namespace 530 531 std::unique_ptr<OpPassBase<FuncOp>> 532 mlir::createLinalgTilingPass(ArrayRef<int64_t> tileSizes) { 533 return std::make_unique<LinalgTilingPass<loop::ForOp>>(tileSizes); 534 } 535 536 std::unique_ptr<OpPassBase<FuncOp>> 537 mlir::createLinalgTilingToParallelLoopsPass(ArrayRef<int64_t> tileSizes) { 538 return std::make_unique<LinalgTilingPass<loop::ParallelOp>>(tileSizes); 539 } 540 541 static PassRegistration<LinalgTilingPass<loop::ForOp>> 542 tiling_pass("linalg-tile", "Tile operations in the linalg dialect"); 543 544 static PassRegistration<LinalgTilingPass<loop::ParallelOp>> 545 tiling_to_parallel_loops( 546 "linalg-tile-to-parallel-loops", 547 "Tile operations in the linalg dialect to parallel loops"); 548