1 //===- Tiling.cpp - Implementation of linalg Tiling -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the linalg dialect Tiling pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PassDetail.h" 14 #include "mlir/Dialect/Affine/EDSC/Intrinsics.h" 15 #include "mlir/Dialect/Linalg/EDSC/FoldedIntrinsics.h" 16 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h" 17 #include "mlir/Dialect/Linalg/Passes.h" 18 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 19 #include "mlir/Dialect/Linalg/Utils/Utils.h" 20 #include "mlir/Dialect/MemRef/EDSC/Intrinsics.h" 21 #include "mlir/Dialect/MemRef/IR/MemRef.h" 22 #include "mlir/Dialect/SCF/EDSC/Builders.h" 23 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h" 24 #include "mlir/Dialect/Tensor/IR/Tensor.h" 25 #include "mlir/IR/AffineExpr.h" 26 #include "mlir/IR/AffineExprVisitor.h" 27 #include "mlir/IR/AffineMap.h" 28 #include "mlir/Transforms/FoldUtils.h" 29 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 30 31 #include "llvm/Support/CommandLine.h" 32 33 using namespace mlir; 34 using namespace mlir::edsc; 35 using namespace mlir::edsc::intrinsics; 36 using namespace mlir::linalg; 37 using namespace mlir::scf; 38 39 #define DEBUG_TYPE "linalg-tiling" 40 41 static bool isZero(Value v) { 42 if (auto cst = v.getDefiningOp<ConstantIndexOp>()) 43 return cst.getValue() == 0; 44 return false; 45 } 46 47 using LoopIndexToRangeIndexMap = DenseMap<int, int>; 48 49 // Creates a number of ranges equal to the number of non-zero in `tileSizes`. 50 // One for each loop of the LinalgOp that is tiled. The `tileSizes` argument has 51 // one entry per surrounding loop. It uses zero as the convention that a 52 // particular loop is not tiled. This convention simplifies implementations by 53 // avoiding affine map manipulations. 54 // The returned ranges correspond to the loop ranges, in the proper order, that 55 // are tiled and for which new loops will be created. Also the function returns 56 // a map from loop indices of the LinalgOp to the corresponding non-empty range 57 // indices of newly created loops. 58 static std::tuple<SmallVector<Range, 4>, LoopIndexToRangeIndexMap> 59 makeTiledLoopRanges(OpBuilder &b, Location loc, AffineMap map, 60 ValueRange allShapeSizes, ValueRange allTileSizes) { 61 assert(allTileSizes.size() == map.getNumResults()); 62 // Apply `map` to get shape sizes in loop order. 63 auto shapeSizes = applyMapToValues(b, loc, map, allShapeSizes); 64 SmallVector<Value, 4> tileSizes(allTileSizes.begin(), allTileSizes.end()); 65 66 // Traverse the tile sizes, which are in loop order, erase zeros everywhere. 67 LoopIndexToRangeIndexMap loopIndexToRangeIndex; 68 for (int idx = 0, e = tileSizes.size(), zerosCount = 0; idx < e; ++idx) { 69 if (isZero(tileSizes[idx - zerosCount])) { 70 shapeSizes.erase(shapeSizes.begin() + idx - zerosCount); 71 tileSizes.erase(tileSizes.begin() + idx - zerosCount); 72 ++zerosCount; 73 continue; 74 } 75 loopIndexToRangeIndex[idx] = idx - zerosCount; 76 } 77 78 // Create a new range with the applied tile sizes. 79 SmallVector<Range, 4> res; 80 for (unsigned idx = 0, e = tileSizes.size(); idx < e; ++idx) 81 res.push_back( 82 Range{std_constant_index(0), shapeSizes[idx], tileSizes[idx]}); 83 return std::make_tuple(res, loopIndexToRangeIndex); 84 } 85 namespace { 86 87 // Helper visitor to determine whether an AffineExpr is tiled. 88 // This is achieved by traversing every AffineDimExpr with position `pos` and 89 // checking whether the corresponding `tileSizes[pos]` is non-zero. 90 // This also enforces only positive coefficients occur in multiplications. 91 // 92 // Example: 93 // `d0 + 2 * d1 + d3` is tiled by [0, 0, 0, 2] but not by [0, 0, 2, 0] 94 // 95 struct TileCheck : public AffineExprVisitor<TileCheck> { 96 TileCheck(ValueRange tileSizes) : isTiled(false), tileSizes(tileSizes) {} 97 98 void visitDimExpr(AffineDimExpr expr) { 99 isTiled |= !isZero(tileSizes[expr.getPosition()]); 100 } 101 void visitAffineBinaryOpExpr(AffineBinaryOpExpr expr) { 102 visit(expr.getLHS()); 103 visit(expr.getRHS()); 104 if (expr.getKind() == mlir::AffineExprKind::Mul) 105 assert(expr.getRHS().cast<AffineConstantExpr>().getValue() > 0 && 106 "nonpositive multiplying coefficient"); 107 } 108 bool isTiled; 109 ValueRange tileSizes; 110 }; 111 112 } // namespace 113 114 // IndexedGenericOp explicitly uses induction variables in the loop body. The 115 // values of the indices that are used in the loop body for any given access of 116 // input/output memref before `subview` op was applied should be invariant with 117 // respect to tiling. 118 // 119 // Therefore, if the operation is tiled, we have to transform the indices 120 // accordingly, i.e. offset them by the values of the corresponding induction 121 // variables that are captured implicitly in the body of the op. 122 // 123 // Example. `linalg.indexed_generic` before tiling: 124 // 125 // #id_2d = (i, j) -> (i, j) 126 // #pointwise_2d_trait = { 127 // indexing_maps = [#id_2d, #id_2d], 128 // iterator_types = ["parallel", "parallel"], 129 // n_views = [1, 1] 130 // } 131 // linalg.indexed_generic #pointwise_2d_trait %operand, %result { 132 // ^bb0(%i: index, %j: index, %operand_in: f32, %result_in: f32): 133 // <some operations that use %i, %j> 134 // }: memref<50x100xf32>, memref<50x100xf32> 135 // 136 // After tiling pass with tiles sizes 10 and 25: 137 // 138 // #strided = (i, j)[s0, s1, s2] -> (i * s1 + s0 + j * s2) 139 // 140 // %c1 = constant 1 : index 141 // %c0 = constant 0 : index 142 // %c25 = constant 25 : index 143 // %c10 = constant 10 : index 144 // operand_dim_0 = dim %operand, 0 : memref<50x100xf32> 145 // operand_dim_1 = dim %operand, 1 : memref<50x100xf32> 146 // scf.for %k = %c0 to operand_dim_0 step %c10 { 147 // scf.for %l = %c0 to operand_dim_1 step %c25 { 148 // %4 = memref.subview %operand[%k, %l][%c10, %c25][%c1, %c1] 149 // : memref<50x100xf32> to memref<?x?xf32, #strided> 150 // %5 = memref.subview %result[%k, %l][%c10, %c25][%c1, %c1] 151 // : memref<50x100xf32> to memref<?x?xf32, #strided> 152 // linalg.indexed_generic pointwise_2d_trait %4, %5 { 153 // ^bb0(%i: index, %j: index, %operand_in: f32, %result_in: f32): 154 // // Indices `k` and `l` are implicitly captured in the body. 155 // %transformed_i = addi %i, %k : index // index `i` is offset by %k 156 // %transformed_j = addi %j, %l : index // index `j` is offset by %l 157 // // Every use of %i, %j is replaced with %transformed_i, %transformed_j 158 // <some operations that use %transformed_i, %transformed_j> 159 // }: memref<?x?xf32, #strided>, memref<?x?xf32, #strided> 160 // } 161 // } 162 // 163 // TODO: Investigate whether mixing implicit and explicit indices 164 // does not lead to losing information. 165 static void transformIndexedGenericOpIndices( 166 OpBuilder &b, LinalgOp op, SmallVectorImpl<Value> &ivs, 167 const LoopIndexToRangeIndexMap &loopIndexToRangeIndex) { 168 auto indexedGenericOp = dyn_cast<IndexedGenericOp>(op.getOperation()); 169 if (!indexedGenericOp) 170 return; 171 172 // `linalg.indexed_generic` comes in two flavours. One has a region with a 173 // single block that defines the loop body. The other has a `fun` attribute 174 // that refers to an existing function symbol. The `fun` function call will be 175 // inserted in the loop body in that case. 176 // 177 // TODO: Add support for `linalg.indexed_generic` with `fun` attribute. 178 auto ®ion = indexedGenericOp.region(); 179 if (region.empty()) { 180 indexedGenericOp.emitOpError("expected a region"); 181 return; 182 } 183 auto &block = region.front(); 184 185 OpBuilder::InsertionGuard g(b); 186 b.setInsertionPointToStart(&block); 187 for (unsigned i = 0; i < indexedGenericOp.getNumLoops(); ++i) { 188 auto rangeIndex = loopIndexToRangeIndex.find(i); 189 if (rangeIndex == loopIndexToRangeIndex.end()) 190 continue; 191 Value oldIndex = block.getArgument(i); 192 // Offset the index argument `i` by the value of the corresponding induction 193 // variable and replace all uses of the previous value. 194 Value newIndex = b.create<AddIOp>(indexedGenericOp.getLoc(), oldIndex, 195 ivs[rangeIndex->second]); 196 for (auto &use : oldIndex.getUses()) { 197 if (use.getOwner() == newIndex.getDefiningOp()) 198 continue; 199 use.set(newIndex); 200 } 201 } 202 } 203 204 static bool isTiled(AffineExpr expr, ValueRange tileSizes) { 205 if (!expr) 206 return false; 207 TileCheck t(tileSizes); 208 t.visit(expr); 209 return t.isTiled; 210 } 211 212 // Checks whether the `map varies with respect to a non-zero `tileSize`. 213 static bool isTiled(AffineMap map, ValueRange tileSizes) { 214 if (!map) 215 return false; 216 for (unsigned r = 0; r < map.getNumResults(); ++r) 217 if (isTiled(map.getResult(r), tileSizes)) 218 return true; 219 return false; 220 } 221 222 static SmallVector<Value, 4> 223 makeTiledShapes(OpBuilder &b, Location loc, LinalgOp linalgOp, 224 ArrayRef<Value> tiledOperands, AffineMap map, ValueRange ivs, 225 ValueRange tileSizes, ValueRange allShapeSizes) { 226 assert(ivs.size() == static_cast<size_t>(llvm::count_if( 227 llvm::make_range(tileSizes.begin(), tileSizes.end()), 228 [](Value v) { return !isZero(v); })) && 229 "expected as many ivs as non-zero sizes"); 230 231 using namespace edsc::op; 232 233 auto shapeSizes = applyMapToValues(b, loc, map, allShapeSizes); 234 // Construct (potentially temporary) mins and maxes on which to apply maps 235 // that define tile subshapes. 236 SmallVector<Value, 8> lbs, subShapeSizes; 237 for (unsigned idx = 0, idxIvs = 0, e = tileSizes.size(); idx < e; ++idx) { 238 bool isTiled = !isZero(tileSizes[idx]); 239 lbs.push_back(isTiled ? ivs[idxIvs++] : (Value)std_constant_index(0)); 240 // Before composing, we need to make range a closed interval. 241 Value size = isTiled ? tileSizes[idx] : shapeSizes[idx]; 242 subShapeSizes.push_back(size - std_constant_index(1)); 243 } 244 245 SmallVector<Value, 4> res; 246 res.reserve(tiledOperands.size()); 247 for (auto en : llvm::enumerate(tiledOperands)) { 248 Value shapedOp = en.value(); 249 ShapedType shapedType = shapedOp.getType().cast<ShapedType>(); 250 unsigned rank = shapedType.getRank(); 251 AffineMap map = linalgOp.getIndexingMap(en.index()); 252 // If the shape is not tiled, we can use it as is. 253 if (!isTiled(map, tileSizes)) { 254 res.push_back(shapedOp); 255 continue; 256 } 257 258 // Construct a new subview / subtensor for the tile. 259 SmallVector<OpFoldResult, 4> offsets, sizes, strides; 260 offsets.reserve(rank); 261 sizes.reserve(rank); 262 strides.reserve(rank); 263 for (unsigned r = 0; r < rank; ++r) { 264 if (!isTiled(map.getSubMap({r}), tileSizes)) { 265 offsets.push_back(b.getIndexAttr(0)); 266 sizes.push_back(memref_dim(shapedOp, r).value); 267 strides.push_back(b.getIndexAttr(1)); 268 continue; 269 } 270 271 // Tiling creates a new slice at the proper index, the slice step is 1 272 // (i.e. the op does not subsample, stepping occurs in the loop). 273 auto m = map.getSubMap({r}); 274 auto offset = applyMapToValues(b, loc, m, lbs).front(); 275 offsets.push_back(offset); 276 auto closedIntSize = applyMapToValues(b, loc, m, subShapeSizes).front(); 277 // Resulting size needs to be made half open interval again. 278 auto size = closedIntSize + std_constant_index(1); 279 280 // The size of the subview / subtensor should be trimmed to avoid 281 // out-of-bounds accesses, unless we statically know the subshape size 282 // divides the shape size evenly. 283 int64_t shapeSize = shapedType.getDimSize(r); 284 auto sizeCst = size.getDefiningOp<ConstantIndexOp>(); 285 if (ShapedType::isDynamic(shapeSize) || !sizeCst || 286 (shapeSize % sizeCst.getValue()) != 0) { 287 // Compute min(size, dim - offset) to avoid out-of-bounds accesses. 288 auto minMap = AffineMap::get( 289 /*dimCount=*/3, /*symbolCount=*/0, 290 {getAffineDimExpr(/*position=*/0, b.getContext()), 291 getAffineDimExpr(/*position=*/1, b.getContext()) - 292 getAffineDimExpr(/*position=*/2, b.getContext())}, 293 b.getContext()); 294 Value d = memref_dim(shapedOp, r); 295 SmallVector<Value, 4> operands{size, d, offset}; 296 fullyComposeAffineMapAndOperands(&minMap, &operands); 297 size = affine_min(b.getIndexType(), minMap, operands); 298 } 299 300 sizes.push_back(size); 301 strides.push_back(b.getIndexAttr(1)); 302 } 303 304 if (shapedType.isa<MemRefType>()) 305 res.push_back( 306 b.create<memref::SubViewOp>(loc, shapedOp, offsets, sizes, strides)); 307 else 308 res.push_back( 309 b.create<SubTensorOp>(loc, shapedOp, offsets, sizes, strides)); 310 } 311 312 return res; 313 } 314 315 template <typename LoopTy> 316 static Optional<TiledLinalgOp> 317 tileLinalgOpImpl(OpBuilder &b, LinalgOp op, ValueRange tileSizes, 318 const LinalgTilingOptions &options) { 319 auto nLoops = op.getNumLoops(); 320 // Initial tile sizes may be too big, only take the first nLoops. 321 tileSizes = tileSizes.take_front(nLoops); 322 323 if (llvm::all_of(tileSizes, isZero)) 324 return llvm::None; 325 326 if (auto convOp = dyn_cast<linalg::ConvOp>(op.getOperation())) { 327 // For conv op only support tiling along batch dimension (which is the first 328 // loop). 329 if (convOp.padding() && !llvm::all_of(tileSizes.drop_front(), isZero)) 330 return llvm::None; 331 } 332 333 // 1. Build the tiled loop ranges. 334 auto allShapeSizes = op.createFlatListOfOperandDims(b, op.getLoc()); 335 AffineMap shapeSizesToLoopsMap = op.getShapesToLoopsMap(); 336 if (!shapeSizesToLoopsMap) 337 return llvm::None; 338 339 SmallVector<Range, 4> loopRanges; 340 LoopIndexToRangeIndexMap loopIndexToRangeIndex; 341 std::tie(loopRanges, loopIndexToRangeIndex) = makeTiledLoopRanges( 342 b, op.getLoc(), shapeSizesToLoopsMap, allShapeSizes, tileSizes); 343 344 SmallVector<Attribute, 4> iteratorTypes; 345 for (auto attr : 346 enumerate(op.iterator_types().cast<ArrayAttr>().getValue())) { 347 if (loopIndexToRangeIndex.count(attr.index())) 348 iteratorTypes.push_back(attr.value()); 349 } 350 // If interchangeVector is empty, use the identity. Build the permutation map 351 // otherwise. 352 auto invPermutationMap = 353 AffineMap::getMultiDimIdentityMap(tileSizes.size(), b.getContext()); 354 if (!options.interchangeVector.empty()) { 355 // Based on the pruned iterations (due to zero tile size), recompute the 356 // interchange vector. 357 SmallVector<unsigned, 4> interchangeVector; 358 interchangeVector.reserve(options.interchangeVector.size()); 359 for (auto pos : options.interchangeVector) { 360 auto it = loopIndexToRangeIndex.find(pos); 361 if (it == loopIndexToRangeIndex.end()) 362 continue; 363 interchangeVector.push_back(it->second); 364 } 365 // Interchange vector is guaranteed to be a permutation, 366 // `inversePermutation` must succeed. 367 invPermutationMap = inversePermutation( 368 AffineMap::getPermutationMap(interchangeVector, b.getContext())); 369 assert(invPermutationMap); 370 applyPermutationToVector(loopRanges, interchangeVector); 371 applyPermutationToVector(iteratorTypes, interchangeVector); 372 } 373 374 // 2. Create the tiled loops. 375 LinalgOp res = op; 376 SmallVector<Value, 4> ivs, tensorResults; 377 auto outputTensors = op.getOutputTensors(); 378 GenerateLoopNest<LoopTy>::doit( 379 loopRanges, /*iterArgInitValues*/ outputTensors, iteratorTypes, 380 [&](ValueRange localIvs, ValueRange iterArgs) -> scf::ValueVector { 381 auto &b = ScopedContext::getBuilderRef(); 382 auto loc = ScopedContext::getLocation(); 383 ivs.assign(localIvs.begin(), localIvs.end()); 384 385 // When an `interchangeVector` is present, it has been applied to the 386 // loop ranges and the iterator types. Apply its inverse to the 387 // resulting loop `ivs` to match the op definition. 388 SmallVector<Value, 4> interchangedIvs; 389 if (!options.interchangeVector.empty()) 390 interchangedIvs = applyMapToValues(b, loc, invPermutationMap, ivs); 391 else 392 interchangedIvs.assign(ivs.begin(), ivs.end()); 393 394 assert(op.getNumOutputTensors() == iterArgs.size() && 395 "num output tensors must match number of loop iter arguments"); 396 397 auto operands = llvm::to_vector<4>(op.getInputs()); 398 SmallVector<Value, 4> outputBuffers = op.getOutputBuffers(); 399 // TODO: thanks to simplifying assumption we do not need to worry about 400 // order of output buffers and tensors: there is only ever one kind. 401 assert(outputBuffers.empty() || iterArgs.empty()); 402 operands.append(outputBuffers.begin(), outputBuffers.end()); 403 operands.append(iterArgs.begin(), iterArgs.end()); 404 SmallVector<Value, 4> tiledOperands = 405 makeTiledShapes(b, loc, op, operands, shapeSizesToLoopsMap, 406 interchangedIvs, tileSizes, allShapeSizes); 407 auto nonShapedOperands = op.getAssumedNonShapedOperands(); 408 tiledOperands.append(nonShapedOperands.begin(), 409 nonShapedOperands.end()); 410 411 // TODO: use an interface/adaptor to avoid leaking position in 412 // `tiledOperands`. 413 SmallVector<Type, 4> resultTensorTypes; 414 for (OpOperand *opOperand : op.getOutputTensorsOpOperands()) 415 resultTensorTypes.push_back( 416 tiledOperands[opOperand->getOperandNumber()].getType()); 417 418 res = op.clone(b, loc, resultTensorTypes, tiledOperands); 419 420 // Insert a subtensor_insert for each output tensor. 421 unsigned resultIdx = 0; 422 for (OpOperand *opOperand : op.getOutputTensorsOpOperands()) { 423 // TODO: use an interface/adaptor to avoid leaking position in 424 // `tiledOperands`. 425 Value outputTensor = tiledOperands[opOperand->getOperandNumber()]; 426 if (auto subtensor = outputTensor.getDefiningOp<SubTensorOp>()) { 427 tensorResults.push_back(b.create<SubTensorInsertOp>( 428 loc, subtensor.source().getType(), res->getResult(resultIdx), 429 subtensor.source(), subtensor.offsets(), subtensor.sizes(), 430 subtensor.strides(), subtensor.static_offsets(), 431 subtensor.static_sizes(), subtensor.static_strides())); 432 } else { 433 tensorResults.push_back(res->getResult(resultIdx)); 434 } 435 ++resultIdx; 436 } 437 return scf::ValueVector(tensorResults.begin(), tensorResults.end()); 438 }, 439 options.distribution); 440 441 // 3. Transforms index arguments of `linalg.generic` w.r.t. to the tiling. 442 transformIndexedGenericOpIndices(b, res, ivs, loopIndexToRangeIndex); 443 444 // 4. Gather the newly created loops and return them with the new op. 445 SmallVector<Operation *, 8> loops; 446 loops.reserve(ivs.size()); 447 for (auto iv : ivs) { 448 if (iv.isa<BlockArgument>()) { 449 loops.push_back(iv.cast<BlockArgument>().getOwner()->getParentOp()); 450 assert(loops.back() && "no owner found for induction variable!"); 451 } else { 452 // TODO: Instead of doing this, try to recover the ops used instead of the 453 // loop. 454 loops.push_back(nullptr); 455 } 456 } 457 458 // 5. Get the tensor results from the outermost loop if available. Otherwise 459 // use the previously captured `tensorResults`. 460 Operation *outermostLoop = nullptr; 461 for (Operation *loop : loops) 462 if ((outermostLoop = loop)) 463 break; 464 465 return TiledLinalgOp{ 466 res, loops, outermostLoop ? outermostLoop->getResults() : tensorResults}; 467 } 468 469 template <typename LoopTy> 470 Optional<TiledLinalgOp> static tileLinalgOpImpl( 471 OpBuilder &b, LinalgOp op, const LinalgTilingOptions &options) { 472 OpBuilder::InsertionGuard g(b); 473 b.setInsertionPoint(op); 474 ScopedContext scope(b, op.getLoc()); 475 476 if (!options.tileSizeComputationFunction) 477 return llvm::None; 478 479 // Enforce the convention that "tiling by zero" skips tiling a particular 480 // dimension. This convention is significantly simpler to handle instead of 481 // adjusting affine maps to account for missing dimensions. 482 auto nLoops = op.getNumLoops(); 483 SmallVector<Value, 4> tileSizeVector = 484 options.tileSizeComputationFunction(b, op); 485 if (tileSizeVector.size() < nLoops) { 486 auto zero = std_constant_index(0); 487 tileSizeVector.append(nLoops - tileSizeVector.size(), zero); 488 } 489 490 return tileLinalgOpImpl<LoopTy>(b, op, tileSizeVector, options); 491 } 492 493 Optional<TiledLinalgOp> 494 mlir::linalg::tileLinalgOp(OpBuilder &b, LinalgOp op, 495 const LinalgTilingOptions &options) { 496 switch (options.loopType) { 497 case LinalgTilingLoopType::Loops: 498 return tileLinalgOpImpl<scf::ForOp>(b, op, options); 499 case LinalgTilingLoopType::ParallelLoops: 500 return tileLinalgOpImpl<scf::ParallelOp>(b, op, options); 501 default:; 502 } 503 return llvm::None; 504 } 505 506 namespace { 507 /// Helper classes for type list expansion. 508 template <typename... OpTypes> 509 class CanonicalizationPatternList; 510 511 template <> 512 class CanonicalizationPatternList<> { 513 public: 514 static void insert(OwningRewritePatternList &patterns, MLIRContext *ctx) {} 515 }; 516 517 template <typename OpTy, typename... OpTypes> 518 class CanonicalizationPatternList<OpTy, OpTypes...> { 519 public: 520 static void insert(OwningRewritePatternList &patterns, MLIRContext *ctx) { 521 OpTy::getCanonicalizationPatterns(patterns, ctx); 522 CanonicalizationPatternList<OpTypes...>::insert(patterns, ctx); 523 } 524 }; 525 526 /// Helper classes for type list expansion. 527 template <typename... OpTypes> 528 class RewritePatternList; 529 530 template <> 531 class RewritePatternList<> { 532 public: 533 static void insert(OwningRewritePatternList &patterns, 534 const LinalgTilingOptions &options, MLIRContext *ctx) {} 535 }; 536 537 template <typename OpTy, typename... OpTypes> 538 class RewritePatternList<OpTy, OpTypes...> { 539 public: 540 static void insert(OwningRewritePatternList &patterns, 541 const LinalgTilingOptions &options, MLIRContext *ctx) { 542 patterns.insert<LinalgTilingPattern<OpTy>>( 543 ctx, options, 544 LinalgTransformationFilter(ArrayRef<Identifier>{}, 545 Identifier::get("tiled", ctx))); 546 RewritePatternList<OpTypes...>::insert(patterns, options, ctx); 547 } 548 }; 549 } // namespace 550 551 OwningRewritePatternList 552 mlir::linalg::getLinalgTilingCanonicalizationPatterns(MLIRContext *ctx) { 553 OwningRewritePatternList patterns; 554 populateLinalgTilingCanonicalizationPatterns(patterns, ctx); 555 return patterns; 556 } 557 558 void mlir::linalg::populateLinalgTilingCanonicalizationPatterns( 559 OwningRewritePatternList &patterns, MLIRContext *ctx) { 560 AffineApplyOp::getCanonicalizationPatterns(patterns, ctx); 561 AffineForOp::getCanonicalizationPatterns(patterns, ctx); 562 AffineMinOp::getCanonicalizationPatterns(patterns, ctx); 563 AffineMaxOp::getCanonicalizationPatterns(patterns, ctx); 564 scf::ForOp::getCanonicalizationPatterns(patterns, ctx); 565 scf::ParallelOp::getCanonicalizationPatterns(patterns, ctx); 566 ConstantIndexOp::getCanonicalizationPatterns(patterns, ctx); 567 SubTensorOp::getCanonicalizationPatterns(patterns, ctx); 568 memref::SubViewOp::getCanonicalizationPatterns(patterns, ctx); 569 tensor::CastOp::getCanonicalizationPatterns(patterns, ctx); 570 memref::ViewOp::getCanonicalizationPatterns(patterns, ctx); 571 CanonicalizationPatternList< 572 #define GET_OP_LIST 573 #include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc" 574 >::insert(patterns, ctx); 575 } 576 577 /// Populate the given list with patterns that apply Linalg tiling. 578 static void insertTilingPatterns(OwningRewritePatternList &patterns, 579 const LinalgTilingOptions &options, 580 MLIRContext *ctx) { 581 RewritePatternList<GenericOp, IndexedGenericOp, 582 #define GET_OP_LIST 583 #include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc" 584 >::insert(patterns, options, ctx); 585 } 586 587 static void applyTilingToLoopPatterns(LinalgTilingLoopType loopType, 588 FuncOp funcOp, 589 ArrayRef<int64_t> tileSizes) { 590 auto options = 591 LinalgTilingOptions().setTileSizes(tileSizes).setLoopType(loopType); 592 MLIRContext *ctx = funcOp.getContext(); 593 OwningRewritePatternList patterns; 594 insertTilingPatterns(patterns, options, ctx); 595 (void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns)); 596 (void)applyPatternsAndFoldGreedily( 597 funcOp, getLinalgTilingCanonicalizationPatterns(ctx)); 598 // Drop the marker. 599 funcOp.walk([](LinalgOp op) { 600 op->removeAttr(LinalgTransforms::kLinalgTransformMarker); 601 }); 602 } 603 604 namespace { 605 struct LinalgTilingPass : public LinalgTilingBase<LinalgTilingPass> { 606 LinalgTilingPass() = default; 607 LinalgTilingPass(ArrayRef<int64_t> sizes) { tileSizes = sizes; } 608 609 void runOnFunction() override { 610 applyTilingToLoopPatterns(LinalgTilingLoopType::Loops, getFunction(), 611 tileSizes); 612 } 613 }; 614 615 struct LinalgTilingToParallelLoopsPass 616 : public LinalgTilingToParallelLoopsBase<LinalgTilingToParallelLoopsPass> { 617 LinalgTilingToParallelLoopsPass() = default; 618 LinalgTilingToParallelLoopsPass(ArrayRef<int64_t> sizes) { 619 tileSizes = sizes; 620 } 621 622 void runOnFunction() override { 623 applyTilingToLoopPatterns(LinalgTilingLoopType::ParallelLoops, 624 getFunction(), tileSizes); 625 } 626 }; 627 628 } // namespace 629 630 std::unique_ptr<OperationPass<FuncOp>> 631 mlir::createLinalgTilingPass(ArrayRef<int64_t> tileSizes) { 632 return std::make_unique<LinalgTilingPass>(tileSizes); 633 } 634 635 std::unique_ptr<OperationPass<FuncOp>> 636 mlir::createLinalgTilingToParallelLoopsPass(ArrayRef<int64_t> tileSizes) { 637 return std::make_unique<LinalgTilingToParallelLoopsPass>(tileSizes); 638 } 639