1 //===- Tiling.cpp - Implementation of linalg Tiling -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the linalg dialect Tiling pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PassDetail.h"
14 #include "mlir/Dialect/Affine/EDSC/Intrinsics.h"
15 #include "mlir/Dialect/Linalg/EDSC/FoldedIntrinsics.h"
16 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
17 #include "mlir/Dialect/Linalg/Passes.h"
18 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
19 #include "mlir/Dialect/Linalg/Utils/Utils.h"
20 #include "mlir/Dialect/SCF/EDSC/Builders.h"
21 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
22 #include "mlir/IR/AffineExpr.h"
23 #include "mlir/IR/AffineExprVisitor.h"
24 #include "mlir/IR/AffineMap.h"
25 #include "mlir/Support/LLVM.h"
26 #include "mlir/Transforms/FoldUtils.h"
27 
28 #include "llvm/Support/CommandLine.h"
29 
30 using namespace mlir;
31 using namespace mlir::edsc;
32 using namespace mlir::edsc::intrinsics;
33 using namespace mlir::linalg;
34 using namespace mlir::scf;
35 
36 using folded_affine_min = FoldedValueBuilder<AffineMinOp>;
37 
38 #define DEBUG_TYPE "linalg-tiling"
39 
40 static bool isZero(Value v) {
41   if (auto cst = v.getDefiningOp<ConstantIndexOp>())
42     return cst.getValue() == 0;
43   return false;
44 }
45 
46 using LoopIndexToRangeIndexMap = DenseMap<int, int>;
47 
48 // Creates a number of ranges equal to the number of non-zero in `tileSizes`.
49 // One for each loop of the LinalgOp that is tiled. The `tileSizes` argument has
50 // one entry per surrounding loop. It uses zero as the convention that a
51 // particular loop is not tiled. This convention simplifies implementations by
52 // avoiding affine map manipulations.
53 // The returned ranges correspond to the loop ranges, in the proper order, that
54 // are tiled and for which new loops will be created. Also the function returns
55 // a map from loop indices of the LinalgOp to the corresponding non-empty range
56 // indices of newly created loops.
57 static std::tuple<SmallVector<SubViewOp::Range, 4>, LoopIndexToRangeIndexMap>
58 makeTiledLoopRanges(OpBuilder &b, Location loc, AffineMap map,
59                     ArrayRef<Value> allViewSizes,
60                     ArrayRef<Value> allTileSizes) {
61   assert(allTileSizes.size() == map.getNumResults());
62   // Apply `map` to get view sizes in loop order.
63   auto viewSizes = applyMapToValues(b, loc, map, allViewSizes);
64   SmallVector<Value, 4> tileSizes(allTileSizes.begin(), allTileSizes.end());
65 
66   // Traverse the tile sizes, which are in loop order, erase zeros everywhere.
67   LoopIndexToRangeIndexMap loopIndexToRangeIndex;
68   for (int idx = 0, e = tileSizes.size(), zerosCount = 0; idx < e; ++idx) {
69     if (isZero(tileSizes[idx - zerosCount])) {
70       viewSizes.erase(viewSizes.begin() + idx - zerosCount);
71       tileSizes.erase(tileSizes.begin() + idx - zerosCount);
72       ++zerosCount;
73       continue;
74     }
75     loopIndexToRangeIndex[idx] = idx - zerosCount;
76   }
77 
78   // Create a new range with the applied tile sizes.
79   SmallVector<SubViewOp::Range, 4> res;
80   for (unsigned idx = 0, e = tileSizes.size(); idx < e; ++idx)
81     res.push_back(SubViewOp::Range{std_constant_index(0), viewSizes[idx],
82                                    tileSizes[idx]});
83   return std::make_tuple(res, loopIndexToRangeIndex);
84 }
85 
86 namespace {
87 
88 // Helper visitor to determine whether an AffineExpr is tiled.
89 // This is achieved by traversing every AffineDimExpr with position `pos` and
90 // checking whether the corresponding `tileSizes[pos]` is non-zero.
91 // This also enforces only positive coefficients occur in multiplications.
92 //
93 // Example:
94 //   `d0 + 2 * d1 + d3` is tiled by [0, 0, 0, 2] but not by [0, 0, 2, 0]
95 //
96 struct TileCheck : public AffineExprVisitor<TileCheck> {
97   TileCheck(ArrayRef<Value> tileSizes) : isTiled(false), tileSizes(tileSizes) {}
98 
99   void visitDimExpr(AffineDimExpr expr) {
100     isTiled |= !isZero(tileSizes[expr.getPosition()]);
101   }
102   void visitAffineBinaryOpExpr(AffineBinaryOpExpr expr) {
103     visit(expr.getLHS());
104     visit(expr.getRHS());
105     if (expr.getKind() == mlir::AffineExprKind::Mul)
106       assert(expr.getRHS().cast<AffineConstantExpr>().getValue() > 0 &&
107              "nonpositive multiplying coefficient");
108   }
109   bool isTiled;
110   ArrayRef<Value> tileSizes;
111 };
112 
113 } // namespace
114 
115 // IndexedGenericOp explicitly uses induction variables in the loop body. The
116 // values of the indices that are used in the loop body for any given access of
117 // input/output memref before `subview` op was applied should be invariant with
118 // respect to tiling.
119 //
120 // Therefore, if the operation is tiled, we have to transform the indices
121 // accordingly, i.e. offset them by the values of the corresponding induction
122 // variables that are captured implicitly in the body of the op.
123 //
124 // Example. `linalg.indexed_generic` before tiling:
125 //
126 // #id_2d = (i, j) -> (i, j)
127 // #pointwise_2d_trait = {
128 //   indexing_maps = [#id_2d, #id_2d],
129 //   iterator_types = ["parallel", "parallel"],
130 //   n_views = [1, 1]
131 // }
132 // linalg.indexed_generic #pointwise_2d_trait %operand, %result {
133 //   ^bb0(%i: index, %j: index, %operand_in: f32, %result_in: f32):
134 //     <some operations that use %i, %j>
135 // }: memref<50x100xf32>, memref<50x100xf32>
136 //
137 // After tiling pass with tiles sizes 10 and 25:
138 //
139 // #strided = (i, j)[s0, s1, s2] -> (i * s1 + s0 + j * s2)
140 //
141 // %c1 = constant 1 : index
142 // %c0 = constant 0 : index
143 // %c25 = constant 25 : index
144 // %c10 = constant 10 : index
145 // operand_dim_0 = dim %operand, 0 : memref<50x100xf32>
146 // operand_dim_1 = dim %operand, 1 : memref<50x100xf32>
147 // scf.for %k = %c0 to operand_dim_0 step %c10 {
148 //   scf.for %l = %c0 to operand_dim_1 step %c25 {
149 //     %4 = std.subview %operand[%k, %l][%c10, %c25][%c1, %c1]
150 //       : memref<50x100xf32> to memref<?x?xf32, #strided>
151 //     %5 = std.subview %result[%k, %l][%c10, %c25][%c1, %c1]
152 //       : memref<50x100xf32> to memref<?x?xf32, #strided>
153 //     linalg.indexed_generic pointwise_2d_trait %4, %5 {
154 //     ^bb0(%i: index, %j: index, %operand_in: f32, %result_in: f32):
155 //       // Indices `k` and `l` are implicitly captured in the body.
156 //       %transformed_i = addi %i, %k : index // index `i` is offset by %k
157 //       %transformed_j = addi %j, %l : index // index `j` is offset by %l
158 //       // Every use of %i, %j is replaced with %transformed_i, %transformed_j
159 //       <some operations that use %transformed_i, %transformed_j>
160 //     }: memref<?x?xf32, #strided>, memref<?x?xf32, #strided>
161 //   }
162 // }
163 //
164 // TODO: Investigate whether mixing implicit and explicit indices
165 // does not lead to losing information.
166 static void transformIndexedGenericOpIndices(
167     OpBuilder &b, LinalgOp op, SmallVectorImpl<Value> &ivs,
168     const LoopIndexToRangeIndexMap &loopIndexToRangeIndex) {
169   assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics");
170   auto indexedGenericOp = dyn_cast<IndexedGenericOp>(op.getOperation());
171   if (!indexedGenericOp)
172     return;
173 
174   // `linalg.indexed_generic` comes in two flavours. One has a region with a
175   // single block that defines the loop body. The other has a `fun` attribute
176   // that refers to an existing function symbol. The `fun` function call will be
177   // inserted in the loop body in that case.
178   //
179   // TODO: Add support for `linalg.indexed_generic` with `fun` attribute.
180   auto &region = indexedGenericOp.region();
181   if (region.empty()) {
182     indexedGenericOp.emitOpError("expected a region");
183     return;
184   }
185   auto &block = region.front();
186 
187   OpBuilder::InsertionGuard g(b);
188   b.setInsertionPointToStart(&block);
189   for (unsigned i = 0; i < indexedGenericOp.getNumLoops(); ++i) {
190     auto rangeIndex = loopIndexToRangeIndex.find(i);
191     if (rangeIndex == loopIndexToRangeIndex.end())
192       continue;
193     Value oldIndex = block.getArgument(i);
194     // Offset the index argument `i` by the value of the corresponding induction
195     // variable and replace all uses of the previous value.
196     Value newIndex = b.create<AddIOp>(indexedGenericOp.getLoc(), oldIndex,
197                                       ivs[rangeIndex->second]);
198     for (auto &use : oldIndex.getUses()) {
199       if (use.getOwner() == newIndex.getDefiningOp())
200         continue;
201       use.set(newIndex);
202     }
203   }
204 }
205 
206 static bool isTiled(AffineExpr expr, ArrayRef<Value> tileSizes) {
207   if (!expr)
208     return false;
209   TileCheck t(tileSizes);
210   t.visit(expr);
211   return t.isTiled;
212 }
213 
214 // Checks whether the view with index `viewIndex` within `linalgOp` varies with
215 // respect to a non-zero `tileSize`.
216 static bool isTiled(AffineMap map, ArrayRef<Value> tileSizes) {
217   if (!map)
218     return false;
219   for (unsigned r = 0; r < map.getNumResults(); ++r)
220     if (isTiled(map.getResult(r), tileSizes))
221       return true;
222   return false;
223 }
224 
225 static SmallVector<Value, 4> makeTiledViews(OpBuilder &b, Location loc,
226                                             LinalgOp linalgOp, AffineMap map,
227                                             ArrayRef<Value> ivs,
228                                             ArrayRef<Value> tileSizes,
229                                             ArrayRef<Value> allViewSizes) {
230   assert(linalgOp.hasBufferSemantics() &&
231          "expected linalg op with buffer semantics");
232   assert(ivs.size() == static_cast<size_t>(llvm::count_if(
233                            llvm::make_range(tileSizes.begin(), tileSizes.end()),
234                            [](Value v) { return !isZero(v); })) &&
235          "expected as many ivs as non-zero sizes");
236 
237   using namespace edsc::op;
238 
239   auto viewSizes = applyMapToValues(b, loc, map, allViewSizes);
240   // Construct (potentially temporary) mins and maxes on which to apply maps
241   // that define tile subviews.
242   SmallVector<Value, 8> lbs, subViewSizes;
243   for (unsigned idx = 0, idxIvs = 0, e = tileSizes.size(); idx < e; ++idx) {
244     bool isTiled = !isZero(tileSizes[idx]);
245     lbs.push_back(isTiled ? ivs[idxIvs++] : (Value)std_constant_index(0));
246     subViewSizes.push_back(isTiled ? tileSizes[idx] : viewSizes[idx]);
247   }
248 
249   auto *op = linalgOp.getOperation();
250 
251   SmallVector<Value, 4> res;
252   res.reserve(op->getNumOperands());
253   auto viewIteratorBegin = linalgOp.getInputsAndOutputBuffers().begin();
254   for (unsigned viewIndex = 0; viewIndex < linalgOp.getNumInputsAndOutputs();
255        ++viewIndex) {
256     Value view = *(viewIteratorBegin + viewIndex);
257     auto viewType = view.getType().cast<MemRefType>();
258     unsigned rank = viewType.getRank();
259     auto mapAttr = linalgOp.indexing_maps()[viewIndex];
260     auto map = mapAttr.cast<AffineMapAttr>().getValue();
261     // If the view is not tiled, we can use it as is.
262     if (!isTiled(map, tileSizes)) {
263       res.push_back(view);
264       continue;
265     }
266 
267     // Construct a new subview for the tile.
268     SmallVector<Value, 4> offsets, sizes, strides;
269     offsets.reserve(rank);
270     sizes.reserve(rank);
271     strides.reserve(rank);
272     for (unsigned r = 0; r < rank; ++r) {
273       if (!isTiled(map.getSubMap({r}), tileSizes)) {
274         offsets.push_back(std_constant_index(0));
275         sizes.push_back(std_dim(view, r));
276         strides.push_back(std_constant_index(1));
277         continue;
278       }
279 
280       // Tiling creates a new slice at the proper index, the slice step is 1
281       // (i.e. the slice view does not subsample, stepping occurs in the loop).
282       auto m = map.getSubMap({r});
283       auto offset = applyMapToValues(b, loc, m, lbs).front();
284       offsets.push_back(offset);
285       auto size = applyMapToValues(b, loc, m, subViewSizes).front();
286 
287       // The size of the subview should be trimmed to avoid out-of-bounds
288       // accesses, unless we statically know the subview size divides the view
289       // size evenly.
290       int64_t viewSize = viewType.getDimSize(r);
291       auto sizeCst = size.getDefiningOp<ConstantIndexOp>();
292       if (ShapedType::isDynamic(viewSize) || !sizeCst ||
293           (viewSize % sizeCst.getValue()) != 0) {
294         // Compute min(size, dim - offset) to avoid out-of-bounds accesses.
295         auto minMap = AffineMap::get(
296             /*dimCount=*/3, /*symbolCount=*/0,
297             {getAffineDimExpr(/*position=*/0, b.getContext()),
298              getAffineDimExpr(/*position=*/1, b.getContext()) -
299                  getAffineDimExpr(/*position=*/2, b.getContext())},
300             b.getContext());
301         auto d = std_dim(view, r);
302         size =
303             affine_min(b.getIndexType(), minMap, ValueRange{size, d, offset});
304       }
305 
306       sizes.push_back(size);
307       strides.push_back(std_constant_index(1));
308     }
309 
310     res.push_back(b.create<SubViewOp>(loc, view, offsets, sizes, strides));
311   }
312 
313   return res;
314 }
315 
316 template <typename LoopTy>
317 Optional<TiledLinalgOp> static tileLinalgOpImpl(
318     OpBuilder &b, LinalgOp op, const LinalgTilingOptions &options) {
319   OpBuilder::InsertionGuard g(b);
320   b.setInsertionPoint(op);
321   ScopedContext scope(b, op.getLoc());
322 
323   assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics");
324   // 1. Enforce the convention that "tiling by zero" skips tiling a particular
325   // dimension. This convention is significantly simpler to handle instead of
326   // adjusting affine maps to account for missing dimensions.
327   auto nLoops = op.getNumLoops();
328   SmallVector<Value, 4> tileSizeVector =
329       options.tileSizeComputationFunction(b, op);
330   if (tileSizeVector.size() < nLoops) {
331     auto zero = std_constant_index(0);
332     tileSizeVector.append(nLoops - tileSizeVector.size(), zero);
333   }
334 
335   ArrayRef<Value> tileSizes = tileSizeVector;
336   // Initial tile sizes may be too big, only take the first nLoops.
337   tileSizes = tileSizes.take_front(nLoops);
338 
339   if (llvm::all_of(tileSizes, isZero))
340     return llvm::None;
341 
342   if (auto convOp = dyn_cast<linalg::ConvOp>(op.getOperation())) {
343     // For conv op only support tiling along batch dimension (which is the first
344     // loop).
345     if (convOp.padding() && !llvm::all_of(tileSizes.drop_front(), isZero))
346       return llvm::None;
347   }
348 
349   // If interchangeVector is empty, use the identity. Build the permutation map
350   // otherwise.
351   auto invPermutationMap =
352       AffineMap::getMultiDimIdentityMap(tileSizes.size(), b.getContext());
353   if (!options.interchangeVector.empty())
354     invPermutationMap = inversePermutation(AffineMap::getPermutationMap(
355         options.interchangeVector, b.getContext()));
356   if (!invPermutationMap)
357     return llvm::None;
358 
359   // 2. Build the tiled loop ranges.
360   auto allViewSizes = getViewSizes(b, op);
361   // The flattened loopToOperandRangesMaps is expected to be an invertible
362   // permutation map (asserted in the inverse calculation).
363   auto mapsRange = op.indexing_maps().getAsRange<AffineMapAttr>();
364   auto maps = llvm::to_vector<8>(
365       llvm::map_range(mapsRange, [](AffineMapAttr a) { return a.getValue(); }));
366   auto viewSizesToLoopsMap = inversePermutation(concatAffineMaps(maps));
367   if (!viewSizesToLoopsMap)
368     return llvm::None;
369 
370   SmallVector<SubViewOp::Range, 4> loopRanges;
371   LoopIndexToRangeIndexMap loopIndexToRangeIndex;
372   std::tie(loopRanges, loopIndexToRangeIndex) = makeTiledLoopRanges(
373       b, scope.getLocation(), viewSizesToLoopsMap, allViewSizes, tileSizes);
374   if (!options.interchangeVector.empty())
375     applyPermutationToVector(loopRanges, options.interchangeVector);
376 
377   // 3. Create the tiled loops.
378   LinalgOp res = op;
379   SmallVector<Value, 4> ivs;
380   SmallVector<Attribute, 4> iteratorTypes =
381       llvm::to_vector<4>(op.iterator_types().cast<ArrayAttr>().getValue());
382   if (!options.interchangeVector.empty())
383     applyPermutationToVector(iteratorTypes, options.interchangeVector);
384   GenerateLoopNest<LoopTy>::doit(
385       loopRanges, iteratorTypes,
386       [&](ValueRange localIvs) {
387         auto &b = ScopedContext::getBuilderRef();
388         auto loc = ScopedContext::getLocation();
389         ivs.assign(localIvs.begin(), localIvs.end());
390         SmallVector<Value, 4> ivValues(ivs.begin(), ivs.end());
391 
392         // If we have to apply a permutation to the tiled loop nest, we have to
393         // reorder the induction variables This permutation is the right one
394         // assuming that loopRanges have previously been permuted by
395         // (i,j,k)->(k,i,j) So this permutation should be the inversePermutation
396         // of that one: (d0,d1,d2)->(d2,d0,d1)
397         if (!options.interchangeVector.empty())
398           ivValues = applyMapToValues(b, loc, invPermutationMap, ivValues);
399 
400         auto views = makeTiledViews(b, loc, op, viewSizesToLoopsMap, ivValues,
401                                     tileSizes, allViewSizes);
402         auto operands = getAssumedNonViewOperands(op);
403         views.append(operands.begin(), operands.end());
404         res = op.clone(b, loc, views);
405       },
406       options.distribution);
407 
408   // 4. Transforms index arguments of `linalg.generic` w.r.t. to the tiling.
409   transformIndexedGenericOpIndices(b, res, ivs, loopIndexToRangeIndex);
410 
411   // 5. Gather the newly created loops and return them with the new op.
412   SmallVector<Operation *, 8> loops;
413   loops.reserve(ivs.size());
414   for (auto iv : ivs) {
415     if (iv.isa<BlockArgument>()) {
416       loops.push_back(iv.cast<BlockArgument>().getOwner()->getParentOp());
417       assert(loops.back() && "no owner found for induction variable!");
418     } else {
419       // TODO: Instead of doing this, try to recover the ops used instead of the
420       // loop.
421       loops.push_back(nullptr);
422     }
423   }
424   return TiledLinalgOp{res, loops};
425 }
426 
427 Optional<TiledLinalgOp>
428 mlir::linalg::tileLinalgOp(OpBuilder &b, LinalgOp op,
429                            const LinalgTilingOptions &options) {
430   if (options.loopType == LinalgTilingLoopType::Loops)
431     return tileLinalgOpImpl<scf::ForOp>(b, op, options);
432   if (options.loopType == LinalgTilingLoopType::ParallelLoops)
433     return tileLinalgOpImpl<scf::ParallelOp>(b, op, options);
434   // TODO: Impl tiling to affine loops when it makes sense.
435   return llvm::None;
436 }
437 
438 namespace {
439 /// Helper classes for type list expansion.
440 template <typename... OpTypes>
441 class CanonicalizationPatternList;
442 
443 template <>
444 class CanonicalizationPatternList<> {
445 public:
446   static void insert(OwningRewritePatternList &patterns, MLIRContext *ctx) {}
447 };
448 
449 template <typename OpTy, typename... OpTypes>
450 class CanonicalizationPatternList<OpTy, OpTypes...> {
451 public:
452   static void insert(OwningRewritePatternList &patterns, MLIRContext *ctx) {
453     OpTy::getCanonicalizationPatterns(patterns, ctx);
454     CanonicalizationPatternList<OpTypes...>::insert(patterns, ctx);
455   }
456 };
457 
458 /// Helper classes for type list expansion.
459 template <typename... OpTypes>
460 class RewritePatternList;
461 
462 template <>
463 class RewritePatternList<> {
464 public:
465   static void insert(OwningRewritePatternList &patterns,
466                      const LinalgTilingOptions &options, MLIRContext *ctx) {}
467 };
468 
469 template <typename OpTy, typename... OpTypes>
470 class RewritePatternList<OpTy, OpTypes...> {
471 public:
472   static void insert(OwningRewritePatternList &patterns,
473                      const LinalgTilingOptions &options, MLIRContext *ctx) {
474     patterns.insert<LinalgTilingPattern<OpTy>>(
475         ctx, options, LinalgMarker({}, Identifier::get("tiled", ctx)));
476     RewritePatternList<OpTypes...>::insert(patterns, options, ctx);
477   }
478 };
479 } // namespace
480 
481 OwningRewritePatternList
482 mlir::linalg::getLinalgTilingCanonicalizationPatterns(MLIRContext *ctx) {
483   OwningRewritePatternList patterns;
484   AffineApplyOp::getCanonicalizationPatterns(patterns, ctx);
485   AffineForOp::getCanonicalizationPatterns(patterns, ctx);
486   AffineMinOp::getCanonicalizationPatterns(patterns, ctx);
487   AffineMaxOp::getCanonicalizationPatterns(patterns, ctx);
488   scf::ForOp::getCanonicalizationPatterns(patterns, ctx);
489   scf::ParallelOp::getCanonicalizationPatterns(patterns, ctx);
490   ConstantIndexOp::getCanonicalizationPatterns(patterns, ctx);
491   SubViewOp::getCanonicalizationPatterns(patterns, ctx);
492   ViewOp::getCanonicalizationPatterns(patterns, ctx);
493   CanonicalizationPatternList<
494 #define GET_OP_LIST
495 #include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"
496       >::insert(patterns, ctx);
497   return patterns;
498 }
499 
500 /// Populate the given list with patterns that apply Linalg tiling.
501 static void insertTilingPatterns(OwningRewritePatternList &patterns,
502                                  const LinalgTilingOptions &options,
503                                  MLIRContext *ctx) {
504   RewritePatternList<
505 #define GET_OP_LIST
506 #include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"
507       >::insert(patterns, options, ctx);
508 }
509 
510 static void applyTilingToLoopPatterns(LinalgTilingLoopType loopType,
511                                       FuncOp funcOp,
512                                       ArrayRef<int64_t> tileSizes) {
513   auto options =
514       LinalgTilingOptions().setTileSizes(tileSizes).setLoopType(loopType);
515   MLIRContext *ctx = funcOp.getContext();
516   OwningRewritePatternList patterns;
517   insertTilingPatterns(patterns, options, ctx);
518   applyPatternsAndFoldGreedily(funcOp, patterns);
519   applyPatternsAndFoldGreedily(funcOp,
520                                getLinalgTilingCanonicalizationPatterns(ctx));
521   // Drop the marker.
522   funcOp.walk([](LinalgOp op) {
523     op.removeAttr(LinalgTransforms::kLinalgTransformMarker);
524   });
525 }
526 
527 namespace {
528 struct LinalgTilingPass : public LinalgTilingBase<LinalgTilingPass> {
529   LinalgTilingPass() = default;
530   LinalgTilingPass(ArrayRef<int64_t> sizes) { tileSizes = sizes; }
531 
532   void runOnFunction() override {
533     applyTilingToLoopPatterns(LinalgTilingLoopType::Loops, getFunction(),
534                               tileSizes);
535   }
536 };
537 
538 struct LinalgTilingToParallelLoopsPass
539     : public LinalgTilingToParallelLoopsBase<LinalgTilingToParallelLoopsPass> {
540   LinalgTilingToParallelLoopsPass() = default;
541   LinalgTilingToParallelLoopsPass(ArrayRef<int64_t> sizes) {
542     tileSizes = sizes;
543   }
544 
545   void runOnFunction() override {
546     applyTilingToLoopPatterns(LinalgTilingLoopType::ParallelLoops,
547                               getFunction(), tileSizes);
548   }
549 };
550 
551 } // namespace
552 
553 std::unique_ptr<OperationPass<FuncOp>>
554 mlir::createLinalgTilingPass(ArrayRef<int64_t> tileSizes) {
555   return std::make_unique<LinalgTilingPass>(tileSizes);
556 }
557 
558 std::unique_ptr<OperationPass<FuncOp>>
559 mlir::createLinalgTilingToParallelLoopsPass(ArrayRef<int64_t> tileSizes) {
560   return std::make_unique<LinalgTilingToParallelLoopsPass>(tileSizes);
561 }
562