1 //===- Tiling.cpp - Implementation of linalg Tiling -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the linalg dialect Tiling pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PassDetail.h" 14 #include "mlir/Dialect/Affine/EDSC/Intrinsics.h" 15 #include "mlir/Dialect/Linalg/EDSC/FoldedIntrinsics.h" 16 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h" 17 #include "mlir/Dialect/Linalg/Passes.h" 18 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 19 #include "mlir/Dialect/Linalg/Utils/Utils.h" 20 #include "mlir/Dialect/SCF/EDSC/Builders.h" 21 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h" 22 #include "mlir/Dialect/Tensor/IR/Tensor.h" 23 #include "mlir/IR/AffineExpr.h" 24 #include "mlir/IR/AffineExprVisitor.h" 25 #include "mlir/IR/AffineMap.h" 26 #include "mlir/Transforms/FoldUtils.h" 27 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 28 29 #include "llvm/Support/CommandLine.h" 30 31 using namespace mlir; 32 using namespace mlir::edsc; 33 using namespace mlir::edsc::intrinsics; 34 using namespace mlir::linalg; 35 using namespace mlir::scf; 36 37 38 #define DEBUG_TYPE "linalg-tiling" 39 40 static bool isZero(Value v) { 41 if (auto cst = v.getDefiningOp<ConstantIndexOp>()) 42 return cst.getValue() == 0; 43 return false; 44 } 45 46 using LoopIndexToRangeIndexMap = DenseMap<int, int>; 47 48 // Creates a number of ranges equal to the number of non-zero in `tileSizes`. 49 // One for each loop of the LinalgOp that is tiled. The `tileSizes` argument has 50 // one entry per surrounding loop. It uses zero as the convention that a 51 // particular loop is not tiled. This convention simplifies implementations by 52 // avoiding affine map manipulations. 53 // The returned ranges correspond to the loop ranges, in the proper order, that 54 // are tiled and for which new loops will be created. Also the function returns 55 // a map from loop indices of the LinalgOp to the corresponding non-empty range 56 // indices of newly created loops. 57 static std::tuple<SmallVector<Range, 4>, LoopIndexToRangeIndexMap> 58 makeTiledLoopRanges(OpBuilder &b, Location loc, AffineMap map, 59 ValueRange allShapeSizes, ValueRange allTileSizes) { 60 assert(allTileSizes.size() == map.getNumResults()); 61 // Apply `map` to get shape sizes in loop order. 62 auto shapeSizes = applyMapToValues(b, loc, map, allShapeSizes); 63 SmallVector<Value, 4> tileSizes(allTileSizes.begin(), allTileSizes.end()); 64 65 // Traverse the tile sizes, which are in loop order, erase zeros everywhere. 66 LoopIndexToRangeIndexMap loopIndexToRangeIndex; 67 for (int idx = 0, e = tileSizes.size(), zerosCount = 0; idx < e; ++idx) { 68 if (isZero(tileSizes[idx - zerosCount])) { 69 shapeSizes.erase(shapeSizes.begin() + idx - zerosCount); 70 tileSizes.erase(tileSizes.begin() + idx - zerosCount); 71 ++zerosCount; 72 continue; 73 } 74 loopIndexToRangeIndex[idx] = idx - zerosCount; 75 } 76 77 // Create a new range with the applied tile sizes. 78 SmallVector<Range, 4> res; 79 for (unsigned idx = 0, e = tileSizes.size(); idx < e; ++idx) 80 res.push_back( 81 Range{std_constant_index(0), shapeSizes[idx], tileSizes[idx]}); 82 return std::make_tuple(res, loopIndexToRangeIndex); 83 } 84 namespace { 85 86 // Helper visitor to determine whether an AffineExpr is tiled. 87 // This is achieved by traversing every AffineDimExpr with position `pos` and 88 // checking whether the corresponding `tileSizes[pos]` is non-zero. 89 // This also enforces only positive coefficients occur in multiplications. 90 // 91 // Example: 92 // `d0 + 2 * d1 + d3` is tiled by [0, 0, 0, 2] but not by [0, 0, 2, 0] 93 // 94 struct TileCheck : public AffineExprVisitor<TileCheck> { 95 TileCheck(ValueRange tileSizes) : isTiled(false), tileSizes(tileSizes) {} 96 97 void visitDimExpr(AffineDimExpr expr) { 98 isTiled |= !isZero(tileSizes[expr.getPosition()]); 99 } 100 void visitAffineBinaryOpExpr(AffineBinaryOpExpr expr) { 101 visit(expr.getLHS()); 102 visit(expr.getRHS()); 103 if (expr.getKind() == mlir::AffineExprKind::Mul) 104 assert(expr.getRHS().cast<AffineConstantExpr>().getValue() > 0 && 105 "nonpositive multiplying coefficient"); 106 } 107 bool isTiled; 108 ValueRange tileSizes; 109 }; 110 111 } // namespace 112 113 // IndexedGenericOp explicitly uses induction variables in the loop body. The 114 // values of the indices that are used in the loop body for any given access of 115 // input/output memref before `subview` op was applied should be invariant with 116 // respect to tiling. 117 // 118 // Therefore, if the operation is tiled, we have to transform the indices 119 // accordingly, i.e. offset them by the values of the corresponding induction 120 // variables that are captured implicitly in the body of the op. 121 // 122 // Example. `linalg.indexed_generic` before tiling: 123 // 124 // #id_2d = (i, j) -> (i, j) 125 // #pointwise_2d_trait = { 126 // indexing_maps = [#id_2d, #id_2d], 127 // iterator_types = ["parallel", "parallel"], 128 // n_views = [1, 1] 129 // } 130 // linalg.indexed_generic #pointwise_2d_trait %operand, %result { 131 // ^bb0(%i: index, %j: index, %operand_in: f32, %result_in: f32): 132 // <some operations that use %i, %j> 133 // }: memref<50x100xf32>, memref<50x100xf32> 134 // 135 // After tiling pass with tiles sizes 10 and 25: 136 // 137 // #strided = (i, j)[s0, s1, s2] -> (i * s1 + s0 + j * s2) 138 // 139 // %c1 = constant 1 : index 140 // %c0 = constant 0 : index 141 // %c25 = constant 25 : index 142 // %c10 = constant 10 : index 143 // operand_dim_0 = dim %operand, 0 : memref<50x100xf32> 144 // operand_dim_1 = dim %operand, 1 : memref<50x100xf32> 145 // scf.for %k = %c0 to operand_dim_0 step %c10 { 146 // scf.for %l = %c0 to operand_dim_1 step %c25 { 147 // %4 = std.subview %operand[%k, %l][%c10, %c25][%c1, %c1] 148 // : memref<50x100xf32> to memref<?x?xf32, #strided> 149 // %5 = std.subview %result[%k, %l][%c10, %c25][%c1, %c1] 150 // : memref<50x100xf32> to memref<?x?xf32, #strided> 151 // linalg.indexed_generic pointwise_2d_trait %4, %5 { 152 // ^bb0(%i: index, %j: index, %operand_in: f32, %result_in: f32): 153 // // Indices `k` and `l` are implicitly captured in the body. 154 // %transformed_i = addi %i, %k : index // index `i` is offset by %k 155 // %transformed_j = addi %j, %l : index // index `j` is offset by %l 156 // // Every use of %i, %j is replaced with %transformed_i, %transformed_j 157 // <some operations that use %transformed_i, %transformed_j> 158 // }: memref<?x?xf32, #strided>, memref<?x?xf32, #strided> 159 // } 160 // } 161 // 162 // TODO: Investigate whether mixing implicit and explicit indices 163 // does not lead to losing information. 164 static void transformIndexedGenericOpIndices( 165 OpBuilder &b, LinalgOp op, SmallVectorImpl<Value> &ivs, 166 const LoopIndexToRangeIndexMap &loopIndexToRangeIndex) { 167 auto indexedGenericOp = dyn_cast<IndexedGenericOp>(op.getOperation()); 168 if (!indexedGenericOp) 169 return; 170 171 // `linalg.indexed_generic` comes in two flavours. One has a region with a 172 // single block that defines the loop body. The other has a `fun` attribute 173 // that refers to an existing function symbol. The `fun` function call will be 174 // inserted in the loop body in that case. 175 // 176 // TODO: Add support for `linalg.indexed_generic` with `fun` attribute. 177 auto ®ion = indexedGenericOp.region(); 178 if (region.empty()) { 179 indexedGenericOp.emitOpError("expected a region"); 180 return; 181 } 182 auto &block = region.front(); 183 184 OpBuilder::InsertionGuard g(b); 185 b.setInsertionPointToStart(&block); 186 for (unsigned i = 0; i < indexedGenericOp.getNumLoops(); ++i) { 187 auto rangeIndex = loopIndexToRangeIndex.find(i); 188 if (rangeIndex == loopIndexToRangeIndex.end()) 189 continue; 190 Value oldIndex = block.getArgument(i); 191 // Offset the index argument `i` by the value of the corresponding induction 192 // variable and replace all uses of the previous value. 193 Value newIndex = b.create<AddIOp>(indexedGenericOp.getLoc(), oldIndex, 194 ivs[rangeIndex->second]); 195 for (auto &use : oldIndex.getUses()) { 196 if (use.getOwner() == newIndex.getDefiningOp()) 197 continue; 198 use.set(newIndex); 199 } 200 } 201 } 202 203 static bool isTiled(AffineExpr expr, ValueRange tileSizes) { 204 if (!expr) 205 return false; 206 TileCheck t(tileSizes); 207 t.visit(expr); 208 return t.isTiled; 209 } 210 211 // Checks whether the `map varies with respect to a non-zero `tileSize`. 212 static bool isTiled(AffineMap map, ValueRange tileSizes) { 213 if (!map) 214 return false; 215 for (unsigned r = 0; r < map.getNumResults(); ++r) 216 if (isTiled(map.getResult(r), tileSizes)) 217 return true; 218 return false; 219 } 220 221 static SmallVector<Value, 4> 222 makeTiledShapes(OpBuilder &b, Location loc, LinalgOp linalgOp, 223 ArrayRef<Value> tiledOperands, AffineMap map, ValueRange ivs, 224 ValueRange tileSizes, ValueRange allShapeSizes) { 225 assert(ivs.size() == static_cast<size_t>(llvm::count_if( 226 llvm::make_range(tileSizes.begin(), tileSizes.end()), 227 [](Value v) { return !isZero(v); })) && 228 "expected as many ivs as non-zero sizes"); 229 230 using namespace edsc::op; 231 232 auto shapeSizes = applyMapToValues(b, loc, map, allShapeSizes); 233 // Construct (potentially temporary) mins and maxes on which to apply maps 234 // that define tile subshapes. 235 SmallVector<Value, 8> lbs, subShapeSizes; 236 for (unsigned idx = 0, idxIvs = 0, e = tileSizes.size(); idx < e; ++idx) { 237 bool isTiled = !isZero(tileSizes[idx]); 238 lbs.push_back(isTiled ? ivs[idxIvs++] : (Value)std_constant_index(0)); 239 // Before composing, we need to make range a closed interval. 240 Value size = isTiled ? tileSizes[idx] : shapeSizes[idx]; 241 subShapeSizes.push_back(size - std_constant_index(1)); 242 } 243 244 SmallVector<Value, 4> res; 245 res.reserve(tiledOperands.size()); 246 for (auto en : llvm::enumerate(tiledOperands)) { 247 Value shapedOp = en.value(); 248 ShapedType shapedType = shapedOp.getType().cast<ShapedType>(); 249 unsigned rank = shapedType.getRank(); 250 AffineMap map = linalgOp.getIndexingMap(en.index()); 251 // If the shape is not tiled, we can use it as is. 252 if (!isTiled(map, tileSizes)) { 253 res.push_back(shapedOp); 254 continue; 255 } 256 257 // Construct a new subview / subtensor for the tile. 258 SmallVector<OpFoldResult, 4> offsets, sizes, strides; 259 offsets.reserve(rank); 260 sizes.reserve(rank); 261 strides.reserve(rank); 262 for (unsigned r = 0; r < rank; ++r) { 263 if (!isTiled(map.getSubMap({r}), tileSizes)) { 264 offsets.push_back(b.getIndexAttr(0)); 265 sizes.push_back(std_dim(shapedOp, r).value); 266 strides.push_back(b.getIndexAttr(1)); 267 continue; 268 } 269 270 // Tiling creates a new slice at the proper index, the slice step is 1 271 // (i.e. the op does not subsample, stepping occurs in the loop). 272 auto m = map.getSubMap({r}); 273 auto offset = applyMapToValues(b, loc, m, lbs).front(); 274 offsets.push_back(offset); 275 auto closedIntSize = applyMapToValues(b, loc, m, subShapeSizes).front(); 276 // Resulting size needs to be made half open interval again. 277 auto size = closedIntSize + std_constant_index(1); 278 279 // The size of the subview / subtensor should be trimmed to avoid 280 // out-of-bounds accesses, unless we statically know the subshape size 281 // divides the shape size evenly. 282 int64_t shapeSize = shapedType.getDimSize(r); 283 auto sizeCst = size.getDefiningOp<ConstantIndexOp>(); 284 if (ShapedType::isDynamic(shapeSize) || !sizeCst || 285 (shapeSize % sizeCst.getValue()) != 0) { 286 // Compute min(size, dim - offset) to avoid out-of-bounds accesses. 287 auto minMap = AffineMap::get( 288 /*dimCount=*/3, /*symbolCount=*/0, 289 {getAffineDimExpr(/*position=*/0, b.getContext()), 290 getAffineDimExpr(/*position=*/1, b.getContext()) - 291 getAffineDimExpr(/*position=*/2, b.getContext())}, 292 b.getContext()); 293 auto d = std_dim(shapedOp, r); 294 SmallVector<Value, 4> operands{size, d, offset}; 295 fullyComposeAffineMapAndOperands(&minMap, &operands); 296 size = affine_min(b.getIndexType(), minMap, operands); 297 } 298 299 sizes.push_back(size); 300 strides.push_back(b.getIndexAttr(1)); 301 } 302 303 if (shapedType.isa<MemRefType>()) 304 res.push_back( 305 b.create<SubViewOp>(loc, shapedOp, offsets, sizes, strides)); 306 else 307 res.push_back( 308 b.create<SubTensorOp>(loc, shapedOp, offsets, sizes, strides)); 309 } 310 311 return res; 312 } 313 314 template <typename LoopTy> 315 static Optional<TiledLinalgOp> 316 tileLinalgOpImpl(OpBuilder &b, LinalgOp op, ValueRange tileSizes, 317 const LinalgTilingOptions &options) { 318 auto nLoops = op.getNumLoops(); 319 // Initial tile sizes may be too big, only take the first nLoops. 320 tileSizes = tileSizes.take_front(nLoops); 321 322 if (llvm::all_of(tileSizes, isZero)) 323 return llvm::None; 324 325 if (auto convOp = dyn_cast<linalg::ConvOp>(op.getOperation())) { 326 // For conv op only support tiling along batch dimension (which is the first 327 // loop). 328 if (convOp.padding() && !llvm::all_of(tileSizes.drop_front(), isZero)) 329 return llvm::None; 330 } 331 332 // 1. Build the tiled loop ranges. 333 auto allShapeSizes = op.createFlatListOfOperandDims(b, op.getLoc()); 334 AffineMap shapeSizesToLoopsMap = op.getShapesToLoopsMap(); 335 if (!shapeSizesToLoopsMap) 336 return llvm::None; 337 338 SmallVector<Range, 4> loopRanges; 339 LoopIndexToRangeIndexMap loopIndexToRangeIndex; 340 std::tie(loopRanges, loopIndexToRangeIndex) = makeTiledLoopRanges( 341 b, op.getLoc(), shapeSizesToLoopsMap, allShapeSizes, tileSizes); 342 343 SmallVector<Attribute, 4> iteratorTypes; 344 for (auto attr : 345 enumerate(op.iterator_types().cast<ArrayAttr>().getValue())) { 346 if (loopIndexToRangeIndex.count(attr.index())) 347 iteratorTypes.push_back(attr.value()); 348 } 349 // If interchangeVector is empty, use the identity. Build the permutation map 350 // otherwise. 351 auto invPermutationMap = 352 AffineMap::getMultiDimIdentityMap(tileSizes.size(), b.getContext()); 353 if (!options.interchangeVector.empty()) { 354 // Based on the pruned iterations (due to zero tile size), recompute the 355 // interchange vector. 356 SmallVector<unsigned, 4> interchangeVector; 357 interchangeVector.reserve(options.interchangeVector.size()); 358 for (auto pos : options.interchangeVector) { 359 auto it = loopIndexToRangeIndex.find(pos); 360 if (it == loopIndexToRangeIndex.end()) 361 continue; 362 interchangeVector.push_back(it->second); 363 } 364 // Interchange vector is guaranteed to be a permutation, 365 // `inversePermutation` must succeed. 366 invPermutationMap = inversePermutation( 367 AffineMap::getPermutationMap(interchangeVector, b.getContext())); 368 assert(invPermutationMap); 369 applyPermutationToVector(loopRanges, interchangeVector); 370 applyPermutationToVector(iteratorTypes, interchangeVector); 371 } 372 373 // 2. Create the tiled loops. 374 LinalgOp res = op; 375 SmallVector<Value, 4> ivs, tensorResults; 376 auto outputTensors = op.getOutputTensors(); 377 GenerateLoopNest<LoopTy>::doit( 378 loopRanges, /*iterArgInitValues*/ outputTensors, iteratorTypes, 379 [&](ValueRange localIvs, ValueRange iterArgs) -> scf::ValueVector { 380 auto &b = ScopedContext::getBuilderRef(); 381 auto loc = ScopedContext::getLocation(); 382 ivs.assign(localIvs.begin(), localIvs.end()); 383 384 // When an `interchangeVector` is present, it has been applied to the 385 // loop ranges and the iterator types. Apply its inverse to the 386 // resulting loop `ivs` to match the op definition. 387 SmallVector<Value, 4> interchangedIvs; 388 if (!options.interchangeVector.empty()) 389 interchangedIvs = applyMapToValues(b, loc, invPermutationMap, ivs); 390 else 391 interchangedIvs.assign(ivs.begin(), ivs.end()); 392 393 assert(op.getNumOutputTensors() == iterArgs.size() && 394 "num output tensors must match number of loop iter arguments"); 395 396 auto operands = llvm::to_vector<4>(op.getInputs()); 397 SmallVector<Value, 4> outputBuffers = op.getOutputBuffers(); 398 // TODO: thanks to simplifying assumption we do not need to worry about 399 // order of output buffers and tensors: there is only ever one kind. 400 assert(outputBuffers.empty() || iterArgs.empty()); 401 operands.append(outputBuffers.begin(), outputBuffers.end()); 402 operands.append(iterArgs.begin(), iterArgs.end()); 403 SmallVector<Value, 4> tiledOperands = 404 makeTiledShapes(b, loc, op, operands, shapeSizesToLoopsMap, 405 interchangedIvs, tileSizes, allShapeSizes); 406 auto nonShapedOperands = op.getAssumedNonShapedOperands(); 407 tiledOperands.append(nonShapedOperands.begin(), 408 nonShapedOperands.end()); 409 410 // TODO: use an interface/adaptor to avoid leaking position in 411 // `tiledOperands`. 412 SmallVector<Type, 4> resultTensorTypes; 413 for (OpOperand *opOperand : op.getOutputTensorsOpOperands()) 414 resultTensorTypes.push_back( 415 tiledOperands[opOperand->getOperandNumber()].getType()); 416 417 res = op.clone(b, loc, resultTensorTypes, tiledOperands); 418 419 // Insert a subtensor_insert for each output tensor. 420 unsigned resultIdx = 0; 421 for (OpOperand *opOperand : op.getOutputTensorsOpOperands()) { 422 // TODO: use an interface/adaptor to avoid leaking position in 423 // `tiledOperands`. 424 Value outputTensor = tiledOperands[opOperand->getOperandNumber()]; 425 if (auto subtensor = outputTensor.getDefiningOp<SubTensorOp>()) { 426 tensorResults.push_back(b.create<SubTensorInsertOp>( 427 loc, subtensor.source().getType(), res->getResult(resultIdx), 428 subtensor.source(), subtensor.offsets(), subtensor.sizes(), 429 subtensor.strides(), subtensor.static_offsets(), 430 subtensor.static_sizes(), subtensor.static_strides())); 431 } else { 432 tensorResults.push_back(res->getResult(resultIdx)); 433 } 434 ++resultIdx; 435 } 436 return scf::ValueVector(tensorResults.begin(), tensorResults.end()); 437 }, 438 options.distribution); 439 440 // 3. Transforms index arguments of `linalg.generic` w.r.t. to the tiling. 441 transformIndexedGenericOpIndices(b, res, ivs, loopIndexToRangeIndex); 442 443 // 4. Gather the newly created loops and return them with the new op. 444 SmallVector<Operation *, 8> loops; 445 loops.reserve(ivs.size()); 446 for (auto iv : ivs) { 447 if (iv.isa<BlockArgument>()) { 448 loops.push_back(iv.cast<BlockArgument>().getOwner()->getParentOp()); 449 assert(loops.back() && "no owner found for induction variable!"); 450 } else { 451 // TODO: Instead of doing this, try to recover the ops used instead of the 452 // loop. 453 loops.push_back(nullptr); 454 } 455 } 456 457 // 5. Get the tensor results from the outermost loop if available. Otherwise 458 // use the previously captured `tensorResults`. 459 Operation *outermostLoop = nullptr; 460 for (Operation *loop : loops) 461 if ((outermostLoop = loop)) 462 break; 463 464 return TiledLinalgOp{ 465 res, loops, outermostLoop ? outermostLoop->getResults() : tensorResults}; 466 } 467 468 template <typename LoopTy> 469 Optional<TiledLinalgOp> static tileLinalgOpImpl( 470 OpBuilder &b, LinalgOp op, const LinalgTilingOptions &options) { 471 OpBuilder::InsertionGuard g(b); 472 b.setInsertionPoint(op); 473 ScopedContext scope(b, op.getLoc()); 474 475 // Enforce the convention that "tiling by zero" skips tiling a particular 476 // dimension. This convention is significantly simpler to handle instead of 477 // adjusting affine maps to account for missing dimensions. 478 auto nLoops = op.getNumLoops(); 479 SmallVector<Value, 4> tileSizeVector = 480 options.tileSizeComputationFunction(b, op); 481 if (tileSizeVector.size() < nLoops) { 482 auto zero = std_constant_index(0); 483 tileSizeVector.append(nLoops - tileSizeVector.size(), zero); 484 } 485 486 return tileLinalgOpImpl<LoopTy>(b, op, tileSizeVector, options); 487 } 488 489 Optional<TiledLinalgOp> 490 mlir::linalg::tileLinalgOp(OpBuilder &b, LinalgOp op, 491 const LinalgTilingOptions &options) { 492 switch (options.loopType) { 493 case LinalgTilingLoopType::Loops: 494 return tileLinalgOpImpl<scf::ForOp>(b, op, options); 495 case LinalgTilingLoopType::ParallelLoops: 496 return tileLinalgOpImpl<scf::ParallelOp>(b, op, options); 497 default:; 498 } 499 return llvm::None; 500 } 501 502 namespace { 503 /// Helper classes for type list expansion. 504 template <typename... OpTypes> 505 class CanonicalizationPatternList; 506 507 template <> 508 class CanonicalizationPatternList<> { 509 public: 510 static void insert(OwningRewritePatternList &patterns, MLIRContext *ctx) {} 511 }; 512 513 template <typename OpTy, typename... OpTypes> 514 class CanonicalizationPatternList<OpTy, OpTypes...> { 515 public: 516 static void insert(OwningRewritePatternList &patterns, MLIRContext *ctx) { 517 OpTy::getCanonicalizationPatterns(patterns, ctx); 518 CanonicalizationPatternList<OpTypes...>::insert(patterns, ctx); 519 } 520 }; 521 522 /// Helper classes for type list expansion. 523 template <typename... OpTypes> 524 class RewritePatternList; 525 526 template <> 527 class RewritePatternList<> { 528 public: 529 static void insert(OwningRewritePatternList &patterns, 530 const LinalgTilingOptions &options, MLIRContext *ctx) {} 531 }; 532 533 template <typename OpTy, typename... OpTypes> 534 class RewritePatternList<OpTy, OpTypes...> { 535 public: 536 static void insert(OwningRewritePatternList &patterns, 537 const LinalgTilingOptions &options, MLIRContext *ctx) { 538 patterns.insert<LinalgTilingPattern<OpTy>>( 539 ctx, options, LinalgMarker({}, Identifier::get("tiled", ctx))); 540 RewritePatternList<OpTypes...>::insert(patterns, options, ctx); 541 } 542 }; 543 } // namespace 544 545 OwningRewritePatternList 546 mlir::linalg::getLinalgTilingCanonicalizationPatterns(MLIRContext *ctx) { 547 OwningRewritePatternList patterns; 548 populateLinalgTilingCanonicalizationPatterns(patterns, ctx); 549 return patterns; 550 } 551 552 void mlir::linalg::populateLinalgTilingCanonicalizationPatterns( 553 OwningRewritePatternList &patterns, MLIRContext *ctx) { 554 AffineApplyOp::getCanonicalizationPatterns(patterns, ctx); 555 AffineForOp::getCanonicalizationPatterns(patterns, ctx); 556 AffineMinOp::getCanonicalizationPatterns(patterns, ctx); 557 AffineMaxOp::getCanonicalizationPatterns(patterns, ctx); 558 scf::ForOp::getCanonicalizationPatterns(patterns, ctx); 559 scf::ParallelOp::getCanonicalizationPatterns(patterns, ctx); 560 ConstantIndexOp::getCanonicalizationPatterns(patterns, ctx); 561 SubTensorOp::getCanonicalizationPatterns(patterns, ctx); 562 SubViewOp::getCanonicalizationPatterns(patterns, ctx); 563 tensor::CastOp::getCanonicalizationPatterns(patterns, ctx); 564 ViewOp::getCanonicalizationPatterns(patterns, ctx); 565 CanonicalizationPatternList< 566 #define GET_OP_LIST 567 #include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc" 568 >::insert(patterns, ctx); 569 } 570 571 /// Populate the given list with patterns that apply Linalg tiling. 572 static void insertTilingPatterns(OwningRewritePatternList &patterns, 573 const LinalgTilingOptions &options, 574 MLIRContext *ctx) { 575 RewritePatternList<GenericOp, IndexedGenericOp, 576 #define GET_OP_LIST 577 #include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc" 578 >::insert(patterns, options, ctx); 579 } 580 581 static void applyTilingToLoopPatterns(LinalgTilingLoopType loopType, 582 FuncOp funcOp, 583 ArrayRef<int64_t> tileSizes) { 584 auto options = 585 LinalgTilingOptions().setTileSizes(tileSizes).setLoopType(loopType); 586 MLIRContext *ctx = funcOp.getContext(); 587 OwningRewritePatternList patterns; 588 insertTilingPatterns(patterns, options, ctx); 589 applyPatternsAndFoldGreedily(funcOp, std::move(patterns)); 590 applyPatternsAndFoldGreedily(funcOp, 591 getLinalgTilingCanonicalizationPatterns(ctx)); 592 // Drop the marker. 593 funcOp.walk([](LinalgOp op) { 594 op.removeAttr(LinalgTransforms::kLinalgTransformMarker); 595 }); 596 } 597 598 namespace { 599 struct LinalgTilingPass : public LinalgTilingBase<LinalgTilingPass> { 600 LinalgTilingPass() = default; 601 LinalgTilingPass(ArrayRef<int64_t> sizes) { tileSizes = sizes; } 602 603 void runOnFunction() override { 604 applyTilingToLoopPatterns(LinalgTilingLoopType::Loops, getFunction(), 605 tileSizes); 606 } 607 }; 608 609 struct LinalgTilingToParallelLoopsPass 610 : public LinalgTilingToParallelLoopsBase<LinalgTilingToParallelLoopsPass> { 611 LinalgTilingToParallelLoopsPass() = default; 612 LinalgTilingToParallelLoopsPass(ArrayRef<int64_t> sizes) { 613 tileSizes = sizes; 614 } 615 616 void runOnFunction() override { 617 applyTilingToLoopPatterns(LinalgTilingLoopType::ParallelLoops, 618 getFunction(), tileSizes); 619 } 620 }; 621 622 } // namespace 623 624 std::unique_ptr<OperationPass<FuncOp>> 625 mlir::createLinalgTilingPass(ArrayRef<int64_t> tileSizes) { 626 return std::make_unique<LinalgTilingPass>(tileSizes); 627 } 628 629 std::unique_ptr<OperationPass<FuncOp>> 630 mlir::createLinalgTilingToParallelLoopsPass(ArrayRef<int64_t> tileSizes) { 631 return std::make_unique<LinalgTilingToParallelLoopsPass>(tileSizes); 632 } 633