1 //===- Tiling.cpp - Implementation of linalg Tiling -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the linalg dialect Tiling pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PassDetail.h" 14 #include "mlir/Dialect/Affine/EDSC/Intrinsics.h" 15 #include "mlir/Dialect/Linalg/EDSC/FoldedIntrinsics.h" 16 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h" 17 #include "mlir/Dialect/Linalg/Passes.h" 18 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 19 #include "mlir/Dialect/Linalg/Utils/Utils.h" 20 #include "mlir/Dialect/SCF/EDSC/Builders.h" 21 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h" 22 #include "mlir/IR/AffineExpr.h" 23 #include "mlir/IR/AffineExprVisitor.h" 24 #include "mlir/IR/AffineMap.h" 25 #include "mlir/Support/LLVM.h" 26 #include "mlir/Transforms/FoldUtils.h" 27 28 #include "llvm/Support/CommandLine.h" 29 30 using namespace mlir; 31 using namespace mlir::edsc; 32 using namespace mlir::edsc::intrinsics; 33 using namespace mlir::linalg; 34 using namespace mlir::scf; 35 36 using folded_affine_min = FoldedValueBuilder<AffineMinOp>; 37 38 #define DEBUG_TYPE "linalg-tiling" 39 40 static bool isZero(Value v) { 41 return isa_and_nonnull<ConstantIndexOp>(v.getDefiningOp()) && 42 cast<ConstantIndexOp>(v.getDefiningOp()).getValue() == 0; 43 } 44 45 using LoopIndexToRangeIndexMap = DenseMap<int, int>; 46 47 // Creates a number of ranges equal to the number of non-zero in `tileSizes`. 48 // One for each loop of the LinalgOp that is tiled. The `tileSizes` argument has 49 // one entry per surrounding loop. It uses zero as the convention that a 50 // particular loop is not tiled. This convention simplifies implementations by 51 // avoiding affine map manipulations. 52 // The returned ranges correspond to the loop ranges, in the proper order, that 53 // are tiled and for which new loops will be created. Also the function returns 54 // a map from loop indices of the LinalgOp to the corresponding non-empty range 55 // indices of newly created loops. 56 static std::tuple<SmallVector<SubViewOp::Range, 4>, LoopIndexToRangeIndexMap> 57 makeTiledLoopRanges(OpBuilder &b, Location loc, AffineMap map, 58 ArrayRef<Value> allViewSizes, ArrayRef<Value> allTileSizes, 59 OperationFolder *folder) { 60 assert(allTileSizes.size() == map.getNumResults()); 61 // Apply `map` to get view sizes in loop order. 62 auto viewSizes = applyMapToValues(b, loc, map, allViewSizes, folder); 63 SmallVector<Value, 4> tileSizes(allTileSizes.begin(), allTileSizes.end()); 64 65 // Traverse the tile sizes, which are in loop order, erase zeros everywhere. 66 LoopIndexToRangeIndexMap loopIndexToRangeIndex; 67 for (int idx = 0, e = tileSizes.size(), zerosCount = 0; idx < e; ++idx) { 68 if (isZero(tileSizes[idx - zerosCount])) { 69 viewSizes.erase(viewSizes.begin() + idx - zerosCount); 70 tileSizes.erase(tileSizes.begin() + idx - zerosCount); 71 ++zerosCount; 72 continue; 73 } 74 loopIndexToRangeIndex[idx] = idx - zerosCount; 75 } 76 77 // Create a new range with the applied tile sizes. 78 SmallVector<SubViewOp::Range, 4> res; 79 for (unsigned idx = 0, e = tileSizes.size(); idx < e; ++idx) { 80 res.push_back(SubViewOp::Range{folded_std_constant_index(folder, 0), 81 viewSizes[idx], tileSizes[idx]}); 82 } 83 return std::make_tuple(res, loopIndexToRangeIndex); 84 } 85 86 namespace { 87 88 // Helper visitor to determine whether an AffineExpr is tiled. 89 // This is achieved by traversing every AffineDimExpr with position `pos` and 90 // checking whether the corresponding `tileSizes[pos]` is non-zero. 91 // This also enforces only positive coefficients occur in multiplications. 92 // 93 // Example: 94 // `d0 + 2 * d1 + d3` is tiled by [0, 0, 0, 2] but not by [0, 0, 2, 0] 95 // 96 struct TileCheck : public AffineExprVisitor<TileCheck> { 97 TileCheck(ArrayRef<Value> tileSizes) : isTiled(false), tileSizes(tileSizes) {} 98 99 void visitDimExpr(AffineDimExpr expr) { 100 isTiled |= !isZero(tileSizes[expr.getPosition()]); 101 } 102 void visitAffineBinaryOpExpr(AffineBinaryOpExpr expr) { 103 visit(expr.getLHS()); 104 visit(expr.getRHS()); 105 if (expr.getKind() == mlir::AffineExprKind::Mul) 106 assert(expr.getRHS().cast<AffineConstantExpr>().getValue() > 0 && 107 "nonpositive multiplying coefficient"); 108 } 109 bool isTiled; 110 ArrayRef<Value> tileSizes; 111 }; 112 113 } // namespace 114 115 // IndexedGenericOp explicitly uses induction variables in the loop body. The 116 // values of the indices that are used in the loop body for any given access of 117 // input/output memref before `subview` op was applied should be invariant with 118 // respect to tiling. 119 // 120 // Therefore, if the operation is tiled, we have to transform the indices 121 // accordingly, i.e. offset them by the values of the corresponding induction 122 // variables that are captured implicitly in the body of the op. 123 // 124 // Example. `linalg.indexed_generic` before tiling: 125 // 126 // #id_2d = (i, j) -> (i, j) 127 // #pointwise_2d_trait = { 128 // indexing_maps = [#id_2d, #id_2d], 129 // iterator_types = ["parallel", "parallel"], 130 // n_views = [1, 1] 131 // } 132 // linalg.indexed_generic #pointwise_2d_trait %operand, %result { 133 // ^bb0(%i: index, %j: index, %operand_in: f32, %result_in: f32): 134 // <some operations that use %i, %j> 135 // }: memref<50x100xf32>, memref<50x100xf32> 136 // 137 // After tiling pass with tiles sizes 10 and 25: 138 // 139 // #strided = (i, j)[s0, s1, s2] -> (i * s1 + s0 + j * s2) 140 // 141 // %c1 = constant 1 : index 142 // %c0 = constant 0 : index 143 // %c25 = constant 25 : index 144 // %c10 = constant 10 : index 145 // operand_dim_0 = dim %operand, 0 : memref<50x100xf32> 146 // operand_dim_1 = dim %operand, 1 : memref<50x100xf32> 147 // scf.for %k = %c0 to operand_dim_0 step %c10 { 148 // scf.for %l = %c0 to operand_dim_1 step %c25 { 149 // %4 = std.subview %operand[%k, %l][%c10, %c25][%c1, %c1] 150 // : memref<50x100xf32> to memref<?x?xf32, #strided> 151 // %5 = std.subview %result[%k, %l][%c10, %c25][%c1, %c1] 152 // : memref<50x100xf32> to memref<?x?xf32, #strided> 153 // linalg.indexed_generic pointwise_2d_trait %4, %5 { 154 // ^bb0(%i: index, %j: index, %operand_in: f32, %result_in: f32): 155 // // Indices `k` and `l` are implicitly captured in the body. 156 // %transformed_i = addi %i, %k : index // index `i` is offset by %k 157 // %transformed_j = addi %j, %l : index // index `j` is offset by %l 158 // // Every use of %i, %j is replaced with %transformed_i, %transformed_j 159 // <some operations that use %transformed_i, %transformed_j> 160 // }: memref<?x?xf32, #strided>, memref<?x?xf32, #strided> 161 // } 162 // } 163 // 164 // TODO(pifon, ntv): Investigate whether mixing implicit and explicit indices 165 // does not lead to losing information. 166 static void transformIndexedGenericOpIndices( 167 OpBuilder &b, LinalgOp op, SmallVectorImpl<Value> &ivs, 168 const LoopIndexToRangeIndexMap &loopIndexToRangeIndex) { 169 assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics"); 170 auto indexedGenericOp = dyn_cast<IndexedGenericOp>(op.getOperation()); 171 if (!indexedGenericOp) 172 return; 173 174 // `linalg.indexed_generic` comes in two flavours. One has a region with a 175 // single block that defines the loop body. The other has a `fun` attribute 176 // that refers to an existing function symbol. The `fun` function call will be 177 // inserted in the loop body in that case. 178 // 179 // TODO(pifon): Add support for `linalg.indexed_generic` with `fun` attribute. 180 auto ®ion = indexedGenericOp.region(); 181 if (region.empty()) { 182 indexedGenericOp.emitOpError("expected a region"); 183 return; 184 } 185 auto &block = region.getBlocks().front(); 186 187 OpBuilder::InsertionGuard g(b); 188 b.setInsertionPointToStart(&block); 189 for (unsigned i = 0; i < indexedGenericOp.getNumLoops(); ++i) { 190 auto rangeIndex = loopIndexToRangeIndex.find(i); 191 if (rangeIndex == loopIndexToRangeIndex.end()) 192 continue; 193 Value oldIndex = block.getArgument(i); 194 // Offset the index argument `i` by the value of the corresponding induction 195 // variable and replace all uses of the previous value. 196 Value newIndex = b.create<AddIOp>(indexedGenericOp.getLoc(), oldIndex, 197 ivs[rangeIndex->second]); 198 for (auto &use : oldIndex.getUses()) { 199 if (use.getOwner() == newIndex.getDefiningOp()) 200 continue; 201 use.set(newIndex); 202 } 203 } 204 } 205 206 static bool isTiled(AffineExpr expr, ArrayRef<Value> tileSizes) { 207 if (!expr) 208 return false; 209 TileCheck t(tileSizes); 210 t.visit(expr); 211 return t.isTiled; 212 } 213 214 // Checks whether the view with index `viewIndex` within `linalgOp` varies with 215 // respect to a non-zero `tileSize`. 216 static bool isTiled(AffineMap map, ArrayRef<Value> tileSizes) { 217 if (!map) 218 return false; 219 for (unsigned r = 0; r < map.getNumResults(); ++r) 220 if (isTiled(map.getResult(r), tileSizes)) 221 return true; 222 return false; 223 } 224 225 static SmallVector<Value, 4> 226 makeTiledViews(OpBuilder &b, Location loc, LinalgOp linalgOp, 227 ArrayRef<Value> ivs, ArrayRef<Value> tileSizes, 228 ArrayRef<Value> viewSizes, OperationFolder *folder) { 229 assert(linalgOp.hasBufferSemantics() && 230 "expected linalg op with buffer semantics"); 231 assert(ivs.size() == static_cast<size_t>(llvm::count_if( 232 llvm::make_range(tileSizes.begin(), tileSizes.end()), 233 [](Value v) { return !isZero(v); })) && 234 "expected as many ivs as non-zero sizes"); 235 236 using namespace edsc::op; 237 238 // Construct (potentially temporary) mins and maxes on which to apply maps 239 // that define tile subviews. 240 SmallVector<Value, 8> lbs, subViewSizes; 241 for (unsigned idx = 0, idxIvs = 0, e = tileSizes.size(); idx < e; ++idx) { 242 bool isTiled = !isZero(tileSizes[idx]); 243 lbs.push_back(isTiled ? ivs[idxIvs++] 244 : (Value)folded_std_constant_index(folder, 0)); 245 subViewSizes.push_back(isTiled ? tileSizes[idx] : viewSizes[idx]); 246 } 247 248 auto *op = linalgOp.getOperation(); 249 250 SmallVector<Value, 4> res; 251 res.reserve(op->getNumOperands()); 252 auto viewIteratorBegin = linalgOp.getInputsAndOutputBuffers().begin(); 253 for (unsigned viewIndex = 0; viewIndex < linalgOp.getNumInputsAndOutputs(); 254 ++viewIndex) { 255 Value view = *(viewIteratorBegin + viewIndex); 256 auto viewType = view.getType().cast<MemRefType>(); 257 unsigned rank = viewType.getRank(); 258 auto mapAttr = linalgOp.indexing_maps()[viewIndex]; 259 auto map = mapAttr.cast<AffineMapAttr>().getValue(); 260 // If the view is not tiled, we can use it as is. 261 if (!isTiled(map, tileSizes)) { 262 res.push_back(view); 263 continue; 264 } 265 266 // Construct a new subview for the tile. 267 SmallVector<Value, 4> offsets, sizes, strides; 268 offsets.reserve(rank); 269 sizes.reserve(rank); 270 strides.reserve(rank); 271 for (unsigned r = 0; r < rank; ++r) { 272 if (!isTiled(map.getSubMap({r}), tileSizes)) { 273 offsets.push_back(folded_std_constant_index(folder, 0)); 274 sizes.push_back(std_dim(view, r)); 275 strides.push_back(folded_std_constant_index(folder, 1)); 276 continue; 277 } 278 279 // Tiling creates a new slice at the proper index, the slice step is 1 280 // (i.e. the slice view does not subsample, stepping occurs in the loop). 281 auto m = map.getSubMap({r}); 282 auto offset = applyMapToValues(b, loc, m, lbs, folder).front(); 283 offsets.push_back(offset); 284 auto size = applyMapToValues(b, loc, m, subViewSizes, folder).front(); 285 286 // The size of the subview should be trimmed to avoid out-of-bounds 287 // accesses, unless we statically know the subview size divides the view 288 // size evenly. 289 int64_t viewSize = viewType.getDimSize(r); 290 auto sizeCst = size.getDefiningOp<ConstantIndexOp>(); 291 if (ShapedType::isDynamic(viewSize) || !sizeCst || 292 (viewSize % sizeCst.getValue()) != 0) { 293 // Compute min(size, dim - offset) to avoid out-of-bounds accesses. 294 auto minMap = AffineMap::get( 295 /*dimCount=*/3, /*symbolCount=*/0, 296 {getAffineDimExpr(/*position=*/0, b.getContext()), 297 getAffineDimExpr(/*position=*/1, b.getContext()) - 298 getAffineDimExpr(/*position=*/2, b.getContext())}, 299 b.getContext()); 300 auto d = folded_std_dim(folder, view, r); 301 size = folded_affine_min(folder, b.getIndexType(), minMap, 302 ValueRange{size, d, offset}); 303 } 304 305 sizes.push_back(size); 306 strides.push_back(folded_std_constant_index(folder, 1)); 307 } 308 309 res.push_back(b.create<SubViewOp>(loc, view, offsets, sizes, strides)); 310 } 311 312 // Traverse the mins/maxes and erase those that don't have uses left. 313 // This is a special type of folding that we only apply when `folder` is 314 // defined. 315 if (folder) 316 for (auto v : llvm::concat<Value>(lbs, subViewSizes)) 317 if (v.use_empty()) 318 v.getDefiningOp()->erase(); 319 320 return res; 321 } 322 323 template <typename LoopTy> 324 Optional<TiledLinalgOp> static tileLinalgOpImpl( 325 OpBuilder &b, LinalgOp op, ArrayRef<Value> tileSizes, 326 ArrayRef<unsigned> interchangeVector, OperationFolder *folder) { 327 assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics"); 328 // 1. Enforce the convention that "tiling by zero" skips tiling a particular 329 // dimension. This convention is significantly simpler to handle instead of 330 // adjusting affine maps to account for missing dimensions. 331 assert(op.getNumParallelLoops() + op.getNumReductionLoops() + 332 op.getNumWindowLoops() == 333 tileSizes.size() && 334 "expected matching number of tile sizes and loops"); 335 336 if (auto convOp = dyn_cast<linalg::ConvOp>(op.getOperation())) { 337 // For conv op only support tiling along batch dimension (which is the first 338 // loop). 339 if (convOp.padding() && 340 !llvm::all_of(tileSizes.drop_front(), 341 [](Value val) { return isZero(val); })) 342 return llvm::None; 343 } 344 345 // If interchangeVector is empty, use the identity. Build the permutation map 346 // otherwise. 347 auto invPermutationMap = AffineMap::getMultiDimIdentityMap( 348 tileSizes.size(), ScopedContext::getContext()); 349 if (!interchangeVector.empty()) 350 invPermutationMap = inversePermutation(AffineMap::getPermutationMap( 351 interchangeVector, ScopedContext::getContext())); 352 if (!invPermutationMap) 353 return llvm::None; 354 355 OpBuilder::InsertionGuard g(b); 356 b.setInsertionPoint(op); 357 ScopedContext scope(b, op.getLoc()); 358 // 2. Build the tiled loop ranges. 359 auto viewSizes = getViewSizes(b, op); 360 // The flattened loopToOperandRangesMaps is expected to be an invertible 361 // permutation map (asserted in the inverse calculation). 362 auto mapsRange = op.indexing_maps().getAsRange<AffineMapAttr>(); 363 auto maps = llvm::to_vector<8>( 364 llvm::map_range(mapsRange, [](AffineMapAttr a) { return a.getValue(); })); 365 auto viewSizesToLoopsMap = inversePermutation(concatAffineMaps(maps)); 366 if (!viewSizesToLoopsMap) 367 return llvm::None; 368 369 SmallVector<SubViewOp::Range, 4> loopRanges; 370 LoopIndexToRangeIndexMap loopIndexToRangeIndex; 371 std::tie(loopRanges, loopIndexToRangeIndex) = 372 makeTiledLoopRanges(b, scope.getLocation(), viewSizesToLoopsMap, 373 viewSizes, tileSizes, folder); 374 if (!interchangeVector.empty()) 375 applyPermutationToVector(loopRanges, interchangeVector); 376 377 // 3. Create the tiled loops. 378 LinalgOp res = op; 379 SmallVector<Value, 4> ivs(loopRanges.size()); 380 // Convert SubViewOp::Range to linalg_range. 381 SmallVector<Value, 4> linalgRanges; 382 for (auto &range : loopRanges) { 383 linalgRanges.push_back( 384 linalg_range(range.offset, range.size, range.stride)); 385 } 386 GenericLoopNestRangeBuilder<LoopTy>(ivs, linalgRanges)([&] { 387 auto &b = ScopedContext::getBuilderRef(); 388 auto loc = ScopedContext::getLocation(); 389 SmallVector<Value, 4> ivValues(ivs.begin(), ivs.end()); 390 391 // If we have to apply a permutation to the tiled loop nest, we have to 392 // reorder the induction variables This permutation is the right one 393 // assuming that loopRanges have previously been permuted by 394 // (i,j,k)->(k,i,j) So this permutation should be the inversePermutation of 395 // that one: (d0,d1,d2)->(d2,d0,d1) 396 if (!interchangeVector.empty()) 397 ivValues = applyMapToValues(b, loc, invPermutationMap, ivValues, folder); 398 399 auto views = 400 makeTiledViews(b, loc, op, ivValues, tileSizes, viewSizes, folder); 401 auto operands = getAssumedNonViewOperands(op); 402 views.append(operands.begin(), operands.end()); 403 res = op.clone(b, loc, views); 404 }); 405 406 // 4. Transforms index arguments of `linalg.generic` w.r.t. to the tiling. 407 transformIndexedGenericOpIndices(b, res, ivs, loopIndexToRangeIndex); 408 409 // 5. Gather the newly created loops and return them with the new op. 410 SmallVector<Operation *, 8> loops; 411 loops.reserve(ivs.size()); 412 for (auto iv : ivs) { 413 loops.push_back(iv.cast<BlockArgument>().getOwner()->getParentOp()); 414 assert(loops.back() && "no owner found for induction variable!"); 415 } 416 417 return TiledLinalgOp{res, loops}; 418 } 419 420 template <typename LoopTy> 421 static Optional<TiledLinalgOp> 422 tileLinalgOpImpl(OpBuilder &b, LinalgOp op, ArrayRef<int64_t> tileSizes, 423 ArrayRef<unsigned> interchangeVector, 424 OperationFolder *folder) { 425 assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics"); 426 if (tileSizes.empty()) 427 return llvm::None; 428 429 // The following uses the convention that "tiling by zero" skips tiling a 430 // particular dimension. This convention is significantly simpler to handle 431 // instead of adjusting affine maps to account for missing dimensions. 432 auto nLoops = op.getNumParallelLoops() + op.getNumReductionLoops() + 433 op.getNumWindowLoops(); 434 tileSizes = tileSizes.take_front(nLoops); 435 // If only 0 tilings are left, then return. 436 if (llvm::all_of(tileSizes, [](int64_t v) { return v == 0; })) 437 return llvm::None; 438 439 if (auto convOp = dyn_cast<linalg::ConvOp>(op.getOperation())) { 440 // For conv op only support tiling along batch dimension (which is the first 441 // loop). 442 if (convOp.padding() && !llvm::all_of(tileSizes.drop_front(), 443 [](int64_t val) { return val == 0; })) 444 return llvm::None; 445 } 446 447 // Create a builder for tile size constants. 448 OpBuilder::InsertionGuard g(b); 449 b.setInsertionPoint(op); 450 ScopedContext scope(b, op.getLoc()); 451 452 // Materialize concrete tile size values to pass the generic tiling function. 453 SmallVector<Value, 8> tileSizeValues; 454 tileSizeValues.reserve(tileSizes.size()); 455 for (auto ts : tileSizes) 456 tileSizeValues.push_back(folded_std_constant_index(folder, ts)); 457 // Pad tile sizes with zero values to enforce our convention. 458 if (tileSizeValues.size() < nLoops) { 459 for (unsigned i = tileSizeValues.size(); i < nLoops; ++i) 460 tileSizeValues.push_back(folded_std_constant_index(folder, 0)); 461 } 462 463 return tileLinalgOpImpl<LoopTy>(b, op, tileSizeValues, interchangeVector, 464 folder); 465 } 466 467 Optional<TiledLinalgOp> 468 mlir::linalg::tileLinalgOp(OpBuilder &b, LinalgOp op, ArrayRef<Value> tileSizes, 469 ArrayRef<unsigned> interchangeVector, 470 OperationFolder *folder) { 471 return tileLinalgOpImpl<scf::ForOp>(b, op, tileSizes, interchangeVector, 472 folder); 473 } 474 475 Optional<TiledLinalgOp> mlir::linalg::tileLinalgOpToParallelLoops( 476 OpBuilder &b, LinalgOp op, ArrayRef<Value> tileSizes, 477 ArrayRef<unsigned> interchangeVector, OperationFolder *folder) { 478 return tileLinalgOpImpl<scf::ParallelOp>(b, op, tileSizes, interchangeVector, 479 folder); 480 } 481 482 Optional<TiledLinalgOp> mlir::linalg::tileLinalgOp( 483 OpBuilder &b, LinalgOp op, ArrayRef<int64_t> tileSizes, 484 ArrayRef<unsigned> interchangeVector, OperationFolder *folder) { 485 return tileLinalgOpImpl<scf::ForOp>(b, op, tileSizes, interchangeVector, 486 folder); 487 } 488 489 Optional<TiledLinalgOp> mlir::linalg::tileLinalgOpToParallelLoops( 490 OpBuilder &b, LinalgOp op, ArrayRef<int64_t> tileSizes, 491 ArrayRef<unsigned> interchangeVector, OperationFolder *folder) { 492 return tileLinalgOpImpl<scf::ParallelOp>(b, op, tileSizes, interchangeVector, 493 folder); 494 } 495 496 template <typename LoopTy> 497 static void tileLinalgOps(FuncOp f, ArrayRef<int64_t> tileSizes) { 498 OpBuilder b(f); 499 OperationFolder folder(f.getContext()); 500 f.walk([tileSizes, &b, &folder](LinalgOp op) { 501 if (!op.hasBufferSemantics()) 502 return; 503 auto opLoopsPair = tileLinalgOpImpl<LoopTy>( 504 b, op, tileSizes, /*interchangeVector=*/{}, &folder); 505 // If tiling occurred successfully, erase old op. 506 if (opLoopsPair) 507 op.erase(); 508 }); 509 f.walk([](LinalgOp op) { 510 if (isOpTriviallyDead(op)) 511 op.erase(); 512 }); 513 } 514 515 namespace { 516 struct LinalgTilingPass : public LinalgTilingBase<LinalgTilingPass> { 517 LinalgTilingPass() = default; 518 LinalgTilingPass(ArrayRef<int64_t> sizes) { tileSizes = sizes; } 519 520 void runOnFunction() override { 521 tileLinalgOps<scf::ForOp>(getFunction(), tileSizes); 522 } 523 }; 524 525 struct LinalgTilingToParallelLoopsPass 526 : public LinalgTilingToParallelLoopsBase<LinalgTilingToParallelLoopsPass> { 527 LinalgTilingToParallelLoopsPass() = default; 528 LinalgTilingToParallelLoopsPass(ArrayRef<int64_t> sizes) { 529 tileSizes = sizes; 530 } 531 532 void runOnFunction() override { 533 tileLinalgOps<scf::ParallelOp>(getFunction(), tileSizes); 534 } 535 }; 536 537 } // namespace 538 539 std::unique_ptr<OperationPass<FuncOp>> 540 mlir::createLinalgTilingPass(ArrayRef<int64_t> tileSizes) { 541 return std::make_unique<LinalgTilingPass>(tileSizes); 542 } 543 544 std::unique_ptr<OperationPass<FuncOp>> 545 mlir::createLinalgTilingToParallelLoopsPass(ArrayRef<int64_t> tileSizes) { 546 return std::make_unique<LinalgTilingToParallelLoopsPass>(tileSizes); 547 } 548