1 //===- Tiling.cpp - Implementation of linalg Tiling -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the linalg dialect Tiling pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PassDetail.h" 14 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h" 15 #include "mlir/Dialect/Linalg/Passes.h" 16 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 17 #include "mlir/Dialect/Linalg/Utils/Utils.h" 18 #include "mlir/Dialect/MemRef/IR/MemRef.h" 19 #include "mlir/Dialect/SCF/Transforms.h" 20 #include "mlir/Dialect/Tensor/IR/Tensor.h" 21 #include "mlir/IR/AffineExpr.h" 22 #include "mlir/IR/AffineMap.h" 23 #include "mlir/Transforms/FoldUtils.h" 24 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 25 26 #include "llvm/Support/CommandLine.h" 27 28 using namespace mlir; 29 using namespace mlir::linalg; 30 using namespace mlir::scf; 31 32 #define DEBUG_TYPE "linalg-tiling" 33 34 static bool isZero(Value v) { 35 if (auto cst = v.getDefiningOp<arith::ConstantIndexOp>()) 36 return cst.value() == 0; 37 return false; 38 } 39 40 using LoopIndexToRangeIndexMap = DenseMap<int, int>; 41 42 // Creates a number of ranges equal to the number of non-zero in `tileSizes`. 43 // One for each loop of the LinalgOp that is tiled. The `tileSizes` argument has 44 // one entry per surrounding loop. It uses zero as the convention that a 45 // particular loop is not tiled. This convention simplifies implementations by 46 // avoiding affine map manipulations. 47 // The returned ranges correspond to the loop ranges, in the proper order, that 48 // are tiled and for which new loops will be created. Also the function returns 49 // a map from loop indices of the LinalgOp to the corresponding non-empty range 50 // indices of newly created loops. 51 static std::tuple<SmallVector<Range, 4>, LoopIndexToRangeIndexMap> 52 makeTiledLoopRanges(OpBuilder &b, Location loc, AffineMap map, 53 ValueRange allShapeSizes, ValueRange allTileSizes) { 54 assert(allTileSizes.size() == map.getNumResults()); 55 // Apply `map` to get shape sizes in loop order. 56 auto shapeSizes = applyMapToValues(b, loc, map, allShapeSizes); 57 SmallVector<Value, 4> tileSizes(allTileSizes.begin(), allTileSizes.end()); 58 59 // Traverse the tile sizes, which are in loop order, erase zeros everywhere. 60 LoopIndexToRangeIndexMap loopIndexToRangeIndex; 61 for (int idx = 0, e = tileSizes.size(), zerosCount = 0; idx < e; ++idx) { 62 if (isZero(tileSizes[idx - zerosCount])) { 63 shapeSizes.erase(shapeSizes.begin() + idx - zerosCount); 64 tileSizes.erase(tileSizes.begin() + idx - zerosCount); 65 ++zerosCount; 66 continue; 67 } 68 loopIndexToRangeIndex[idx] = idx - zerosCount; 69 } 70 71 // Create a new range with the applied tile sizes. 72 SmallVector<Range, 4> res; 73 for (unsigned idx = 0, e = tileSizes.size(); idx < e; ++idx) 74 res.push_back(Range{b.create<arith::ConstantIndexOp>(loc, 0), 75 shapeSizes[idx], tileSizes[idx]}); 76 return std::make_tuple(res, loopIndexToRangeIndex); 77 } 78 79 // All indices returned by IndexOp should be invariant with respect to tiling. 80 // Therefore, if an operation is tiled, we have to transform the indices 81 // accordingly, i.e. offset them by the values of the corresponding induction 82 // variables that are captured implicitly in the body of the op. 83 // 84 // Example. `linalg.generic` before tiling: 85 // 86 // #id_2d = (i, j) -> (i, j) 87 // #pointwise_2d_trait = { 88 // indexing_maps = [#id_2d, #id_2d], 89 // iterator_types = ["parallel", "parallel"] 90 // } 91 // linalg.generic #pointwise_2d_trait %operand, %result { 92 // ^bb0(%operand_in: f32, %result_in: f32): 93 // %i = linalg.index 0 : index 94 // %j = linalg.index 1 : index 95 // <some operations that use %i, %j> 96 // }: memref<50x100xf32>, memref<50x100xf32> 97 // 98 // After tiling pass with tiles sizes 10 and 25: 99 // 100 // #strided = (i, j)[s0, s1, s2] -> (i * s1 + s0 + j * s2) 101 // 102 // %c1 = arith.constant 1 : index 103 // %c0 = arith.constant 0 : index 104 // %c25 = arith.constant 25 : index 105 // %c10 = arith.constant 10 : index 106 // operand_dim_0 = dim %operand, 0 : memref<50x100xf32> 107 // operand_dim_1 = dim %operand, 1 : memref<50x100xf32> 108 // scf.for %k = %c0 to operand_dim_0 step %c10 { 109 // scf.for %l = %c0 to operand_dim_1 step %c25 { 110 // %4 = std.subview %operand[%k, %l][%c10, %c25][%c1, %c1] 111 // : memref<50x100xf32> to memref<?x?xf32, #strided> 112 // %5 = std.subview %result[%k, %l][%c10, %c25][%c1, %c1] 113 // : memref<50x100xf32> to memref<?x?xf32, #strided> 114 // linalg.generic pointwise_2d_trait %4, %5 { 115 // ^bb0(%operand_in: f32, %result_in: f32): 116 // %i = linalg.index 0 : index 117 // %j = linalg.index 1 : index 118 // // Indices `k` and `l` are implicitly captured in the body. 119 // %transformed_i = arith.addi %i, %k : index // index `i` is offset by %k 120 // %transformed_j = arith.addi %j, %l : index // index `j` is offset by %l 121 // // Every use of %i, %j is replaced with %transformed_i, %transformed_j 122 // <some operations that use %transformed_i, %transformed_j> 123 // }: memref<?x?xf32, #strided>, memref<?x?xf32, #strided> 124 // } 125 // } 126 // 127 // TODO: Investigate whether mixing implicit and explicit indices 128 // does not lead to losing information. 129 static void 130 transformIndexOps(OpBuilder &b, LinalgOp op, SmallVectorImpl<Value> &ivs, 131 const LoopIndexToRangeIndexMap &loopIndexToRangeIndex) { 132 SmallVector<Value> allIvs(op.getNumLoops(), nullptr); 133 for (auto &en : enumerate(allIvs)) { 134 auto rangeIndex = loopIndexToRangeIndex.find(en.index()); 135 if (rangeIndex == loopIndexToRangeIndex.end()) 136 continue; 137 en.value() = ivs[rangeIndex->second]; 138 } 139 addTileLoopIvsToIndexOpResults(b, op, allIvs); 140 } 141 142 // Insert a tile `source` into the destination tensor `dest`. The position at 143 // which the tile is inserted (as well as size of tile) is taken from a given 144 // ExtractSliceOp `sliceOp`. 145 static Value insertSliceIntoTensor(OpBuilder &b, Location loc, 146 tensor::ExtractSliceOp sliceOp, Value source, 147 Value dest) { 148 return b.create<tensor::InsertSliceOp>( 149 loc, sliceOp.source().getType(), source, dest, sliceOp.offsets(), 150 sliceOp.sizes(), sliceOp.strides(), sliceOp.static_offsets(), 151 sliceOp.static_sizes(), sliceOp.static_strides()); 152 } 153 154 template <typename LoopTy> 155 static FailureOr<TiledLinalgOp> 156 tileLinalgOpImpl(OpBuilder &b, LinalgOp op, ValueRange tileSizes, 157 const LinalgTilingOptions &options) { 158 auto nLoops = op.getNumLoops(); 159 // Initial tile sizes may be too big, only take the first nLoops. 160 tileSizes = tileSizes.take_front(nLoops); 161 162 if (llvm::all_of(tileSizes, isZero)) 163 return failure(); 164 165 // 1. Build the tiled loop ranges. 166 auto allShapeSizes = op.createFlatListOfOperandDims(b, op.getLoc()); 167 AffineMap shapeSizesToLoopsMap = op.getShapesToLoopsMap(); 168 if (!shapeSizesToLoopsMap) 169 return failure(); 170 171 SmallVector<Range, 4> loopRanges; 172 LoopIndexToRangeIndexMap loopIndexToRangeIndex; 173 std::tie(loopRanges, loopIndexToRangeIndex) = makeTiledLoopRanges( 174 b, op.getLoc(), shapeSizesToLoopsMap, allShapeSizes, tileSizes); 175 176 SmallVector<Attribute, 4> iteratorTypes; 177 for (auto attr : 178 enumerate(op.iterator_types().cast<ArrayAttr>().getValue())) { 179 if (loopIndexToRangeIndex.count(attr.index())) 180 iteratorTypes.push_back(attr.value()); 181 } 182 // If interchangeVector is empty, use the identity. Build the permutation map 183 // otherwise. 184 auto invPermutationMap = 185 AffineMap::getMultiDimIdentityMap(tileSizes.size(), b.getContext()); 186 if (!options.interchangeVector.empty()) { 187 // Based on the pruned iterations (due to zero tile size), recompute the 188 // interchange vector. 189 SmallVector<unsigned, 4> interchangeVector; 190 interchangeVector.reserve(options.interchangeVector.size()); 191 for (auto pos : options.interchangeVector) { 192 auto it = loopIndexToRangeIndex.find(pos); 193 if (it == loopIndexToRangeIndex.end()) 194 continue; 195 interchangeVector.push_back(it->second); 196 } 197 // Interchange vector is guaranteed to be a permutation, 198 // `inversePermutation` must succeed. 199 invPermutationMap = inversePermutation( 200 AffineMap::getPermutationMap(interchangeVector, b.getContext())); 201 assert(invPermutationMap); 202 SmallVector<int64_t> permutation(interchangeVector.begin(), 203 interchangeVector.end()); 204 applyPermutationToVector(loopRanges, permutation); 205 applyPermutationToVector(iteratorTypes, permutation); 206 } 207 208 // 2. Create the tiled loops. 209 LinalgOp res = op; 210 SmallVector<Value, 4> ivs, tensorResults; 211 auto tiledLoopBodyBuilder = 212 [&](OpBuilder &b, Location loc, ValueRange localIvs, 213 ValueRange operandValuesToUse) -> scf::ValueVector { 214 ivs.assign(localIvs.begin(), localIvs.end()); 215 216 // When an `interchangeVector` is present, it has been applied to the 217 // loop ranges and the iterator types. Apply its inverse to the 218 // resulting loop `ivs` to match the op definition. 219 SmallVector<Value, 4> interchangedIvs; 220 if (!options.interchangeVector.empty()) 221 interchangedIvs = applyMapToValues(b, loc, invPermutationMap, ivs); 222 else 223 interchangedIvs.assign(ivs.begin(), ivs.end()); 224 225 // Tile the `operandValuesToUse` that either match the `op` operands 226 // themselves or the tile loop arguments forwarding them. 227 assert(operandValuesToUse.size() == 228 static_cast<size_t>(op.getNumInputsAndOutputs()) && 229 "expect the number of operands and inputs and outputs to match"); 230 SmallVector<Value> valuesToTile = operandValuesToUse; 231 auto sizeBounds = 232 applyMapToValues(b, loc, shapeSizesToLoopsMap, allShapeSizes); 233 SmallVector<Value, 4> tiledOperands = makeTiledShapes( 234 b, loc, op, valuesToTile, interchangedIvs, tileSizes, sizeBounds); 235 236 // TODO: use an interface/adaptor to avoid leaking position in 237 // `tiledOperands`. 238 SmallVector<Type, 4> resultTensorTypes; 239 for (OpOperand *opOperand : op.getOutputTensorOperands()) 240 resultTensorTypes.push_back( 241 tiledOperands[opOperand->getOperandNumber()].getType()); 242 243 res = op.clone(b, loc, resultTensorTypes, tiledOperands); 244 245 // Insert a insert_slice for each output tensor. 246 unsigned resultIdx = 0; 247 for (OpOperand *opOperand : op.getOutputTensorOperands()) { 248 // TODO: use an interface/adaptor to avoid leaking position in 249 // `tiledOperands`. 250 Value outputTensor = tiledOperands[opOperand->getOperandNumber()]; 251 if (auto sliceOp = outputTensor.getDefiningOp<tensor::ExtractSliceOp>()) { 252 tensorResults.push_back(insertSliceIntoTensor( 253 b, loc, sliceOp, res->getResult(resultIdx), sliceOp.source())); 254 } else { 255 tensorResults.push_back(res->getResult(resultIdx)); 256 } 257 ++resultIdx; 258 } 259 return scf::ValueVector(tensorResults.begin(), tensorResults.end()); 260 }; 261 GenerateLoopNest<LoopTy>::doit(b, op.getLoc(), loopRanges, op, iteratorTypes, 262 tiledLoopBodyBuilder, options.distribution, 263 options.distributionTypes); 264 265 // 3. Transform IndexOp results w.r.t. the tiling. 266 transformIndexOps(b, res, ivs, loopIndexToRangeIndex); 267 268 // 4. Gather the newly created loops and return them with the new op. 269 SmallVector<Operation *, 8> loops; 270 loops.reserve(ivs.size()); 271 for (auto iv : ivs) { 272 if (iv.isa<BlockArgument>()) { 273 loops.push_back(iv.cast<BlockArgument>().getOwner()->getParentOp()); 274 assert(loops.back() && "no owner found for induction variable!"); 275 } else { 276 // TODO: Instead of doing this, try to recover the ops used instead of the 277 // loop. 278 loops.push_back(nullptr); 279 } 280 } 281 282 // 5. Get the tensor results from the outermost loop if available. Otherwise 283 // use the previously captured `tensorResults`. 284 Operation *outermostLoop = nullptr; 285 for (Operation *loop : loops) 286 if ((outermostLoop = loop)) 287 break; 288 289 return TiledLinalgOp{ 290 res, loops, outermostLoop ? outermostLoop->getResults() : tensorResults}; 291 } 292 293 template <typename LoopTy> 294 FailureOr<TiledLinalgOp> static tileLinalgOpImpl( 295 OpBuilder &b, LinalgOp op, const LinalgTilingOptions &options) { 296 OpBuilder::InsertionGuard g(b); 297 b.setInsertionPoint(op); 298 299 if (!options.tileSizeComputationFunction) 300 return failure(); 301 302 // Enforce the convention that "tiling by zero" skips tiling a particular 303 // dimension. This convention is significantly simpler to handle instead of 304 // adjusting affine maps to account for missing dimensions. 305 auto nLoops = op.getNumLoops(); 306 SmallVector<Value, 4> tileSizeVector = 307 options.tileSizeComputationFunction(b, op); 308 if (tileSizeVector.size() < nLoops) { 309 auto zero = b.create<arith::ConstantIndexOp>(op.getLoc(), 0); 310 tileSizeVector.append(nLoops - tileSizeVector.size(), zero); 311 } 312 313 return tileLinalgOpImpl<LoopTy>(b, op, tileSizeVector, options); 314 } 315 316 FailureOr<TiledLinalgOp> 317 mlir::linalg::tileLinalgOp(OpBuilder &b, LinalgOp op, 318 const LinalgTilingOptions &options) { 319 switch (options.loopType) { 320 case LinalgTilingLoopType::Loops: 321 return tileLinalgOpImpl<scf::ForOp>(b, op, options); 322 case LinalgTilingLoopType::ParallelLoops: 323 return tileLinalgOpImpl<scf::ParallelOp>(b, op, options); 324 case LinalgTilingLoopType::TiledLoops: 325 return tileLinalgOpImpl<linalg::TiledLoopOp>(b, op, options); 326 default:; 327 } 328 return failure(); 329 } 330 331 /// Generate a loop nest around a given PadTensorOp (for tiling). `newPadOp` 332 /// and `loopNest` are output parameters that return the new (tiled) PadTensorOp 333 /// and the loop nest. 334 static LogicalResult tilePadTensorOp(OpBuilder &builder, PadTensorOp op, 335 PadTensorOp &newPadOp, LoopNest &loopNest, 336 const LinalgTilingOptions &options) { 337 Location loc = op.getLoc(); 338 OpBuilder::InsertionGuard g(builder); 339 builder.setInsertionPoint(op); 340 341 // Clone PadTensorOp so that the existing op can be replaced more easily. 342 newPadOp = cast<PadTensorOp>(builder.clone(*op.getOperation())); 343 // Get rank and tile sizes. 344 int64_t rank = op.getResultType().getRank(); 345 SmallVector<Value> tileSizes = 346 options.tileSizeComputationFunction(builder, op); 347 assert(static_cast<int64_t>(tileSizes.size()) == rank); 348 // Compute lower and upper bounds of the loop nest. 349 SmallVector<Range> ranges = op.getLoopBounds(builder); 350 SmallVector<Value> lbs, dims, allDims, steps; 351 for (int64_t i = 0; i < rank; ++i) { 352 allDims.push_back(ranges[i].size); 353 if (!isZero(tileSizes[i])) { 354 lbs.push_back(ranges[i].offset); 355 dims.push_back(ranges[i].size); 356 steps.push_back(tileSizes[i]); 357 } 358 } 359 // Generate loop nest: One loop per dimension. 360 SmallVector<Value> destOperand = op.getDestinationOperands(builder); 361 loopNest = mlir::scf::buildLoopNest( 362 builder, loc, lbs, /*ubs=*/dims, steps, ValueRange(destOperand), 363 [&](OpBuilder &b, Location loc, ValueRange localIvs, 364 ValueRange iterArgs) -> scf::ValueVector { 365 // Compute offsets and sizes of ExtractSliceOp. 366 SmallVector<Value> offsets = 367 computeTileOffsets(b, loc, localIvs, tileSizes); 368 SmallVector<Value> sizes = 369 computeTileSizes(b, loc, localIvs, tileSizes, allDims); 370 // Create ExtractSliceOp: Extract a tile from the PadTensorOp. 371 // Note: The PadTensorOp is located outside of the loop nest. It is 372 // later moved inside by ExtractSliceOfPadTensorSwapPattern. 373 auto map = AffineMap::getMultiDimIdentityMap(rank, b.getContext()); 374 Value tiledOutput = 375 makeTiledShape(b, loc, newPadOp->getResult(0), tileSizes, map, 376 offsets, allDims, sizes); 377 auto sliceOp = tiledOutput.getDefiningOp<tensor::ExtractSliceOp>(); 378 assert(sliceOp && "expected ExtractSliceOp"); 379 // Insert the tile into the output tensor. 380 Value yieldValue = 381 insertSliceIntoTensor(b, loc, sliceOp, sliceOp, iterArgs[0]); 382 return scf::ValueVector({yieldValue}); 383 }); 384 return success(); 385 } 386 387 namespace { 388 struct PadTensorOpTilingPattern : public OpRewritePattern<PadTensorOp> { 389 PadTensorOpTilingPattern(MLIRContext *ctx, LinalgTilingOptions opt) 390 : OpRewritePattern<PadTensorOp>(ctx), options(opt) {} 391 392 LogicalResult matchAndRewrite(PadTensorOp op, 393 PatternRewriter &rewriter) const override { 394 if (op->hasAttr(LinalgTransforms::kLinalgTransformMarker)) 395 return failure(); 396 PadTensorOp newPadOp; 397 LoopNest loopNest; 398 if (failed(tilePadTensorOp(rewriter, op, newPadOp, loopNest, options))) 399 return failure(); 400 newPadOp->setAttr(LinalgTransforms::kLinalgTransformMarker, 401 rewriter.getUnitAttr()); 402 // Replace all uses of the original PadTensorOp. 403 rewriter.replaceOp(op, loopNest.getResults()[0]); 404 return success(); 405 } 406 407 LinalgTilingOptions options; 408 }; 409 } // namespace 410 411 namespace { 412 /// Helper classes for type list expansion. 413 template <typename... OpTypes> 414 class CanonicalizationPatternList; 415 416 template <> 417 class CanonicalizationPatternList<> { 418 public: 419 static void insert(RewritePatternSet &patterns) {} 420 }; 421 422 template <typename OpTy, typename... OpTypes> 423 class CanonicalizationPatternList<OpTy, OpTypes...> { 424 public: 425 static void insert(RewritePatternSet &patterns) { 426 OpTy::getCanonicalizationPatterns(patterns, patterns.getContext()); 427 CanonicalizationPatternList<OpTypes...>::insert(patterns); 428 } 429 }; 430 431 /// Helper classes for type list expansion. 432 template <typename... OpTypes> 433 class RewritePatternList; 434 435 template <> 436 class RewritePatternList<> { 437 public: 438 static void insert(RewritePatternSet &patterns, 439 const LinalgTilingOptions &options) {} 440 }; 441 442 template <typename OpTy, typename... OpTypes> 443 class RewritePatternList<OpTy, OpTypes...> { 444 public: 445 static void insert(RewritePatternSet &patterns, 446 const LinalgTilingOptions &options) { 447 auto *ctx = patterns.getContext(); 448 patterns.add<LinalgTilingPattern<OpTy>>( 449 ctx, options, 450 LinalgTransformationFilter(ArrayRef<Identifier>{}, 451 Identifier::get("tiled", ctx))); 452 RewritePatternList<OpTypes...>::insert(patterns, options); 453 } 454 }; 455 } // namespace 456 457 RewritePatternSet 458 mlir::linalg::getLinalgTilingCanonicalizationPatterns(MLIRContext *ctx) { 459 RewritePatternSet patterns(ctx); 460 populateLinalgTilingCanonicalizationPatterns(patterns); 461 return patterns; 462 } 463 464 void mlir::linalg::populateLinalgTilingCanonicalizationPatterns( 465 RewritePatternSet &patterns) { 466 auto *ctx = patterns.getContext(); 467 AffineApplyOp::getCanonicalizationPatterns(patterns, ctx); 468 AffineForOp::getCanonicalizationPatterns(patterns, ctx); 469 AffineMinOp::getCanonicalizationPatterns(patterns, ctx); 470 AffineMaxOp::getCanonicalizationPatterns(patterns, ctx); 471 arith::ConstantIndexOp::getCanonicalizationPatterns(patterns, ctx); 472 473 memref::SubViewOp::getCanonicalizationPatterns(patterns, ctx); 474 memref::ViewOp::getCanonicalizationPatterns(patterns, ctx); 475 476 scf::ForOp::getCanonicalizationPatterns(patterns, ctx); 477 scf::ParallelOp::getCanonicalizationPatterns(patterns, ctx); 478 479 tensor::CastOp::getCanonicalizationPatterns(patterns, ctx); 480 tensor::ExtractSliceOp::getCanonicalizationPatterns(patterns, ctx); 481 tensor::InsertSliceOp::getCanonicalizationPatterns(patterns, ctx); 482 483 InitTensorOp::getCanonicalizationPatterns(patterns, ctx); 484 PadTensorOp::getCanonicalizationPatterns(patterns, ctx); 485 ctx->getLoadedDialect<LinalgDialect>()->getCanonicalizationPatterns(patterns); 486 487 CanonicalizationPatternList< 488 #define GET_OP_LIST 489 #include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc" 490 >::insert(patterns); 491 } 492 493 /// Populate the given list with patterns that apply Linalg tiling. 494 static void insertTilingPatterns(RewritePatternSet &patterns, 495 const LinalgTilingOptions &options) { 496 RewritePatternList<GenericOp, 497 #define GET_OP_LIST 498 #include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc" 499 >::insert(patterns, options); 500 patterns.add<PadTensorOpTilingPattern>(patterns.getContext(), options); 501 } 502 503 static void applyExtractSliceOfPadTensorSwapPattern(FuncOp funcOp) { 504 MLIRContext *ctx = funcOp.getContext(); 505 RewritePatternSet patterns(ctx); 506 patterns.add<ExtractSliceOfPadTensorSwapPattern>(patterns.getContext()); 507 (void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns)); 508 (void)applyPatternsAndFoldGreedily( 509 funcOp, getLinalgTilingCanonicalizationPatterns(ctx)); 510 } 511 512 namespace { 513 struct LinalgTilingPass : public LinalgTilingBase<LinalgTilingPass> { 514 LinalgTilingPass() = default; 515 LinalgTilingPass(ArrayRef<int64_t> tileSizes, LinalgTilingLoopType loopType, 516 ArrayRef<StringRef> distributionTypes) { 517 this->tileSizes = tileSizes; 518 this->loopType = ""; 519 this->loopTypeEnum = loopType; 520 this->distributionTypes = llvm::to_vector<2>(llvm::map_range( 521 distributionTypes, [](StringRef ref) { return ref.str(); })); 522 } 523 524 void runOnFunction() override { 525 FuncOp funcOp = getFunction(); 526 LinalgTilingLoopType type = 527 llvm::StringSwitch<LinalgTilingLoopType>(loopType) 528 .Case("for", LinalgTilingLoopType::Loops) 529 .Case("affine", LinalgTilingLoopType::AffineLoops) 530 .Case("parallel", LinalgTilingLoopType::ParallelLoops) 531 .Case("tiled_loop", LinalgTilingLoopType::TiledLoops) 532 .Default(loopTypeEnum); 533 auto distTypes = llvm::to_vector<2>(llvm::map_range( 534 distributionTypes, [](std::string &str) { return StringRef(str); })); 535 auto options = LinalgTilingOptions() 536 .setTileSizes(tileSizes) 537 .setLoopType(type) 538 .setDistributionTypes(distTypes); 539 MLIRContext *ctx = funcOp.getContext(); 540 RewritePatternSet patterns(ctx); 541 insertTilingPatterns(patterns, options); 542 scf::populateSCFForLoopCanonicalizationPatterns(patterns); 543 (void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns)); 544 (void)applyPatternsAndFoldGreedily( 545 funcOp, getLinalgTilingCanonicalizationPatterns(ctx)); 546 // Drop the marker. 547 funcOp.walk([](LinalgOp op) { 548 op->removeAttr(LinalgTransforms::kLinalgTransformMarker); 549 }); 550 551 // Apply swap pattern after generating loop nest and running 552 // canonicalizations. 553 applyExtractSliceOfPadTensorSwapPattern(funcOp); 554 } 555 556 LinalgTilingLoopType loopTypeEnum; 557 }; 558 559 } // namespace 560 561 std::unique_ptr<OperationPass<FuncOp>> 562 mlir::createLinalgTilingPass(ArrayRef<int64_t> tileSizes, 563 linalg::LinalgTilingLoopType loopType, 564 ArrayRef<StringRef> distributionTypes) { 565 return std::make_unique<LinalgTilingPass>(tileSizes, loopType, 566 distributionTypes); 567 } 568