1 //===- Tiling.cpp - Implementation of linalg Tiling -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the linalg dialect Tiling pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PassDetail.h"
14 #include "mlir/Dialect/Affine/EDSC/Intrinsics.h"
15 #include "mlir/Dialect/Linalg/EDSC/FoldedIntrinsics.h"
16 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
17 #include "mlir/Dialect/Linalg/Passes.h"
18 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
19 #include "mlir/Dialect/Linalg/Utils/Utils.h"
20 #include "mlir/Dialect/SCF/EDSC/Builders.h"
21 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
22 #include "mlir/IR/AffineExpr.h"
23 #include "mlir/IR/AffineExprVisitor.h"
24 #include "mlir/IR/AffineMap.h"
25 #include "mlir/Support/LLVM.h"
26 #include "mlir/Transforms/FoldUtils.h"
27 
28 #include "llvm/Support/CommandLine.h"
29 
30 using namespace mlir;
31 using namespace mlir::edsc;
32 using namespace mlir::edsc::intrinsics;
33 using namespace mlir::linalg;
34 using namespace mlir::scf;
35 
36 using folded_affine_min = FoldedValueBuilder<AffineMinOp>;
37 
38 #define DEBUG_TYPE "linalg-tiling"
39 
40 static bool isZero(Value v) {
41   if (auto cst = v.getDefiningOp<ConstantIndexOp>())
42     return cst.getValue() == 0;
43   return false;
44 }
45 
46 using LoopIndexToRangeIndexMap = DenseMap<int, int>;
47 
48 // Creates a number of ranges equal to the number of non-zero in `tileSizes`.
49 // One for each loop of the LinalgOp that is tiled. The `tileSizes` argument has
50 // one entry per surrounding loop. It uses zero as the convention that a
51 // particular loop is not tiled. This convention simplifies implementations by
52 // avoiding affine map manipulations.
53 // The returned ranges correspond to the loop ranges, in the proper order, that
54 // are tiled and for which new loops will be created. Also the function returns
55 // a map from loop indices of the LinalgOp to the corresponding non-empty range
56 // indices of newly created loops.
57 static std::tuple<SmallVector<SubViewOp::Range, 4>, LoopIndexToRangeIndexMap>
58 makeTiledLoopRanges(OpBuilder &b, Location loc, AffineMap map,
59                     ArrayRef<Value> allViewSizes,
60                     ArrayRef<Value> allTileSizes) {
61   assert(allTileSizes.size() == map.getNumResults());
62   // Apply `map` to get view sizes in loop order.
63   auto viewSizes = applyMapToValues(b, loc, map, allViewSizes);
64   SmallVector<Value, 4> tileSizes(allTileSizes.begin(), allTileSizes.end());
65 
66   // Traverse the tile sizes, which are in loop order, erase zeros everywhere.
67   LoopIndexToRangeIndexMap loopIndexToRangeIndex;
68   for (int idx = 0, e = tileSizes.size(), zerosCount = 0; idx < e; ++idx) {
69     if (isZero(tileSizes[idx - zerosCount])) {
70       viewSizes.erase(viewSizes.begin() + idx - zerosCount);
71       tileSizes.erase(tileSizes.begin() + idx - zerosCount);
72       ++zerosCount;
73       continue;
74     }
75     loopIndexToRangeIndex[idx] = idx - zerosCount;
76   }
77 
78   // Create a new range with the applied tile sizes.
79   SmallVector<SubViewOp::Range, 4> res;
80   for (unsigned idx = 0, e = tileSizes.size(); idx < e; ++idx)
81     res.push_back(SubViewOp::Range{std_constant_index(0), viewSizes[idx],
82                                    tileSizes[idx]});
83   return std::make_tuple(res, loopIndexToRangeIndex);
84 }
85 
86 namespace {
87 
88 // Helper visitor to determine whether an AffineExpr is tiled.
89 // This is achieved by traversing every AffineDimExpr with position `pos` and
90 // checking whether the corresponding `tileSizes[pos]` is non-zero.
91 // This also enforces only positive coefficients occur in multiplications.
92 //
93 // Example:
94 //   `d0 + 2 * d1 + d3` is tiled by [0, 0, 0, 2] but not by [0, 0, 2, 0]
95 //
96 struct TileCheck : public AffineExprVisitor<TileCheck> {
97   TileCheck(ArrayRef<Value> tileSizes) : isTiled(false), tileSizes(tileSizes) {}
98 
99   void visitDimExpr(AffineDimExpr expr) {
100     isTiled |= !isZero(tileSizes[expr.getPosition()]);
101   }
102   void visitAffineBinaryOpExpr(AffineBinaryOpExpr expr) {
103     visit(expr.getLHS());
104     visit(expr.getRHS());
105     if (expr.getKind() == mlir::AffineExprKind::Mul)
106       assert(expr.getRHS().cast<AffineConstantExpr>().getValue() > 0 &&
107              "nonpositive multiplying coefficient");
108   }
109   bool isTiled;
110   ArrayRef<Value> tileSizes;
111 };
112 
113 } // namespace
114 
115 // IndexedGenericOp explicitly uses induction variables in the loop body. The
116 // values of the indices that are used in the loop body for any given access of
117 // input/output memref before `subview` op was applied should be invariant with
118 // respect to tiling.
119 //
120 // Therefore, if the operation is tiled, we have to transform the indices
121 // accordingly, i.e. offset them by the values of the corresponding induction
122 // variables that are captured implicitly in the body of the op.
123 //
124 // Example. `linalg.indexed_generic` before tiling:
125 //
126 // #id_2d = (i, j) -> (i, j)
127 // #pointwise_2d_trait = {
128 //   indexing_maps = [#id_2d, #id_2d],
129 //   iterator_types = ["parallel", "parallel"],
130 //   n_views = [1, 1]
131 // }
132 // linalg.indexed_generic #pointwise_2d_trait %operand, %result {
133 //   ^bb0(%i: index, %j: index, %operand_in: f32, %result_in: f32):
134 //     <some operations that use %i, %j>
135 // }: memref<50x100xf32>, memref<50x100xf32>
136 //
137 // After tiling pass with tiles sizes 10 and 25:
138 //
139 // #strided = (i, j)[s0, s1, s2] -> (i * s1 + s0 + j * s2)
140 //
141 // %c1 = constant 1 : index
142 // %c0 = constant 0 : index
143 // %c25 = constant 25 : index
144 // %c10 = constant 10 : index
145 // operand_dim_0 = dim %operand, 0 : memref<50x100xf32>
146 // operand_dim_1 = dim %operand, 1 : memref<50x100xf32>
147 // scf.for %k = %c0 to operand_dim_0 step %c10 {
148 //   scf.for %l = %c0 to operand_dim_1 step %c25 {
149 //     %4 = std.subview %operand[%k, %l][%c10, %c25][%c1, %c1]
150 //       : memref<50x100xf32> to memref<?x?xf32, #strided>
151 //     %5 = std.subview %result[%k, %l][%c10, %c25][%c1, %c1]
152 //       : memref<50x100xf32> to memref<?x?xf32, #strided>
153 //     linalg.indexed_generic pointwise_2d_trait %4, %5 {
154 //     ^bb0(%i: index, %j: index, %operand_in: f32, %result_in: f32):
155 //       // Indices `k` and `l` are implicitly captured in the body.
156 //       %transformed_i = addi %i, %k : index // index `i` is offset by %k
157 //       %transformed_j = addi %j, %l : index // index `j` is offset by %l
158 //       // Every use of %i, %j is replaced with %transformed_i, %transformed_j
159 //       <some operations that use %transformed_i, %transformed_j>
160 //     }: memref<?x?xf32, #strided>, memref<?x?xf32, #strided>
161 //   }
162 // }
163 //
164 // TODO: Investigate whether mixing implicit and explicit indices
165 // does not lead to losing information.
166 static void transformIndexedGenericOpIndices(
167     OpBuilder &b, LinalgOp op, SmallVectorImpl<Value> &ivs,
168     const LoopIndexToRangeIndexMap &loopIndexToRangeIndex) {
169   assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics");
170   auto indexedGenericOp = dyn_cast<IndexedGenericOp>(op.getOperation());
171   if (!indexedGenericOp)
172     return;
173 
174   // `linalg.indexed_generic` comes in two flavours. One has a region with a
175   // single block that defines the loop body. The other has a `fun` attribute
176   // that refers to an existing function symbol. The `fun` function call will be
177   // inserted in the loop body in that case.
178   //
179   // TODO: Add support for `linalg.indexed_generic` with `fun` attribute.
180   auto &region = indexedGenericOp.region();
181   if (region.empty()) {
182     indexedGenericOp.emitOpError("expected a region");
183     return;
184   }
185   auto &block = region.front();
186 
187   OpBuilder::InsertionGuard g(b);
188   b.setInsertionPointToStart(&block);
189   for (unsigned i = 0; i < indexedGenericOp.getNumLoops(); ++i) {
190     auto rangeIndex = loopIndexToRangeIndex.find(i);
191     if (rangeIndex == loopIndexToRangeIndex.end())
192       continue;
193     Value oldIndex = block.getArgument(i);
194     // Offset the index argument `i` by the value of the corresponding induction
195     // variable and replace all uses of the previous value.
196     Value newIndex = b.create<AddIOp>(indexedGenericOp.getLoc(), oldIndex,
197                                       ivs[rangeIndex->second]);
198     for (auto &use : oldIndex.getUses()) {
199       if (use.getOwner() == newIndex.getDefiningOp())
200         continue;
201       use.set(newIndex);
202     }
203   }
204 }
205 
206 static bool isTiled(AffineExpr expr, ArrayRef<Value> tileSizes) {
207   if (!expr)
208     return false;
209   TileCheck t(tileSizes);
210   t.visit(expr);
211   return t.isTiled;
212 }
213 
214 // Checks whether the view with index `viewIndex` within `linalgOp` varies with
215 // respect to a non-zero `tileSize`.
216 static bool isTiled(AffineMap map, ArrayRef<Value> tileSizes) {
217   if (!map)
218     return false;
219   for (unsigned r = 0; r < map.getNumResults(); ++r)
220     if (isTiled(map.getResult(r), tileSizes))
221       return true;
222   return false;
223 }
224 
225 static SmallVector<Value, 4> makeTiledViews(OpBuilder &b, Location loc,
226                                             LinalgOp linalgOp, AffineMap map,
227                                             ArrayRef<Value> ivs,
228                                             ArrayRef<Value> tileSizes,
229                                             ArrayRef<Value> allViewSizes) {
230   assert(linalgOp.hasBufferSemantics() &&
231          "expected linalg op with buffer semantics");
232   assert(ivs.size() == static_cast<size_t>(llvm::count_if(
233                            llvm::make_range(tileSizes.begin(), tileSizes.end()),
234                            [](Value v) { return !isZero(v); })) &&
235          "expected as many ivs as non-zero sizes");
236 
237   using namespace edsc::op;
238 
239   auto viewSizes = applyMapToValues(b, loc, map, allViewSizes);
240   // Construct (potentially temporary) mins and maxes on which to apply maps
241   // that define tile subviews.
242   SmallVector<Value, 8> lbs, subViewSizes;
243   for (unsigned idx = 0, idxIvs = 0, e = tileSizes.size(); idx < e; ++idx) {
244     bool isTiled = !isZero(tileSizes[idx]);
245     lbs.push_back(isTiled ? ivs[idxIvs++] : (Value)std_constant_index(0));
246     // Before composing, we need to make range a closed interval.
247     Value size = isTiled ? tileSizes[idx] : viewSizes[idx];
248     subViewSizes.push_back(size - std_constant_index(1));
249   }
250 
251   auto *op = linalgOp.getOperation();
252 
253   SmallVector<Value, 4> res;
254   res.reserve(op->getNumOperands());
255   auto viewIteratorBegin = linalgOp.getInputsAndOutputBuffers().begin();
256   for (unsigned viewIndex = 0; viewIndex < linalgOp.getNumInputsAndOutputs();
257        ++viewIndex) {
258     Value view = *(viewIteratorBegin + viewIndex);
259     auto viewType = view.getType().cast<MemRefType>();
260     unsigned rank = viewType.getRank();
261     auto mapAttr = linalgOp.indexing_maps()[viewIndex];
262     auto map = mapAttr.cast<AffineMapAttr>().getValue();
263     // If the view is not tiled, we can use it as is.
264     if (!isTiled(map, tileSizes)) {
265       res.push_back(view);
266       continue;
267     }
268 
269     // Construct a new subview for the tile.
270     SmallVector<Value, 4> offsets, sizes, strides;
271     offsets.reserve(rank);
272     sizes.reserve(rank);
273     strides.reserve(rank);
274     for (unsigned r = 0; r < rank; ++r) {
275       if (!isTiled(map.getSubMap({r}), tileSizes)) {
276         offsets.push_back(std_constant_index(0));
277         sizes.push_back(std_dim(view, r));
278         strides.push_back(std_constant_index(1));
279         continue;
280       }
281 
282       // Tiling creates a new slice at the proper index, the slice step is 1
283       // (i.e. the slice view does not subsample, stepping occurs in the loop).
284       auto m = map.getSubMap({r});
285       auto offset = applyMapToValues(b, loc, m, lbs).front();
286       offsets.push_back(offset);
287       auto closedIntSize = applyMapToValues(b, loc, m, subViewSizes).front();
288       // Resulting size needs to be made half open interval again.
289       auto size = closedIntSize + std_constant_index(1);
290 
291       // The size of the subview should be trimmed to avoid out-of-bounds
292       // accesses, unless we statically know the subview size divides the view
293       // size evenly.
294       int64_t viewSize = viewType.getDimSize(r);
295       auto sizeCst = size.getDefiningOp<ConstantIndexOp>();
296       if (ShapedType::isDynamic(viewSize) || !sizeCst ||
297           (viewSize % sizeCst.getValue()) != 0) {
298         // Compute min(size, dim - offset) to avoid out-of-bounds accesses.
299         auto minMap = AffineMap::get(
300             /*dimCount=*/3, /*symbolCount=*/0,
301             {getAffineDimExpr(/*position=*/0, b.getContext()),
302              getAffineDimExpr(/*position=*/1, b.getContext()) -
303                  getAffineDimExpr(/*position=*/2, b.getContext())},
304             b.getContext());
305         auto d = std_dim(view, r);
306         size =
307             affine_min(b.getIndexType(), minMap, ValueRange{size, d, offset});
308       }
309 
310       sizes.push_back(size);
311       strides.push_back(std_constant_index(1));
312     }
313 
314     res.push_back(b.create<SubViewOp>(loc, view, offsets, sizes, strides));
315   }
316 
317   return res;
318 }
319 
320 template <typename LoopTy>
321 Optional<TiledLinalgOp> static tileLinalgOpImpl(
322     OpBuilder &b, LinalgOp op, const LinalgTilingOptions &options) {
323   OpBuilder::InsertionGuard g(b);
324   b.setInsertionPoint(op);
325   ScopedContext scope(b, op.getLoc());
326 
327   assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics");
328   // 1. Enforce the convention that "tiling by zero" skips tiling a particular
329   // dimension. This convention is significantly simpler to handle instead of
330   // adjusting affine maps to account for missing dimensions.
331   auto nLoops = op.getNumLoops();
332   SmallVector<Value, 4> tileSizeVector =
333       options.tileSizeComputationFunction(b, op);
334   if (tileSizeVector.size() < nLoops) {
335     auto zero = std_constant_index(0);
336     tileSizeVector.append(nLoops - tileSizeVector.size(), zero);
337   }
338 
339   ArrayRef<Value> tileSizes = tileSizeVector;
340   // Initial tile sizes may be too big, only take the first nLoops.
341   tileSizes = tileSizes.take_front(nLoops);
342 
343   if (llvm::all_of(tileSizes, isZero))
344     return llvm::None;
345 
346   if (auto convOp = dyn_cast<linalg::ConvOp>(op.getOperation())) {
347     // For conv op only support tiling along batch dimension (which is the first
348     // loop).
349     if (convOp.padding() && !llvm::all_of(tileSizes.drop_front(), isZero))
350       return llvm::None;
351   }
352 
353   // If interchangeVector is empty, use the identity. Build the permutation map
354   // otherwise.
355   auto invPermutationMap =
356       AffineMap::getMultiDimIdentityMap(tileSizes.size(), b.getContext());
357   if (!options.interchangeVector.empty())
358     invPermutationMap = inversePermutation(AffineMap::getPermutationMap(
359         options.interchangeVector, b.getContext()));
360   if (!invPermutationMap)
361     return llvm::None;
362 
363   // 2. Build the tiled loop ranges.
364   auto allViewSizes = getViewSizes(b, op);
365   // The flattened loopToOperandRangesMaps is expected to be an invertible
366   // permutation map (asserted in the inverse calculation).
367   auto mapsRange = op.indexing_maps().getAsRange<AffineMapAttr>();
368   auto maps = llvm::to_vector<8>(
369       llvm::map_range(mapsRange, [](AffineMapAttr a) { return a.getValue(); }));
370   auto viewSizesToLoopsMap = inversePermutation(concatAffineMaps(maps));
371   if (!viewSizesToLoopsMap)
372     return llvm::None;
373 
374   SmallVector<SubViewOp::Range, 4> loopRanges;
375   LoopIndexToRangeIndexMap loopIndexToRangeIndex;
376   std::tie(loopRanges, loopIndexToRangeIndex) = makeTiledLoopRanges(
377       b, scope.getLocation(), viewSizesToLoopsMap, allViewSizes, tileSizes);
378   if (!options.interchangeVector.empty())
379     applyPermutationToVector(loopRanges, options.interchangeVector);
380 
381   // 3. Create the tiled loops.
382   LinalgOp res = op;
383   SmallVector<Value, 4> ivs;
384   SmallVector<Attribute, 4> iteratorTypes =
385       llvm::to_vector<4>(op.iterator_types().cast<ArrayAttr>().getValue());
386   if (!options.interchangeVector.empty())
387     applyPermutationToVector(iteratorTypes, options.interchangeVector);
388   GenerateLoopNest<LoopTy>::doit(
389       loopRanges, iteratorTypes,
390       [&](ValueRange localIvs) {
391         auto &b = ScopedContext::getBuilderRef();
392         auto loc = ScopedContext::getLocation();
393         ivs.assign(localIvs.begin(), localIvs.end());
394         SmallVector<Value, 4> ivValues(ivs.begin(), ivs.end());
395 
396         // If we have to apply a permutation to the tiled loop nest, we have to
397         // reorder the induction variables This permutation is the right one
398         // assuming that loopRanges have previously been permuted by
399         // (i,j,k)->(k,i,j) So this permutation should be the inversePermutation
400         // of that one: (d0,d1,d2)->(d2,d0,d1)
401         if (!options.interchangeVector.empty())
402           ivValues = applyMapToValues(b, loc, invPermutationMap, ivValues);
403 
404         auto views = makeTiledViews(b, loc, op, viewSizesToLoopsMap, ivValues,
405                                     tileSizes, allViewSizes);
406         auto operands = getAssumedNonViewOperands(op);
407         views.append(operands.begin(), operands.end());
408         res = op.clone(b, loc, views);
409       },
410       options.distribution);
411 
412   // 4. Transforms index arguments of `linalg.generic` w.r.t. to the tiling.
413   transformIndexedGenericOpIndices(b, res, ivs, loopIndexToRangeIndex);
414 
415   // 5. Gather the newly created loops and return them with the new op.
416   SmallVector<Operation *, 8> loops;
417   loops.reserve(ivs.size());
418   for (auto iv : ivs) {
419     if (iv.isa<BlockArgument>()) {
420       loops.push_back(iv.cast<BlockArgument>().getOwner()->getParentOp());
421       assert(loops.back() && "no owner found for induction variable!");
422     } else {
423       // TODO: Instead of doing this, try to recover the ops used instead of the
424       // loop.
425       loops.push_back(nullptr);
426     }
427   }
428   return TiledLinalgOp{res, loops};
429 }
430 
431 Optional<TiledLinalgOp>
432 mlir::linalg::tileLinalgOp(OpBuilder &b, LinalgOp op,
433                            const LinalgTilingOptions &options) {
434   if (options.loopType == LinalgTilingLoopType::Loops)
435     return tileLinalgOpImpl<scf::ForOp>(b, op, options);
436   if (options.loopType == LinalgTilingLoopType::ParallelLoops)
437     return tileLinalgOpImpl<scf::ParallelOp>(b, op, options);
438   // TODO: Impl tiling to affine loops when it makes sense.
439   return llvm::None;
440 }
441 
442 namespace {
443 /// Helper classes for type list expansion.
444 template <typename... OpTypes>
445 class CanonicalizationPatternList;
446 
447 template <>
448 class CanonicalizationPatternList<> {
449 public:
450   static void insert(OwningRewritePatternList &patterns, MLIRContext *ctx) {}
451 };
452 
453 template <typename OpTy, typename... OpTypes>
454 class CanonicalizationPatternList<OpTy, OpTypes...> {
455 public:
456   static void insert(OwningRewritePatternList &patterns, MLIRContext *ctx) {
457     OpTy::getCanonicalizationPatterns(patterns, ctx);
458     CanonicalizationPatternList<OpTypes...>::insert(patterns, ctx);
459   }
460 };
461 
462 /// Helper classes for type list expansion.
463 template <typename... OpTypes>
464 class RewritePatternList;
465 
466 template <>
467 class RewritePatternList<> {
468 public:
469   static void insert(OwningRewritePatternList &patterns,
470                      const LinalgTilingOptions &options, MLIRContext *ctx) {}
471 };
472 
473 template <typename OpTy, typename... OpTypes>
474 class RewritePatternList<OpTy, OpTypes...> {
475 public:
476   static void insert(OwningRewritePatternList &patterns,
477                      const LinalgTilingOptions &options, MLIRContext *ctx) {
478     patterns.insert<LinalgTilingPattern<OpTy>>(
479         ctx, options, LinalgMarker({}, Identifier::get("tiled", ctx)));
480     RewritePatternList<OpTypes...>::insert(patterns, options, ctx);
481   }
482 };
483 } // namespace
484 
485 OwningRewritePatternList
486 mlir::linalg::getLinalgTilingCanonicalizationPatterns(MLIRContext *ctx) {
487   OwningRewritePatternList patterns;
488   AffineApplyOp::getCanonicalizationPatterns(patterns, ctx);
489   AffineForOp::getCanonicalizationPatterns(patterns, ctx);
490   AffineMinOp::getCanonicalizationPatterns(patterns, ctx);
491   AffineMaxOp::getCanonicalizationPatterns(patterns, ctx);
492   scf::ForOp::getCanonicalizationPatterns(patterns, ctx);
493   scf::ParallelOp::getCanonicalizationPatterns(patterns, ctx);
494   ConstantIndexOp::getCanonicalizationPatterns(patterns, ctx);
495   SubViewOp::getCanonicalizationPatterns(patterns, ctx);
496   ViewOp::getCanonicalizationPatterns(patterns, ctx);
497   CanonicalizationPatternList<
498 #define GET_OP_LIST
499 #include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"
500       >::insert(patterns, ctx);
501   return patterns;
502 }
503 
504 /// Populate the given list with patterns that apply Linalg tiling.
505 static void insertTilingPatterns(OwningRewritePatternList &patterns,
506                                  const LinalgTilingOptions &options,
507                                  MLIRContext *ctx) {
508   RewritePatternList<
509 #define GET_OP_LIST
510 #include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"
511       >::insert(patterns, options, ctx);
512 }
513 
514 static void applyTilingToLoopPatterns(LinalgTilingLoopType loopType,
515                                       FuncOp funcOp,
516                                       ArrayRef<int64_t> tileSizes) {
517   auto options =
518       LinalgTilingOptions().setTileSizes(tileSizes).setLoopType(loopType);
519   MLIRContext *ctx = funcOp.getContext();
520   OwningRewritePatternList patterns;
521   insertTilingPatterns(patterns, options, ctx);
522   applyPatternsAndFoldGreedily(funcOp, patterns);
523   applyPatternsAndFoldGreedily(funcOp,
524                                getLinalgTilingCanonicalizationPatterns(ctx));
525   // Drop the marker.
526   funcOp.walk([](LinalgOp op) {
527     op.removeAttr(LinalgTransforms::kLinalgTransformMarker);
528   });
529 }
530 
531 namespace {
532 struct LinalgTilingPass : public LinalgTilingBase<LinalgTilingPass> {
533   LinalgTilingPass() = default;
534   LinalgTilingPass(ArrayRef<int64_t> sizes) { tileSizes = sizes; }
535 
536   void runOnFunction() override {
537     applyTilingToLoopPatterns(LinalgTilingLoopType::Loops, getFunction(),
538                               tileSizes);
539   }
540 };
541 
542 struct LinalgTilingToParallelLoopsPass
543     : public LinalgTilingToParallelLoopsBase<LinalgTilingToParallelLoopsPass> {
544   LinalgTilingToParallelLoopsPass() = default;
545   LinalgTilingToParallelLoopsPass(ArrayRef<int64_t> sizes) {
546     tileSizes = sizes;
547   }
548 
549   void runOnFunction() override {
550     applyTilingToLoopPatterns(LinalgTilingLoopType::ParallelLoops,
551                               getFunction(), tileSizes);
552   }
553 };
554 
555 } // namespace
556 
557 std::unique_ptr<OperationPass<FuncOp>>
558 mlir::createLinalgTilingPass(ArrayRef<int64_t> tileSizes) {
559   return std::make_unique<LinalgTilingPass>(tileSizes);
560 }
561 
562 std::unique_ptr<OperationPass<FuncOp>>
563 mlir::createLinalgTilingToParallelLoopsPass(ArrayRef<int64_t> tileSizes) {
564   return std::make_unique<LinalgTilingToParallelLoopsPass>(tileSizes);
565 }
566