1 //===- Tiling.cpp - Implementation of linalg Tiling -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the linalg dialect Tiling pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PassDetail.h" 14 #include "mlir/Dialect/Affine/EDSC/Intrinsics.h" 15 #include "mlir/Dialect/Linalg/EDSC/FoldedIntrinsics.h" 16 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h" 17 #include "mlir/Dialect/Linalg/Passes.h" 18 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 19 #include "mlir/Dialect/Linalg/Utils/Utils.h" 20 #include "mlir/Dialect/SCF/EDSC/Builders.h" 21 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h" 22 #include "mlir/Dialect/Tensor/IR/Tensor.h" 23 #include "mlir/IR/AffineExpr.h" 24 #include "mlir/IR/AffineExprVisitor.h" 25 #include "mlir/IR/AffineMap.h" 26 #include "mlir/Transforms/FoldUtils.h" 27 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 28 29 #include "llvm/Support/CommandLine.h" 30 31 using namespace mlir; 32 using namespace mlir::edsc; 33 using namespace mlir::edsc::intrinsics; 34 using namespace mlir::linalg; 35 using namespace mlir::scf; 36 37 using folded_affine_min = FoldedValueBuilder<AffineMinOp>; 38 39 #define DEBUG_TYPE "linalg-tiling" 40 41 static bool isZero(Value v) { 42 if (auto cst = v.getDefiningOp<ConstantIndexOp>()) 43 return cst.getValue() == 0; 44 return false; 45 } 46 47 using LoopIndexToRangeIndexMap = DenseMap<int, int>; 48 49 // Creates a number of ranges equal to the number of non-zero in `tileSizes`. 50 // One for each loop of the LinalgOp that is tiled. The `tileSizes` argument has 51 // one entry per surrounding loop. It uses zero as the convention that a 52 // particular loop is not tiled. This convention simplifies implementations by 53 // avoiding affine map manipulations. 54 // The returned ranges correspond to the loop ranges, in the proper order, that 55 // are tiled and for which new loops will be created. Also the function returns 56 // a map from loop indices of the LinalgOp to the corresponding non-empty range 57 // indices of newly created loops. 58 static std::tuple<SmallVector<Range, 4>, LoopIndexToRangeIndexMap> 59 makeTiledLoopRanges(OpBuilder &b, Location loc, AffineMap map, 60 ValueRange allShapeSizes, ValueRange allTileSizes) { 61 assert(allTileSizes.size() == map.getNumResults()); 62 // Apply `map` to get shape sizes in loop order. 63 auto shapeSizes = applyMapToValues(b, loc, map, allShapeSizes); 64 SmallVector<Value, 4> tileSizes(allTileSizes.begin(), allTileSizes.end()); 65 66 // Traverse the tile sizes, which are in loop order, erase zeros everywhere. 67 LoopIndexToRangeIndexMap loopIndexToRangeIndex; 68 for (int idx = 0, e = tileSizes.size(), zerosCount = 0; idx < e; ++idx) { 69 if (isZero(tileSizes[idx - zerosCount])) { 70 shapeSizes.erase(shapeSizes.begin() + idx - zerosCount); 71 tileSizes.erase(tileSizes.begin() + idx - zerosCount); 72 ++zerosCount; 73 continue; 74 } 75 loopIndexToRangeIndex[idx] = idx - zerosCount; 76 } 77 78 // Create a new range with the applied tile sizes. 79 SmallVector<Range, 4> res; 80 for (unsigned idx = 0, e = tileSizes.size(); idx < e; ++idx) 81 res.push_back( 82 Range{std_constant_index(0), shapeSizes[idx], tileSizes[idx]}); 83 return std::make_tuple(res, loopIndexToRangeIndex); 84 } 85 namespace { 86 87 // Helper visitor to determine whether an AffineExpr is tiled. 88 // This is achieved by traversing every AffineDimExpr with position `pos` and 89 // checking whether the corresponding `tileSizes[pos]` is non-zero. 90 // This also enforces only positive coefficients occur in multiplications. 91 // 92 // Example: 93 // `d0 + 2 * d1 + d3` is tiled by [0, 0, 0, 2] but not by [0, 0, 2, 0] 94 // 95 struct TileCheck : public AffineExprVisitor<TileCheck> { 96 TileCheck(ValueRange tileSizes) : isTiled(false), tileSizes(tileSizes) {} 97 98 void visitDimExpr(AffineDimExpr expr) { 99 isTiled |= !isZero(tileSizes[expr.getPosition()]); 100 } 101 void visitAffineBinaryOpExpr(AffineBinaryOpExpr expr) { 102 visit(expr.getLHS()); 103 visit(expr.getRHS()); 104 if (expr.getKind() == mlir::AffineExprKind::Mul) 105 assert(expr.getRHS().cast<AffineConstantExpr>().getValue() > 0 && 106 "nonpositive multiplying coefficient"); 107 } 108 bool isTiled; 109 ValueRange tileSizes; 110 }; 111 112 } // namespace 113 114 // IndexedGenericOp explicitly uses induction variables in the loop body. The 115 // values of the indices that are used in the loop body for any given access of 116 // input/output memref before `subview` op was applied should be invariant with 117 // respect to tiling. 118 // 119 // Therefore, if the operation is tiled, we have to transform the indices 120 // accordingly, i.e. offset them by the values of the corresponding induction 121 // variables that are captured implicitly in the body of the op. 122 // 123 // Example. `linalg.indexed_generic` before tiling: 124 // 125 // #id_2d = (i, j) -> (i, j) 126 // #pointwise_2d_trait = { 127 // indexing_maps = [#id_2d, #id_2d], 128 // iterator_types = ["parallel", "parallel"], 129 // n_views = [1, 1] 130 // } 131 // linalg.indexed_generic #pointwise_2d_trait %operand, %result { 132 // ^bb0(%i: index, %j: index, %operand_in: f32, %result_in: f32): 133 // <some operations that use %i, %j> 134 // }: memref<50x100xf32>, memref<50x100xf32> 135 // 136 // After tiling pass with tiles sizes 10 and 25: 137 // 138 // #strided = (i, j)[s0, s1, s2] -> (i * s1 + s0 + j * s2) 139 // 140 // %c1 = constant 1 : index 141 // %c0 = constant 0 : index 142 // %c25 = constant 25 : index 143 // %c10 = constant 10 : index 144 // operand_dim_0 = dim %operand, 0 : memref<50x100xf32> 145 // operand_dim_1 = dim %operand, 1 : memref<50x100xf32> 146 // scf.for %k = %c0 to operand_dim_0 step %c10 { 147 // scf.for %l = %c0 to operand_dim_1 step %c25 { 148 // %4 = std.subview %operand[%k, %l][%c10, %c25][%c1, %c1] 149 // : memref<50x100xf32> to memref<?x?xf32, #strided> 150 // %5 = std.subview %result[%k, %l][%c10, %c25][%c1, %c1] 151 // : memref<50x100xf32> to memref<?x?xf32, #strided> 152 // linalg.indexed_generic pointwise_2d_trait %4, %5 { 153 // ^bb0(%i: index, %j: index, %operand_in: f32, %result_in: f32): 154 // // Indices `k` and `l` are implicitly captured in the body. 155 // %transformed_i = addi %i, %k : index // index `i` is offset by %k 156 // %transformed_j = addi %j, %l : index // index `j` is offset by %l 157 // // Every use of %i, %j is replaced with %transformed_i, %transformed_j 158 // <some operations that use %transformed_i, %transformed_j> 159 // }: memref<?x?xf32, #strided>, memref<?x?xf32, #strided> 160 // } 161 // } 162 // 163 // TODO: Investigate whether mixing implicit and explicit indices 164 // does not lead to losing information. 165 static void transformIndexedGenericOpIndices( 166 OpBuilder &b, LinalgOp op, SmallVectorImpl<Value> &ivs, 167 const LoopIndexToRangeIndexMap &loopIndexToRangeIndex) { 168 auto indexedGenericOp = dyn_cast<IndexedGenericOp>(op.getOperation()); 169 if (!indexedGenericOp) 170 return; 171 172 // `linalg.indexed_generic` comes in two flavours. One has a region with a 173 // single block that defines the loop body. The other has a `fun` attribute 174 // that refers to an existing function symbol. The `fun` function call will be 175 // inserted in the loop body in that case. 176 // 177 // TODO: Add support for `linalg.indexed_generic` with `fun` attribute. 178 auto ®ion = indexedGenericOp.region(); 179 if (region.empty()) { 180 indexedGenericOp.emitOpError("expected a region"); 181 return; 182 } 183 auto &block = region.front(); 184 185 OpBuilder::InsertionGuard g(b); 186 b.setInsertionPointToStart(&block); 187 for (unsigned i = 0; i < indexedGenericOp.getNumLoops(); ++i) { 188 auto rangeIndex = loopIndexToRangeIndex.find(i); 189 if (rangeIndex == loopIndexToRangeIndex.end()) 190 continue; 191 Value oldIndex = block.getArgument(i); 192 // Offset the index argument `i` by the value of the corresponding induction 193 // variable and replace all uses of the previous value. 194 Value newIndex = b.create<AddIOp>(indexedGenericOp.getLoc(), oldIndex, 195 ivs[rangeIndex->second]); 196 for (auto &use : oldIndex.getUses()) { 197 if (use.getOwner() == newIndex.getDefiningOp()) 198 continue; 199 use.set(newIndex); 200 } 201 } 202 } 203 204 static bool isTiled(AffineExpr expr, ValueRange tileSizes) { 205 if (!expr) 206 return false; 207 TileCheck t(tileSizes); 208 t.visit(expr); 209 return t.isTiled; 210 } 211 212 // Checks whether the `map varies with respect to a non-zero `tileSize`. 213 static bool isTiled(AffineMap map, ValueRange tileSizes) { 214 if (!map) 215 return false; 216 for (unsigned r = 0; r < map.getNumResults(); ++r) 217 if (isTiled(map.getResult(r), tileSizes)) 218 return true; 219 return false; 220 } 221 222 static SmallVector<Value, 4> 223 makeTiledShapes(OpBuilder &b, Location loc, LinalgOp linalgOp, 224 ValueRange operands, AffineMap map, ValueRange ivs, 225 ValueRange tileSizes, ValueRange allShapeSizes) { 226 assert(operands.size() == linalgOp.getShapedOperands().size()); 227 assert(ivs.size() == static_cast<size_t>(llvm::count_if( 228 llvm::make_range(tileSizes.begin(), tileSizes.end()), 229 [](Value v) { return !isZero(v); })) && 230 "expected as many ivs as non-zero sizes"); 231 232 using namespace edsc::op; 233 234 auto shapeSizes = applyMapToValues(b, loc, map, allShapeSizes); 235 // Construct (potentially temporary) mins and maxes on which to apply maps 236 // that define tile subshapes. 237 SmallVector<Value, 8> lbs, subShapeSizes; 238 for (unsigned idx = 0, idxIvs = 0, e = tileSizes.size(); idx < e; ++idx) { 239 bool isTiled = !isZero(tileSizes[idx]); 240 lbs.push_back(isTiled ? ivs[idxIvs++] : (Value)std_constant_index(0)); 241 // Before composing, we need to make range a closed interval. 242 Value size = isTiled ? tileSizes[idx] : shapeSizes[idx]; 243 subShapeSizes.push_back(size - std_constant_index(1)); 244 } 245 246 auto *op = linalgOp.getOperation(); 247 248 SmallVector<Value, 4> res; 249 res.reserve(op->getNumOperands()); 250 for (auto en : llvm::enumerate(operands)) { 251 Value shapedOp = en.value(); 252 ShapedType shapedType = shapedOp.getType().cast<ShapedType>(); 253 unsigned rank = shapedType.getRank(); 254 AffineMap map = linalgOp.getIndexingMap(en.index()); 255 // If the shape is not tiled, we can use it as is. 256 if (!isTiled(map, tileSizes)) { 257 res.push_back(shapedOp); 258 continue; 259 } 260 261 // Construct a new subview / subtensor for the tile. 262 SmallVector<Value, 4> offsets, sizes, strides; 263 offsets.reserve(rank); 264 sizes.reserve(rank); 265 strides.reserve(rank); 266 for (unsigned r = 0; r < rank; ++r) { 267 if (!isTiled(map.getSubMap({r}), tileSizes)) { 268 offsets.push_back(std_constant_index(0)); 269 sizes.push_back(std_dim(shapedOp, r)); 270 strides.push_back(std_constant_index(1)); 271 continue; 272 } 273 274 // Tiling creates a new slice at the proper index, the slice step is 1 275 // (i.e. the op does not subsample, stepping occurs in the loop). 276 auto m = map.getSubMap({r}); 277 auto offset = applyMapToValues(b, loc, m, lbs).front(); 278 offsets.push_back(offset); 279 auto closedIntSize = applyMapToValues(b, loc, m, subShapeSizes).front(); 280 // Resulting size needs to be made half open interval again. 281 auto size = closedIntSize + std_constant_index(1); 282 283 // The size of the subview / subtensor should be trimmed to avoid 284 // out-of-bounds accesses, unless we statically know the subshape size 285 // divides the shape size evenly. 286 int64_t shapeSize = shapedType.getDimSize(r); 287 auto sizeCst = size.getDefiningOp<ConstantIndexOp>(); 288 if (ShapedType::isDynamic(shapeSize) || !sizeCst || 289 (shapeSize % sizeCst.getValue()) != 0) { 290 // Compute min(size, dim - offset) to avoid out-of-bounds accesses. 291 auto minMap = AffineMap::get( 292 /*dimCount=*/3, /*symbolCount=*/0, 293 {getAffineDimExpr(/*position=*/0, b.getContext()), 294 getAffineDimExpr(/*position=*/1, b.getContext()) - 295 getAffineDimExpr(/*position=*/2, b.getContext())}, 296 b.getContext()); 297 auto d = std_dim(shapedOp, r); 298 size = 299 affine_min(b.getIndexType(), minMap, ValueRange{size, d, offset}); 300 } 301 302 sizes.push_back(size); 303 strides.push_back(std_constant_index(1)); 304 } 305 306 if (shapedType.isa<MemRefType>()) 307 res.push_back( 308 b.create<SubViewOp>(loc, shapedOp, offsets, sizes, strides)); 309 else 310 res.push_back( 311 b.create<SubTensorOp>(loc, shapedOp, offsets, sizes, strides)); 312 } 313 314 return res; 315 } 316 317 template <typename LoopTy> 318 static Optional<TiledLinalgOp> 319 tileLinalgOpImpl(OpBuilder &b, LinalgOp op, ValueRange tileSizes, 320 const LinalgTilingOptions &options) { 321 auto nLoops = op.getNumLoops(); 322 // Initial tile sizes may be too big, only take the first nLoops. 323 tileSizes = tileSizes.take_front(nLoops); 324 325 if (llvm::all_of(tileSizes, isZero)) 326 return llvm::None; 327 328 if (auto convOp = dyn_cast<linalg::ConvOp>(op.getOperation())) { 329 // For conv op only support tiling along batch dimension (which is the first 330 // loop). 331 if (convOp.padding() && !llvm::all_of(tileSizes.drop_front(), isZero)) 332 return llvm::None; 333 } 334 335 // 1. Build the tiled loop ranges. 336 auto allShapeSizes = op.createFlatListOfOperandDims(b, op.getLoc()); 337 AffineMap shapeSizesToLoopsMap = op.getShapesToLoopsMap(); 338 if (!shapeSizesToLoopsMap) 339 return llvm::None; 340 341 SmallVector<Range, 4> loopRanges; 342 LoopIndexToRangeIndexMap loopIndexToRangeIndex; 343 std::tie(loopRanges, loopIndexToRangeIndex) = makeTiledLoopRanges( 344 b, op.getLoc(), shapeSizesToLoopsMap, allShapeSizes, tileSizes); 345 SmallVector<Attribute, 4> iteratorTypes; 346 for (auto attr : 347 enumerate(op.iterator_types().cast<ArrayAttr>().getValue())) { 348 if (loopIndexToRangeIndex.count(attr.index())) 349 iteratorTypes.push_back(attr.value()); 350 } 351 // If interchangeVector is empty, use the identity. Build the permutation map 352 // otherwise. 353 auto invPermutationMap = 354 AffineMap::getMultiDimIdentityMap(tileSizes.size(), b.getContext()); 355 if (!options.interchangeVector.empty()) { 356 // Based on the pruned iterations (due to zero tile size), recompute the 357 // interchange vector. 358 SmallVector<unsigned, 4> interchangeVector; 359 interchangeVector.reserve(options.interchangeVector.size()); 360 for (auto pos : options.interchangeVector) { 361 auto it = loopIndexToRangeIndex.find(pos); 362 if (it == loopIndexToRangeIndex.end()) 363 continue; 364 interchangeVector.push_back(it->second); 365 } 366 // Interchange vector is guaranteed to be a permutation, 367 // `inversePermutation` must succeed. 368 invPermutationMap = inversePermutation( 369 AffineMap::getPermutationMap(interchangeVector, b.getContext())); 370 assert(invPermutationMap); 371 applyPermutationToVector(loopRanges, interchangeVector); 372 applyPermutationToVector(iteratorTypes, interchangeVector); 373 } 374 375 // 2. Create the tiled loops. 376 LinalgOp res = op; 377 SmallVector<Value, 4> ivs, tensorResults; 378 auto outputTensors = op.getOutputTensors(); 379 GenerateLoopNest<LoopTy>::doit( 380 loopRanges, /*iterArgInitValues*/ outputTensors, iteratorTypes, 381 [&](ValueRange localIvs, ValueRange iterArgs) -> scf::ValueVector { 382 auto &b = ScopedContext::getBuilderRef(); 383 auto loc = ScopedContext::getLocation(); 384 ivs.assign(localIvs.begin(), localIvs.end()); 385 386 // When an `interchangeVector` is present, it has been applied to the 387 // loop ranges and the iterator types. Apply its inverse to the 388 // resulting loop `ivs` to match the op definition. 389 SmallVector<Value, 4> interchangedIvs; 390 if (!options.interchangeVector.empty()) 391 interchangedIvs = applyMapToValues(b, loc, invPermutationMap, ivs); 392 else 393 interchangedIvs.assign(ivs.begin(), ivs.end()); 394 395 assert(op.getNumOutputTensors() == iterArgs.size() && 396 "num output tensors must match number of loop iter arguments"); 397 398 auto operands = llvm::to_vector<4>(op.getInputs()); 399 SmallVector<Value, 4> outputBuffers = op.getOutputBuffers(); 400 // TODO: thanks to simplifying assumption we do not need to worry about 401 // order of output buffers and tensors: there is only ever one kind. 402 assert(outputBuffers.empty() || iterArgs.empty()); 403 operands.append(outputBuffers.begin(), outputBuffers.end()); 404 operands.append(iterArgs.begin(), iterArgs.end()); 405 SmallVector<Value, 4> tiledOperands = 406 makeTiledShapes(b, loc, op, operands, shapeSizesToLoopsMap, 407 interchangedIvs, tileSizes, allShapeSizes); 408 auto nonShapedOperands = op.getAssumedNonShapedOperands(); 409 tiledOperands.append(nonShapedOperands.begin(), 410 nonShapedOperands.end()); 411 412 // TODO: use an interface/adaptor to avoid leaking position in 413 // `tiledOperands`. 414 SmallVector<Type, 4> resultTensorTypes; 415 for (OpOperand *opOperand : op.getOutputTensorsOpOperands()) 416 resultTensorTypes.push_back( 417 tiledOperands[opOperand->getOperandNumber()].getType()); 418 419 res = op.clone(b, loc, resultTensorTypes, tiledOperands); 420 421 // Insert a subtensor_insert for each output tensor. 422 unsigned resultIdx = 0; 423 for (OpOperand *opOperand : op.getOutputTensorsOpOperands()) { 424 // TODO: use an interface/adaptor to avoid leaking position in 425 // `tiledOperands`. 426 Value outputTensor = tiledOperands[opOperand->getOperandNumber()]; 427 if (auto subtensor = outputTensor.getDefiningOp<SubTensorOp>()) { 428 tensorResults.push_back(b.create<SubTensorInsertOp>( 429 loc, subtensor.source().getType(), res->getResult(resultIdx), 430 subtensor.source(), subtensor.offsets(), subtensor.sizes(), 431 subtensor.strides(), subtensor.static_offsets(), 432 subtensor.static_sizes(), subtensor.static_strides())); 433 } else { 434 tensorResults.push_back(res->getResult(resultIdx)); 435 } 436 ++resultIdx; 437 } 438 return scf::ValueVector(tensorResults.begin(), tensorResults.end()); 439 }, 440 options.distribution); 441 442 // 3. Transforms index arguments of `linalg.generic` w.r.t. to the tiling. 443 transformIndexedGenericOpIndices(b, res, ivs, loopIndexToRangeIndex); 444 445 // 4. Gather the newly created loops and return them with the new op. 446 SmallVector<Operation *, 8> loops; 447 loops.reserve(ivs.size()); 448 for (auto iv : ivs) { 449 if (iv.isa<BlockArgument>()) { 450 loops.push_back(iv.cast<BlockArgument>().getOwner()->getParentOp()); 451 assert(loops.back() && "no owner found for induction variable!"); 452 } else { 453 // TODO: Instead of doing this, try to recover the ops used instead of the 454 // loop. 455 loops.push_back(nullptr); 456 } 457 } 458 459 // 5. Get the tensor results from the outermost loop if available. Otherwise 460 // use the previously captured `tensorResults`. 461 Operation *outermostLoop = nullptr; 462 for (Operation *loop : loops) 463 if ((outermostLoop = loop)) 464 break; 465 466 return TiledLinalgOp{ 467 res, loops, outermostLoop ? outermostLoop->getResults() : tensorResults}; 468 } 469 470 template <typename LoopTy> 471 Optional<TiledLinalgOp> static tileLinalgOpImpl( 472 OpBuilder &b, LinalgOp op, const LinalgTilingOptions &options) { 473 OpBuilder::InsertionGuard g(b); 474 b.setInsertionPoint(op); 475 ScopedContext scope(b, op.getLoc()); 476 477 // Enforce the convention that "tiling by zero" skips tiling a particular 478 // dimension. This convention is significantly simpler to handle instead of 479 // adjusting affine maps to account for missing dimensions. 480 auto nLoops = op.getNumLoops(); 481 SmallVector<Value, 4> tileSizeVector = 482 options.tileSizeComputationFunction(b, op); 483 if (tileSizeVector.size() < nLoops) { 484 auto zero = std_constant_index(0); 485 tileSizeVector.append(nLoops - tileSizeVector.size(), zero); 486 } 487 488 return tileLinalgOpImpl<LoopTy>(b, op, tileSizeVector, options); 489 } 490 491 Optional<TiledLinalgOp> 492 mlir::linalg::tileLinalgOp(OpBuilder &b, LinalgOp op, 493 const LinalgTilingOptions &options) { 494 switch (options.loopType) { 495 case LinalgTilingLoopType::Loops: 496 return tileLinalgOpImpl<scf::ForOp>(b, op, options); 497 case LinalgTilingLoopType::ParallelLoops: 498 return tileLinalgOpImpl<scf::ParallelOp>(b, op, options); 499 default:; 500 } 501 return llvm::None; 502 } 503 504 namespace { 505 /// Helper classes for type list expansion. 506 template <typename... OpTypes> 507 class CanonicalizationPatternList; 508 509 template <> 510 class CanonicalizationPatternList<> { 511 public: 512 static void insert(OwningRewritePatternList &patterns, MLIRContext *ctx) {} 513 }; 514 515 template <typename OpTy, typename... OpTypes> 516 class CanonicalizationPatternList<OpTy, OpTypes...> { 517 public: 518 static void insert(OwningRewritePatternList &patterns, MLIRContext *ctx) { 519 OpTy::getCanonicalizationPatterns(patterns, ctx); 520 CanonicalizationPatternList<OpTypes...>::insert(patterns, ctx); 521 } 522 }; 523 524 /// Helper classes for type list expansion. 525 template <typename... OpTypes> 526 class RewritePatternList; 527 528 template <> 529 class RewritePatternList<> { 530 public: 531 static void insert(OwningRewritePatternList &patterns, 532 const LinalgTilingOptions &options, MLIRContext *ctx) {} 533 }; 534 535 template <typename OpTy, typename... OpTypes> 536 class RewritePatternList<OpTy, OpTypes...> { 537 public: 538 static void insert(OwningRewritePatternList &patterns, 539 const LinalgTilingOptions &options, MLIRContext *ctx) { 540 patterns.insert<LinalgTilingPattern<OpTy>>( 541 ctx, options, LinalgMarker({}, Identifier::get("tiled", ctx))); 542 RewritePatternList<OpTypes...>::insert(patterns, options, ctx); 543 } 544 }; 545 } // namespace 546 547 OwningRewritePatternList 548 mlir::linalg::getLinalgTilingCanonicalizationPatterns(MLIRContext *ctx) { 549 OwningRewritePatternList patterns; 550 populateLinalgTilingCanonicalizationPatterns(patterns, ctx); 551 return patterns; 552 } 553 554 void mlir::linalg::populateLinalgTilingCanonicalizationPatterns( 555 OwningRewritePatternList &patterns, MLIRContext *ctx) { 556 AffineApplyOp::getCanonicalizationPatterns(patterns, ctx); 557 AffineForOp::getCanonicalizationPatterns(patterns, ctx); 558 AffineMinOp::getCanonicalizationPatterns(patterns, ctx); 559 AffineMaxOp::getCanonicalizationPatterns(patterns, ctx); 560 scf::ForOp::getCanonicalizationPatterns(patterns, ctx); 561 scf::ParallelOp::getCanonicalizationPatterns(patterns, ctx); 562 ConstantIndexOp::getCanonicalizationPatterns(patterns, ctx); 563 SubTensorOp::getCanonicalizationPatterns(patterns, ctx); 564 SubViewOp::getCanonicalizationPatterns(patterns, ctx); 565 tensor::CastOp::getCanonicalizationPatterns(patterns, ctx); 566 ViewOp::getCanonicalizationPatterns(patterns, ctx); 567 CanonicalizationPatternList< 568 #define GET_OP_LIST 569 #include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc" 570 >::insert(patterns, ctx); 571 } 572 573 /// Populate the given list with patterns that apply Linalg tiling. 574 static void insertTilingPatterns(OwningRewritePatternList &patterns, 575 const LinalgTilingOptions &options, 576 MLIRContext *ctx) { 577 RewritePatternList< 578 #define GET_OP_LIST 579 #include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc" 580 >::insert(patterns, options, ctx); 581 } 582 583 static void applyTilingToLoopPatterns(LinalgTilingLoopType loopType, 584 FuncOp funcOp, 585 ArrayRef<int64_t> tileSizes) { 586 auto options = 587 LinalgTilingOptions().setTileSizes(tileSizes).setLoopType(loopType); 588 MLIRContext *ctx = funcOp.getContext(); 589 OwningRewritePatternList patterns; 590 insertTilingPatterns(patterns, options, ctx); 591 applyPatternsAndFoldGreedily(funcOp, std::move(patterns)); 592 applyPatternsAndFoldGreedily(funcOp, 593 getLinalgTilingCanonicalizationPatterns(ctx)); 594 // Drop the marker. 595 funcOp.walk([](LinalgOp op) { 596 op.removeAttr(LinalgTransforms::kLinalgTransformMarker); 597 }); 598 } 599 600 namespace { 601 struct LinalgTilingPass : public LinalgTilingBase<LinalgTilingPass> { 602 LinalgTilingPass() = default; 603 LinalgTilingPass(ArrayRef<int64_t> sizes) { tileSizes = sizes; } 604 605 void runOnFunction() override { 606 applyTilingToLoopPatterns(LinalgTilingLoopType::Loops, getFunction(), 607 tileSizes); 608 } 609 }; 610 611 struct LinalgTilingToParallelLoopsPass 612 : public LinalgTilingToParallelLoopsBase<LinalgTilingToParallelLoopsPass> { 613 LinalgTilingToParallelLoopsPass() = default; 614 LinalgTilingToParallelLoopsPass(ArrayRef<int64_t> sizes) { 615 tileSizes = sizes; 616 } 617 618 void runOnFunction() override { 619 applyTilingToLoopPatterns(LinalgTilingLoopType::ParallelLoops, 620 getFunction(), tileSizes); 621 } 622 }; 623 624 } // namespace 625 626 std::unique_ptr<OperationPass<FuncOp>> 627 mlir::createLinalgTilingPass(ArrayRef<int64_t> tileSizes) { 628 return std::make_unique<LinalgTilingPass>(tileSizes); 629 } 630 631 std::unique_ptr<OperationPass<FuncOp>> 632 mlir::createLinalgTilingToParallelLoopsPass(ArrayRef<int64_t> tileSizes) { 633 return std::make_unique<LinalgTilingToParallelLoopsPass>(tileSizes); 634 } 635