1 //===- Tiling.cpp - Implementation of linalg Tiling -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the linalg dialect Tiling pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PassDetail.h" 14 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h" 15 #include "mlir/Dialect/Linalg/Passes.h" 16 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 17 #include "mlir/Dialect/Linalg/Utils/Utils.h" 18 #include "mlir/Dialect/MemRef/IR/MemRef.h" 19 #include "mlir/Dialect/SCF/Transforms.h" 20 #include "mlir/Dialect/Tensor/IR/Tensor.h" 21 #include "mlir/IR/AffineExpr.h" 22 #include "mlir/IR/AffineMap.h" 23 #include "mlir/Transforms/FoldUtils.h" 24 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 25 26 #include "llvm/Support/CommandLine.h" 27 28 using namespace mlir; 29 using namespace mlir::linalg; 30 using namespace mlir::scf; 31 32 #define DEBUG_TYPE "linalg-tiling" 33 34 static bool isZero(Value v) { 35 if (auto cst = v.getDefiningOp<ConstantIndexOp>()) 36 return cst.getValue() == 0; 37 return false; 38 } 39 40 using LoopIndexToRangeIndexMap = DenseMap<int, int>; 41 42 // Creates a number of ranges equal to the number of non-zero in `tileSizes`. 43 // One for each loop of the LinalgOp that is tiled. The `tileSizes` argument has 44 // one entry per surrounding loop. It uses zero as the convention that a 45 // particular loop is not tiled. This convention simplifies implementations by 46 // avoiding affine map manipulations. 47 // The returned ranges correspond to the loop ranges, in the proper order, that 48 // are tiled and for which new loops will be created. Also the function returns 49 // a map from loop indices of the LinalgOp to the corresponding non-empty range 50 // indices of newly created loops. 51 static std::tuple<SmallVector<Range, 4>, LoopIndexToRangeIndexMap> 52 makeTiledLoopRanges(OpBuilder &b, Location loc, AffineMap map, 53 ValueRange allShapeSizes, ValueRange allTileSizes) { 54 assert(allTileSizes.size() == map.getNumResults()); 55 // Apply `map` to get shape sizes in loop order. 56 auto shapeSizes = applyMapToValues(b, loc, map, allShapeSizes); 57 SmallVector<Value, 4> tileSizes(allTileSizes.begin(), allTileSizes.end()); 58 59 // Traverse the tile sizes, which are in loop order, erase zeros everywhere. 60 LoopIndexToRangeIndexMap loopIndexToRangeIndex; 61 for (int idx = 0, e = tileSizes.size(), zerosCount = 0; idx < e; ++idx) { 62 if (isZero(tileSizes[idx - zerosCount])) { 63 shapeSizes.erase(shapeSizes.begin() + idx - zerosCount); 64 tileSizes.erase(tileSizes.begin() + idx - zerosCount); 65 ++zerosCount; 66 continue; 67 } 68 loopIndexToRangeIndex[idx] = idx - zerosCount; 69 } 70 71 // Create a new range with the applied tile sizes. 72 SmallVector<Range, 4> res; 73 for (unsigned idx = 0, e = tileSizes.size(); idx < e; ++idx) 74 res.push_back(Range{b.create<ConstantIndexOp>(loc, 0), shapeSizes[idx], 75 tileSizes[idx]}); 76 return std::make_tuple(res, loopIndexToRangeIndex); 77 } 78 79 // All indices returned by IndexOp should be invariant with respect to tiling. 80 // Therefore, if an operation is tiled, we have to transform the indices 81 // accordingly, i.e. offset them by the values of the corresponding induction 82 // variables that are captured implicitly in the body of the op. 83 // 84 // Example. `linalg.generic` before tiling: 85 // 86 // #id_2d = (i, j) -> (i, j) 87 // #pointwise_2d_trait = { 88 // indexing_maps = [#id_2d, #id_2d], 89 // iterator_types = ["parallel", "parallel"] 90 // } 91 // linalg.generic #pointwise_2d_trait %operand, %result { 92 // ^bb0(%operand_in: f32, %result_in: f32): 93 // %i = linalg.index 0 : index 94 // %j = linalg.index 1 : index 95 // <some operations that use %i, %j> 96 // }: memref<50x100xf32>, memref<50x100xf32> 97 // 98 // After tiling pass with tiles sizes 10 and 25: 99 // 100 // #strided = (i, j)[s0, s1, s2] -> (i * s1 + s0 + j * s2) 101 // 102 // %c1 = constant 1 : index 103 // %c0 = constant 0 : index 104 // %c25 = constant 25 : index 105 // %c10 = constant 10 : index 106 // operand_dim_0 = dim %operand, 0 : memref<50x100xf32> 107 // operand_dim_1 = dim %operand, 1 : memref<50x100xf32> 108 // scf.for %k = %c0 to operand_dim_0 step %c10 { 109 // scf.for %l = %c0 to operand_dim_1 step %c25 { 110 // %4 = std.subview %operand[%k, %l][%c10, %c25][%c1, %c1] 111 // : memref<50x100xf32> to memref<?x?xf32, #strided> 112 // %5 = std.subview %result[%k, %l][%c10, %c25][%c1, %c1] 113 // : memref<50x100xf32> to memref<?x?xf32, #strided> 114 // linalg.generic pointwise_2d_trait %4, %5 { 115 // ^bb0(%operand_in: f32, %result_in: f32): 116 // %i = linalg.index 0 : index 117 // %j = linalg.index 1 : index 118 // // Indices `k` and `l` are implicitly captured in the body. 119 // %transformed_i = addi %i, %k : index // index `i` is offset by %k 120 // %transformed_j = addi %j, %l : index // index `j` is offset by %l 121 // // Every use of %i, %j is replaced with %transformed_i, %transformed_j 122 // <some operations that use %transformed_i, %transformed_j> 123 // }: memref<?x?xf32, #strided>, memref<?x?xf32, #strided> 124 // } 125 // } 126 // 127 // TODO: Investigate whether mixing implicit and explicit indices 128 // does not lead to losing information. 129 static void 130 transformIndexOps(OpBuilder &b, LinalgOp op, SmallVectorImpl<Value> &ivs, 131 const LoopIndexToRangeIndexMap &loopIndexToRangeIndex) { 132 SmallVector<Value> allIvs(op.getNumLoops(), nullptr); 133 for (auto &en : enumerate(allIvs)) { 134 auto rangeIndex = loopIndexToRangeIndex.find(en.index()); 135 if (rangeIndex == loopIndexToRangeIndex.end()) 136 continue; 137 en.value() = ivs[rangeIndex->second]; 138 } 139 addTileLoopIvsToIndexOpResults(b, op, allIvs); 140 } 141 142 // Insert a tile `source` into the destination tensor `dest`. The position at 143 // which the tile is inserted (as well as size of tile) is taken from a given 144 // ExtractSliceOp `sliceOp`. 145 static Value insertSliceIntoTensor(OpBuilder &b, Location loc, 146 tensor::ExtractSliceOp sliceOp, Value source, 147 Value dest) { 148 return b.create<tensor::InsertSliceOp>( 149 loc, sliceOp.source().getType(), source, dest, sliceOp.offsets(), 150 sliceOp.sizes(), sliceOp.strides(), sliceOp.static_offsets(), 151 sliceOp.static_sizes(), sliceOp.static_strides()); 152 } 153 154 template <typename LoopTy> 155 static Optional<TiledLinalgOp> 156 tileLinalgOpImpl(OpBuilder &b, LinalgOp op, ValueRange tileSizes, 157 const LinalgTilingOptions &options) { 158 auto nLoops = op.getNumLoops(); 159 // Initial tile sizes may be too big, only take the first nLoops. 160 tileSizes = tileSizes.take_front(nLoops); 161 162 if (llvm::all_of(tileSizes, isZero)) 163 return llvm::None; 164 165 if (auto convOp = dyn_cast<linalg::ConvOp>(op.getOperation())) { 166 // For conv op only support tiling along batch dimension (which is the first 167 // loop). 168 if (convOp.padding() && !llvm::all_of(tileSizes.drop_front(), isZero)) 169 return llvm::None; 170 } 171 172 // 1. Build the tiled loop ranges. 173 auto allShapeSizes = op.createFlatListOfOperandDims(b, op.getLoc()); 174 AffineMap shapeSizesToLoopsMap = op.getShapesToLoopsMap(); 175 if (!shapeSizesToLoopsMap) 176 return llvm::None; 177 178 SmallVector<Range, 4> loopRanges; 179 LoopIndexToRangeIndexMap loopIndexToRangeIndex; 180 std::tie(loopRanges, loopIndexToRangeIndex) = makeTiledLoopRanges( 181 b, op.getLoc(), shapeSizesToLoopsMap, allShapeSizes, tileSizes); 182 183 SmallVector<Attribute, 4> iteratorTypes; 184 for (auto attr : 185 enumerate(op.iterator_types().cast<ArrayAttr>().getValue())) { 186 if (loopIndexToRangeIndex.count(attr.index())) 187 iteratorTypes.push_back(attr.value()); 188 } 189 // If interchangeVector is empty, use the identity. Build the permutation map 190 // otherwise. 191 auto invPermutationMap = 192 AffineMap::getMultiDimIdentityMap(tileSizes.size(), b.getContext()); 193 if (!options.interchangeVector.empty()) { 194 // Based on the pruned iterations (due to zero tile size), recompute the 195 // interchange vector. 196 SmallVector<unsigned, 4> interchangeVector; 197 interchangeVector.reserve(options.interchangeVector.size()); 198 for (auto pos : options.interchangeVector) { 199 auto it = loopIndexToRangeIndex.find(pos); 200 if (it == loopIndexToRangeIndex.end()) 201 continue; 202 interchangeVector.push_back(it->second); 203 } 204 // Interchange vector is guaranteed to be a permutation, 205 // `inversePermutation` must succeed. 206 invPermutationMap = inversePermutation( 207 AffineMap::getPermutationMap(interchangeVector, b.getContext())); 208 assert(invPermutationMap); 209 SmallVector<int64_t> permutation(interchangeVector.begin(), 210 interchangeVector.end()); 211 applyPermutationToVector(loopRanges, permutation); 212 applyPermutationToVector(iteratorTypes, permutation); 213 } 214 215 // 2. Create the tiled loops. 216 LinalgOp res = op; 217 SmallVector<Value, 4> ivs, tensorResults; 218 auto tiledLoopBodyBuilder = 219 [&](OpBuilder &b, Location loc, ValueRange localIvs, 220 ValueRange operandValuesToUse) -> scf::ValueVector { 221 ivs.assign(localIvs.begin(), localIvs.end()); 222 223 // When an `interchangeVector` is present, it has been applied to the 224 // loop ranges and the iterator types. Apply its inverse to the 225 // resulting loop `ivs` to match the op definition. 226 SmallVector<Value, 4> interchangedIvs; 227 if (!options.interchangeVector.empty()) 228 interchangedIvs = applyMapToValues(b, loc, invPermutationMap, ivs); 229 else 230 interchangedIvs.assign(ivs.begin(), ivs.end()); 231 232 // Tile the `operandValuesToUse` that either match the `op` operands 233 // themselves or the tile loop arguments forwarding them. 234 assert(operandValuesToUse.size() == 235 static_cast<size_t>(op.getNumInputsAndOutputs()) && 236 "expect the number of operands and inputs and outputs to match"); 237 SmallVector<Value> valuesToTile = operandValuesToUse; 238 auto sizeBounds = 239 applyMapToValues(b, loc, shapeSizesToLoopsMap, allShapeSizes); 240 SmallVector<Value, 4> tiledOperands = makeTiledShapes( 241 b, loc, op, valuesToTile, interchangedIvs, tileSizes, sizeBounds); 242 243 // TODO: use an interface/adaptor to avoid leaking position in 244 // `tiledOperands`. 245 SmallVector<Type, 4> resultTensorTypes; 246 for (OpOperand *opOperand : op.getOutputTensorOperands()) 247 resultTensorTypes.push_back( 248 tiledOperands[opOperand->getOperandNumber()].getType()); 249 250 res = op.clone(b, loc, resultTensorTypes, tiledOperands); 251 252 // Insert a insert_slice for each output tensor. 253 unsigned resultIdx = 0; 254 for (OpOperand *opOperand : op.getOutputTensorOperands()) { 255 // TODO: use an interface/adaptor to avoid leaking position in 256 // `tiledOperands`. 257 Value outputTensor = tiledOperands[opOperand->getOperandNumber()]; 258 if (auto sliceOp = outputTensor.getDefiningOp<tensor::ExtractSliceOp>()) { 259 tensorResults.push_back(insertSliceIntoTensor( 260 b, loc, sliceOp, res->getResult(resultIdx), sliceOp.source())); 261 } else { 262 tensorResults.push_back(res->getResult(resultIdx)); 263 } 264 ++resultIdx; 265 } 266 return scf::ValueVector(tensorResults.begin(), tensorResults.end()); 267 }; 268 GenerateLoopNest<LoopTy>::doit(b, op.getLoc(), loopRanges, op, iteratorTypes, 269 tiledLoopBodyBuilder, options.distribution, 270 options.distributionTypes); 271 272 // 3. Transform IndexOp results w.r.t. the tiling. 273 transformIndexOps(b, res, ivs, loopIndexToRangeIndex); 274 275 // 4. Gather the newly created loops and return them with the new op. 276 SmallVector<Operation *, 8> loops; 277 loops.reserve(ivs.size()); 278 for (auto iv : ivs) { 279 if (iv.isa<BlockArgument>()) { 280 loops.push_back(iv.cast<BlockArgument>().getOwner()->getParentOp()); 281 assert(loops.back() && "no owner found for induction variable!"); 282 } else { 283 // TODO: Instead of doing this, try to recover the ops used instead of the 284 // loop. 285 loops.push_back(nullptr); 286 } 287 } 288 289 // 5. Get the tensor results from the outermost loop if available. Otherwise 290 // use the previously captured `tensorResults`. 291 Operation *outermostLoop = nullptr; 292 for (Operation *loop : loops) 293 if ((outermostLoop = loop)) 294 break; 295 296 return TiledLinalgOp{ 297 res, loops, outermostLoop ? outermostLoop->getResults() : tensorResults}; 298 } 299 300 template <typename LoopTy> 301 Optional<TiledLinalgOp> static tileLinalgOpImpl( 302 OpBuilder &b, LinalgOp op, const LinalgTilingOptions &options) { 303 OpBuilder::InsertionGuard g(b); 304 b.setInsertionPoint(op); 305 306 if (!options.tileSizeComputationFunction) 307 return llvm::None; 308 309 // Enforce the convention that "tiling by zero" skips tiling a particular 310 // dimension. This convention is significantly simpler to handle instead of 311 // adjusting affine maps to account for missing dimensions. 312 auto nLoops = op.getNumLoops(); 313 SmallVector<Value, 4> tileSizeVector = 314 options.tileSizeComputationFunction(b, op); 315 if (tileSizeVector.size() < nLoops) { 316 auto zero = b.create<ConstantIndexOp>(op.getLoc(), 0); 317 tileSizeVector.append(nLoops - tileSizeVector.size(), zero); 318 } 319 320 return tileLinalgOpImpl<LoopTy>(b, op, tileSizeVector, options); 321 } 322 323 Optional<TiledLinalgOp> 324 mlir::linalg::tileLinalgOp(OpBuilder &b, LinalgOp op, 325 const LinalgTilingOptions &options) { 326 switch (options.loopType) { 327 case LinalgTilingLoopType::Loops: 328 return tileLinalgOpImpl<scf::ForOp>(b, op, options); 329 case LinalgTilingLoopType::ParallelLoops: 330 return tileLinalgOpImpl<scf::ParallelOp>(b, op, options); 331 case LinalgTilingLoopType::TiledLoops: 332 return tileLinalgOpImpl<linalg::TiledLoopOp>(b, op, options); 333 default:; 334 } 335 return llvm::None; 336 } 337 338 /// Generate a loop nest around a given PadTensorOp (for tiling). `newPadOp` 339 /// and `loopNest` are output parameters that return the new (tiled) PadTensorOp 340 /// and the loop nest. 341 static LogicalResult tilePadTensorOp(OpBuilder &builder, PadTensorOp op, 342 PadTensorOp &newPadOp, LoopNest &loopNest, 343 const LinalgTilingOptions &options) { 344 Location loc = op.getLoc(); 345 OpBuilder::InsertionGuard g(builder); 346 builder.setInsertionPoint(op); 347 348 // Clone PadTensorOp so that the existing op can be replaced more easily. 349 newPadOp = cast<PadTensorOp>(builder.clone(*op.getOperation())); 350 // Get rank and tile sizes. 351 int64_t rank = op.getResultType().getRank(); 352 SmallVector<Value> tileSizes = 353 options.tileSizeComputationFunction(builder, op); 354 assert(static_cast<int64_t>(tileSizes.size()) == rank); 355 // Compute lower and upper bounds of the loop nest. 356 SmallVector<Range> ranges = op.getLoopBounds(builder); 357 SmallVector<Value> lbs, dims, allDims, steps; 358 for (int64_t i = 0; i < rank; ++i) { 359 allDims.push_back(ranges[i].size); 360 if (!isZero(tileSizes[i])) { 361 lbs.push_back(ranges[i].offset); 362 dims.push_back(ranges[i].size); 363 steps.push_back(tileSizes[i]); 364 } 365 } 366 // Generate loop nest: One loop per dimension. 367 SmallVector<Value> destOperand = op.getDestinationOperands(builder); 368 loopNest = mlir::scf::buildLoopNest( 369 builder, loc, lbs, /*ubs=*/dims, steps, ValueRange(destOperand), 370 [&](OpBuilder &b, Location loc, ValueRange localIvs, 371 ValueRange iterArgs) -> scf::ValueVector { 372 // Compute offsets and sizes of ExtractSliceOp. 373 SmallVector<Value> offsets = 374 computeTileOffsets(b, loc, localIvs, tileSizes); 375 SmallVector<Value> sizes = 376 computeTileSizes(b, loc, localIvs, tileSizes, allDims); 377 // Create ExtractSliceOp: Extract a tile from the PadTensorOp. 378 // Note: The PadTensorOp is located outside of the loop nest. It is 379 // later moved inside by ExtractSliceOfPadTensorSwapPattern. 380 auto map = AffineMap::getMultiDimIdentityMap(rank, b.getContext()); 381 Value tiledOutput = 382 makeTiledShape(b, loc, newPadOp->getResult(0), tileSizes, map, 383 offsets, allDims, sizes); 384 auto sliceOp = tiledOutput.getDefiningOp<tensor::ExtractSliceOp>(); 385 assert(sliceOp && "expected ExtractSliceOp"); 386 // Insert the tile into the output tensor. 387 Value yieldValue = 388 insertSliceIntoTensor(b, loc, sliceOp, sliceOp, iterArgs[0]); 389 return scf::ValueVector({yieldValue}); 390 }); 391 return success(); 392 } 393 394 namespace { 395 struct PadTensorOpTilingPattern : public OpRewritePattern<PadTensorOp> { 396 PadTensorOpTilingPattern(MLIRContext *ctx, LinalgTilingOptions opt) 397 : OpRewritePattern<PadTensorOp>(ctx), options(opt) {} 398 399 LogicalResult matchAndRewrite(PadTensorOp op, 400 PatternRewriter &rewriter) const override { 401 if (op->hasAttr(LinalgTransforms::kLinalgTransformMarker)) 402 return failure(); 403 PadTensorOp newPadOp; 404 LoopNest loopNest; 405 if (failed(tilePadTensorOp(rewriter, op, newPadOp, loopNest, options))) 406 return failure(); 407 newPadOp->setAttr(LinalgTransforms::kLinalgTransformMarker, 408 rewriter.getUnitAttr()); 409 // Replace all uses of the original PadTensorOp. 410 rewriter.replaceOp(op, loopNest.getResults()[0]); 411 return success(); 412 } 413 414 LinalgTilingOptions options; 415 }; 416 } // namespace 417 418 namespace { 419 /// Helper classes for type list expansion. 420 template <typename... OpTypes> 421 class CanonicalizationPatternList; 422 423 template <> 424 class CanonicalizationPatternList<> { 425 public: 426 static void insert(RewritePatternSet &patterns) {} 427 }; 428 429 template <typename OpTy, typename... OpTypes> 430 class CanonicalizationPatternList<OpTy, OpTypes...> { 431 public: 432 static void insert(RewritePatternSet &patterns) { 433 OpTy::getCanonicalizationPatterns(patterns, patterns.getContext()); 434 CanonicalizationPatternList<OpTypes...>::insert(patterns); 435 } 436 }; 437 438 /// Helper classes for type list expansion. 439 template <typename... OpTypes> 440 class RewritePatternList; 441 442 template <> 443 class RewritePatternList<> { 444 public: 445 static void insert(RewritePatternSet &patterns, 446 const LinalgTilingOptions &options) {} 447 }; 448 449 template <typename OpTy, typename... OpTypes> 450 class RewritePatternList<OpTy, OpTypes...> { 451 public: 452 static void insert(RewritePatternSet &patterns, 453 const LinalgTilingOptions &options) { 454 auto *ctx = patterns.getContext(); 455 patterns.add<LinalgTilingPattern<OpTy>>( 456 ctx, options, 457 LinalgTransformationFilter(ArrayRef<Identifier>{}, 458 Identifier::get("tiled", ctx))); 459 RewritePatternList<OpTypes...>::insert(patterns, options); 460 } 461 }; 462 } // namespace 463 464 RewritePatternSet 465 mlir::linalg::getLinalgTilingCanonicalizationPatterns(MLIRContext *ctx) { 466 RewritePatternSet patterns(ctx); 467 populateLinalgTilingCanonicalizationPatterns(patterns); 468 return patterns; 469 } 470 471 void mlir::linalg::populateLinalgTilingCanonicalizationPatterns( 472 RewritePatternSet &patterns) { 473 auto *ctx = patterns.getContext(); 474 AffineApplyOp::getCanonicalizationPatterns(patterns, ctx); 475 AffineForOp::getCanonicalizationPatterns(patterns, ctx); 476 AffineMinOp::getCanonicalizationPatterns(patterns, ctx); 477 AffineMaxOp::getCanonicalizationPatterns(patterns, ctx); 478 scf::ForOp::getCanonicalizationPatterns(patterns, ctx); 479 scf::ParallelOp::getCanonicalizationPatterns(patterns, ctx); 480 ConstantIndexOp::getCanonicalizationPatterns(patterns, ctx); 481 tensor::ExtractSliceOp::getCanonicalizationPatterns(patterns, ctx); 482 tensor::InsertSliceOp::getCanonicalizationPatterns(patterns, ctx); 483 memref::SubViewOp::getCanonicalizationPatterns(patterns, ctx); 484 tensor::CastOp::getCanonicalizationPatterns(patterns, ctx); 485 memref::ViewOp::getCanonicalizationPatterns(patterns, ctx); 486 PadTensorOp::getCanonicalizationPatterns(patterns, ctx); 487 ctx->getLoadedDialect<LinalgDialect>()->getCanonicalizationPatterns(patterns); 488 CanonicalizationPatternList< 489 #define GET_OP_LIST 490 #include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc" 491 >::insert(patterns); 492 } 493 494 /// Populate the given list with patterns that apply Linalg tiling. 495 static void insertTilingPatterns(RewritePatternSet &patterns, 496 const LinalgTilingOptions &options) { 497 RewritePatternList<GenericOp, 498 #define GET_OP_LIST 499 #include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc" 500 >::insert(patterns, options); 501 patterns.add<PadTensorOpTilingPattern>(patterns.getContext(), options); 502 } 503 504 static void applyExtractSliceOfPadTensorSwapPattern(FuncOp funcOp) { 505 MLIRContext *ctx = funcOp.getContext(); 506 RewritePatternSet patterns(ctx); 507 patterns.add<ExtractSliceOfPadTensorSwapPattern>(patterns.getContext()); 508 (void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns)); 509 (void)applyPatternsAndFoldGreedily( 510 funcOp, getLinalgTilingCanonicalizationPatterns(ctx)); 511 } 512 513 static void 514 applyTilingToLoopPatterns(LinalgTilingLoopType loopType, FuncOp funcOp, 515 ArrayRef<int64_t> tileSizes, 516 ArrayRef<StringRef> distributionTypes = {}) { 517 auto options = LinalgTilingOptions() 518 .setTileSizes(tileSizes) 519 .setLoopType(loopType) 520 .setDistributionTypes(distributionTypes); 521 MLIRContext *ctx = funcOp.getContext(); 522 RewritePatternSet patterns(ctx); 523 insertTilingPatterns(patterns, options); 524 scf::populateSCFForLoopCanonicalizationPatterns(patterns); 525 (void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns)); 526 (void)applyPatternsAndFoldGreedily( 527 funcOp, getLinalgTilingCanonicalizationPatterns(ctx)); 528 // Drop the marker. 529 funcOp.walk([](LinalgOp op) { 530 op->removeAttr(LinalgTransforms::kLinalgTransformMarker); 531 }); 532 533 // Apply swap pattern after generating loop nest and running 534 // canonicalizations. 535 applyExtractSliceOfPadTensorSwapPattern(funcOp); 536 } 537 538 namespace { 539 struct LinalgTilingPass : public LinalgTilingBase<LinalgTilingPass> { 540 LinalgTilingPass() = default; 541 LinalgTilingPass(ArrayRef<int64_t> sizes) { tileSizes = sizes; } 542 543 void runOnFunction() override { 544 applyTilingToLoopPatterns(LinalgTilingLoopType::Loops, getFunction(), 545 tileSizes); 546 } 547 }; 548 549 struct LinalgTilingToParallelLoopsPass 550 : public LinalgTilingToParallelLoopsBase<LinalgTilingToParallelLoopsPass> { 551 LinalgTilingToParallelLoopsPass() = default; 552 LinalgTilingToParallelLoopsPass(ArrayRef<int64_t> sizes) { 553 tileSizes = sizes; 554 } 555 556 void runOnFunction() override { 557 applyTilingToLoopPatterns(LinalgTilingLoopType::ParallelLoops, 558 getFunction(), tileSizes); 559 } 560 }; 561 562 struct LinalgTilingToTiledLoopsPass 563 : public LinalgTilingToTiledLoopsBase<LinalgTilingToTiledLoopsPass> { 564 LinalgTilingToTiledLoopsPass() = default; 565 LinalgTilingToTiledLoopsPass(ArrayRef<int64_t> sizes, 566 ArrayRef<StringRef> types) { 567 tileSizes = sizes; 568 distributionTypes = llvm::to_vector<2>( 569 llvm::map_range(types, [](StringRef ref) { return ref.str(); })); 570 } 571 572 void runOnFunction() override { 573 applyTilingToLoopPatterns( 574 LinalgTilingLoopType::TiledLoops, getFunction(), tileSizes, 575 llvm::to_vector<2>( 576 llvm::map_range(distributionTypes, 577 [](std::string &str) { return StringRef(str); }))); 578 } 579 }; 580 581 } // namespace 582 583 std::unique_ptr<OperationPass<FuncOp>> 584 mlir::createLinalgTilingPass(ArrayRef<int64_t> tileSizes) { 585 return std::make_unique<LinalgTilingPass>(tileSizes); 586 } 587 588 std::unique_ptr<OperationPass<FuncOp>> 589 mlir::createLinalgTilingToParallelLoopsPass(ArrayRef<int64_t> tileSizes) { 590 return std::make_unique<LinalgTilingToParallelLoopsPass>(tileSizes); 591 } 592 593 std::unique_ptr<OperationPass<FuncOp>> 594 mlir::createLinalgTilingToTiledLoopPass(ArrayRef<int64_t> tileSizes, 595 ArrayRef<StringRef> distributionTypes) { 596 return std::make_unique<LinalgTilingToTiledLoopsPass>(tileSizes, 597 distributionTypes); 598 } 599