1 //===- Tiling.cpp - Implementation of linalg Tiling -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the linalg dialect Tiling pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Dialect/AffineOps/EDSC/Intrinsics.h" 14 #include "mlir/Dialect/Linalg/EDSC/Intrinsics.h" 15 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h" 16 #include "mlir/Dialect/Linalg/Passes.h" 17 #include "mlir/Dialect/Linalg/Utils/Utils.h" 18 #include "mlir/Dialect/LoopOps/EDSC/Builders.h" 19 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h" 20 #include "mlir/IR/AffineExpr.h" 21 #include "mlir/IR/AffineExprVisitor.h" 22 #include "mlir/IR/AffineMap.h" 23 #include "mlir/IR/OpImplementation.h" 24 #include "mlir/Pass/Pass.h" 25 #include "mlir/Support/Functional.h" 26 #include "mlir/Support/LLVM.h" 27 #include "mlir/Support/STLExtras.h" 28 #include "mlir/Transforms/FoldUtils.h" 29 30 #include "llvm/Support/CommandLine.h" 31 32 using namespace mlir; 33 using namespace mlir::edsc; 34 using namespace mlir::edsc::intrinsics; 35 using namespace mlir::linalg; 36 using namespace mlir::loop; 37 38 using folded_affine_min = folded::ValueBuilder<AffineMinOp>; 39 40 #define DEBUG_TYPE "linalg-tiling" 41 42 static llvm::cl::OptionCategory clOptionsCategory(DEBUG_TYPE " options"); 43 static llvm::cl::list<unsigned> 44 clTileSizes("linalg-tile-sizes", 45 llvm::cl::desc("Tile sizes by which to tile linalg operations"), 46 llvm::cl::ZeroOrMore, llvm::cl::MiscFlags::CommaSeparated, 47 llvm::cl::cat(clOptionsCategory)); 48 49 static bool isZero(Value v) { 50 return isa_and_nonnull<ConstantIndexOp>(v.getDefiningOp()) && 51 cast<ConstantIndexOp>(v.getDefiningOp()).getValue() == 0; 52 } 53 54 using LoopIndexToRangeIndexMap = DenseMap<int, int>; 55 56 // Creates a number of ranges equal to the number of non-zero in `tileSizes`. 57 // One for each loop of the LinalgOp that is tiled. The `tileSizes` argument has 58 // one entry per surrounding loop. It uses zero as the convention that a 59 // particular loop is not tiled. This convention simplifies implementations by 60 // avoiding affine map manipulations. 61 // The returned ranges correspond to the loop ranges, in the proper order, that 62 // are tiled and for which new loops will be created. Also the function returns 63 // a map from loop indices of the LinalgOp to the corresponding non-empty range 64 // indices of newly created loops. 65 static std::tuple<SmallVector<SubViewOp::Range, 4>, LoopIndexToRangeIndexMap> 66 makeTiledLoopRanges(OpBuilder &b, Location loc, AffineMap map, 67 ArrayRef<Value> allViewSizes, ArrayRef<Value> allTileSizes, 68 OperationFolder *folder) { 69 assert(allTileSizes.size() == map.getNumResults()); 70 // Apply `map` to get view sizes in loop order. 71 auto viewSizes = applyMapToValues(b, loc, map, allViewSizes, folder); 72 SmallVector<Value, 4> tileSizes(allTileSizes.begin(), allTileSizes.end()); 73 74 // Traverse the tile sizes, which are in loop order, erase zeros everywhere. 75 LoopIndexToRangeIndexMap loopIndexToRangeIndex; 76 for (int idx = 0, e = tileSizes.size(), zerosCount = 0; idx < e; ++idx) { 77 if (isZero(tileSizes[idx - zerosCount])) { 78 viewSizes.erase(viewSizes.begin() + idx - zerosCount); 79 tileSizes.erase(tileSizes.begin() + idx - zerosCount); 80 ++zerosCount; 81 continue; 82 } 83 loopIndexToRangeIndex[idx] = idx - zerosCount; 84 } 85 86 // Create a new range with the applied tile sizes. 87 SmallVector<SubViewOp::Range, 4> res; 88 for (unsigned idx = 0, e = tileSizes.size(); idx < e; ++idx) { 89 res.push_back(SubViewOp::Range{folded_std_constant_index(folder, 0), 90 viewSizes[idx], tileSizes[idx]}); 91 } 92 return std::make_tuple(res, loopIndexToRangeIndex); 93 } 94 95 namespace { 96 97 // Helper visitor to determine whether an AffineExpr is tiled. 98 // This is achieved by traversing every AffineDimExpr with position `pos` and 99 // checking whether the corresponding `tileSizes[pos]` is non-zero. 100 // This also enforces only positive coefficients occur in multiplications. 101 // 102 // Example: 103 // `d0 + 2 * d1 + d3` is tiled by [0, 0, 0, 2] but not by [0, 0, 2, 0] 104 // 105 struct TileCheck : public AffineExprVisitor<TileCheck> { 106 TileCheck(ArrayRef<Value> tileSizes) : isTiled(false), tileSizes(tileSizes) {} 107 108 void visitDimExpr(AffineDimExpr expr) { 109 isTiled |= !isZero(tileSizes[expr.getPosition()]); 110 } 111 void visitAffineBinaryOpExpr(AffineBinaryOpExpr expr) { 112 visit(expr.getLHS()); 113 visit(expr.getRHS()); 114 if (expr.getKind() == mlir::AffineExprKind::Mul) 115 assert(expr.getRHS().cast<AffineConstantExpr>().getValue() > 0 && 116 "nonpositive multiplying coefficient"); 117 } 118 bool isTiled; 119 ArrayRef<Value> tileSizes; 120 }; 121 122 } // namespace 123 124 // IndexedGenericOp explicitly uses induction variables in the loop body. The 125 // values of the indices that are used in the loop body for any given access of 126 // input/output memref before `subview` op was applied should be invariant with 127 // respect to tiling. 128 // 129 // Therefore, if the operation is tiled, we have to transform the indices 130 // accordingly, i.e. offset them by the values of the corresponding induction 131 // variables that are captured implicitly in the body of the op. 132 // 133 // Example. `linalg.indexed_generic` before tiling: 134 // 135 // #id_2d = (i, j) -> (i, j) 136 // #pointwise_2d_trait = { 137 // indexing_maps = [#id_2d, #id_2d], 138 // iterator_types = ["parallel", "parallel"], 139 // n_views = [1, 1] 140 // } 141 // linalg.indexed_generic #pointwise_2d_trait %operand, %result { 142 // ^bb0(%i: index, %j: index, %operand_in: f32, %result_in: f32): 143 // <some operations that use %i, %j> 144 // }: memref<50x100xf32>, memref<50x100xf32> 145 // 146 // After tiling pass with tiles sizes 10 and 25: 147 // 148 // #strided = (i, j)[s0, s1, s2] -> (i * s1 + s0 + j * s2) 149 // 150 // %c1 = constant 1 : index 151 // %c0 = constant 0 : index 152 // %c25 = constant 25 : index 153 // %c10 = constant 10 : index 154 // operand_dim_0 = dim %operand, 0 : memref<50x100xf32> 155 // operand_dim_1 = dim %operand, 1 : memref<50x100xf32> 156 // loop.for %k = %c0 to operand_dim_0 step %c10 { 157 // loop.for %l = %c0 to operand_dim_1 step %c25 { 158 // %4 = std.subview %operand[%k, %l][%c10, %c25][%c1, %c1] 159 // : memref<50x100xf32> to memref<?x?xf32, #strided> 160 // %5 = std.subview %result[%k, %l][%c10, %c25][%c1, %c1] 161 // : memref<50x100xf32> to memref<?x?xf32, #strided> 162 // linalg.indexed_generic pointwise_2d_trait %4, %5 { 163 // ^bb0(%i: index, %j: index, %operand_in: f32, %result_in: f32): 164 // // Indices `k` and `l` are implicitly captured in the body. 165 // %transformed_i = addi %i, %k : index // index `i` is offset by %k 166 // %transformed_j = addi %j, %l : index // index `j` is offset by %l 167 // // Every use of %i, %j is replaced with %transformed_i, %transformed_j 168 // <some operations that use %transformed_i, %transformed_j> 169 // }: memref<?x?xf32, #strided>, memref<?x?xf32, #strided> 170 // } 171 // } 172 // 173 // TODO(pifon, ntv): Investigate whether mixing implicit and explicit indices 174 // does not lead to losing information. 175 static void transformIndexedGenericOpIndices( 176 OpBuilder &b, LinalgOp op, ArrayRef<ValueHandle *> pivs, 177 const LoopIndexToRangeIndexMap &loopIndexToRangeIndex) { 178 assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics"); 179 auto indexedGenericOp = dyn_cast<IndexedGenericOp>(op.getOperation()); 180 if (!indexedGenericOp) 181 return; 182 183 // `linalg.indexed_generic` comes in two flavours. One has a region with a 184 // single block that defines the loop body. The other has a `fun` attribute 185 // that refers to an existing function symbol. The `fun` function call will be 186 // inserted in the loop body in that case. 187 // 188 // TODO(pifon): Add support for `linalg.indexed_generic` with `fun` attribute. 189 auto ®ion = indexedGenericOp.region(); 190 if (region.empty()) { 191 indexedGenericOp.emitOpError("expected a region"); 192 return; 193 } 194 auto &block = region.getBlocks().front(); 195 196 OpBuilder::InsertionGuard g(b); 197 b.setInsertionPointToStart(&block); 198 for (unsigned i = 0; i < indexedGenericOp.getNumLoops(); ++i) { 199 auto rangeIndex = loopIndexToRangeIndex.find(i); 200 if (rangeIndex == loopIndexToRangeIndex.end()) 201 continue; 202 Value oldIndex = block.getArgument(i); 203 // Offset the index argument `i` by the value of the corresponding induction 204 // variable and replace all uses of the previous value. 205 Value newIndex = b.create<AddIOp>(indexedGenericOp.getLoc(), oldIndex, 206 pivs[rangeIndex->second]->getValue()); 207 for (auto &use : oldIndex.getUses()) { 208 if (use.getOwner() == newIndex.getDefiningOp()) 209 continue; 210 use.set(newIndex); 211 } 212 } 213 } 214 215 static bool isTiled(AffineExpr expr, ArrayRef<Value> tileSizes) { 216 if (!expr) 217 return false; 218 TileCheck t(tileSizes); 219 t.visit(expr); 220 return t.isTiled; 221 } 222 223 // Checks whether the view with index `viewIndex` within `linalgOp` varies with 224 // respect to a non-zero `tileSize`. 225 static bool isTiled(AffineMap map, ArrayRef<Value> tileSizes) { 226 if (!map) 227 return false; 228 for (unsigned r = 0; r < map.getNumResults(); ++r) 229 if (isTiled(map.getResult(r), tileSizes)) 230 return true; 231 return false; 232 } 233 234 static SmallVector<Value, 4> 235 makeTiledViews(OpBuilder &b, Location loc, LinalgOp linalgOp, 236 ArrayRef<Value> ivs, ArrayRef<Value> tileSizes, 237 ArrayRef<Value> viewSizes, OperationFolder *folder) { 238 assert(linalgOp.hasBufferSemantics() && 239 "expected linalg op with buffer semantics"); 240 assert(ivs.size() == static_cast<size_t>(llvm::count_if( 241 llvm::make_range(tileSizes.begin(), tileSizes.end()), 242 [](Value v) { return !isZero(v); })) && 243 "expected as many ivs as non-zero sizes"); 244 245 using namespace edsc::op; 246 247 // Construct (potentially temporary) mins and maxes on which to apply maps 248 // that define tile subviews. 249 SmallVector<Value, 8> lbs, subViewSizes; 250 for (unsigned idx = 0, idxIvs = 0, e = tileSizes.size(); idx < e; ++idx) { 251 bool isTiled = !isZero(tileSizes[idx]); 252 lbs.push_back(isTiled ? ivs[idxIvs++] 253 : (Value)folded_std_constant_index(folder, 0)); 254 subViewSizes.push_back(isTiled ? tileSizes[idx] : viewSizes[idx]); 255 } 256 257 auto *op = linalgOp.getOperation(); 258 259 SmallVector<Value, 4> res; 260 res.reserve(op->getNumOperands()); 261 auto viewIteratorBegin = linalgOp.getInputsAndOutputBuffers().begin(); 262 for (unsigned viewIndex = 0; viewIndex < linalgOp.getNumInputsAndOutputs(); 263 ++viewIndex) { 264 Value view = *(viewIteratorBegin + viewIndex); 265 auto viewType = view.getType().cast<MemRefType>(); 266 unsigned rank = viewType.getRank(); 267 auto mapAttr = linalgOp.indexing_maps()[viewIndex]; 268 auto map = mapAttr.cast<AffineMapAttr>().getValue(); 269 // If the view is not tiled, we can use it as is. 270 if (!isTiled(map, tileSizes)) { 271 res.push_back(view); 272 continue; 273 } 274 275 // Construct a new subview for the tile. 276 SmallVector<Value, 4> offsets, sizes, strides; 277 offsets.reserve(rank); 278 sizes.reserve(rank); 279 strides.reserve(rank); 280 for (unsigned r = 0; r < rank; ++r) { 281 if (!isTiled(map.getSubMap({r}), tileSizes)) { 282 offsets.push_back(folded_std_constant_index(folder, 0)); 283 sizes.push_back(std_dim(view, r)); 284 strides.push_back(folded_std_constant_index(folder, 1)); 285 continue; 286 } 287 288 // Tiling creates a new slice at the proper index, the slice step is 1 289 // (i.e. the slice view does not subsample, stepping occurs in the loop). 290 auto m = map.getSubMap({r}); 291 auto offset = applyMapToValues(b, loc, m, lbs, folder).front(); 292 offsets.push_back(offset); 293 auto size = applyMapToValues(b, loc, m, subViewSizes, folder).front(); 294 295 // The size of the subview should be trimmed to avoid out-of-bounds 296 // accesses, unless we statically know the subview size divides the view 297 // size evenly. 298 int64_t viewSize = viewType.getDimSize(r); 299 auto sizeCst = dyn_cast_or_null<ConstantIndexOp>(size.getDefiningOp()); 300 if (ShapedType::isDynamic(viewSize) || !sizeCst || 301 (viewSize % sizeCst.getValue()) != 0) { 302 // Compute min(size, dim - offset) to avoid out-of-bounds accesses. 303 auto minMap = AffineMap::get( 304 /*dimCount=*/3, /*symbolCount=*/0, 305 {getAffineDimExpr(/*position=*/0, b.getContext()), 306 getAffineDimExpr(/*position=*/1, b.getContext()) - 307 getAffineDimExpr(/*position=*/2, b.getContext())}); 308 auto d = folded_std_dim(folder, view, r); 309 size = folded_affine_min(folder, b.getIndexType(), minMap, 310 ValueRange{size, d, offset}); 311 } 312 313 sizes.push_back(size); 314 strides.push_back(folded_std_constant_index(folder, 1)); 315 } 316 317 res.push_back(b.create<SubViewOp>(loc, view, offsets, sizes, strides)); 318 } 319 320 // Traverse the mins/maxes and erase those that don't have uses left. 321 // This is a special type of folding that we only apply when `folder` is 322 // defined. 323 if (folder) 324 for (auto v : llvm::concat<Value>(lbs, subViewSizes)) 325 if (v.use_empty()) 326 v.getDefiningOp()->erase(); 327 328 return res; 329 } 330 331 template <typename LoopTy> 332 Optional<TiledLinalgOp> static tileLinalgOpImpl(OpBuilder &b, LinalgOp op, 333 ArrayRef<Value> tileSizes, 334 ArrayRef<unsigned> permutation, 335 OperationFolder *folder) { 336 assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics"); 337 // 1. Enforce the convention that "tiling by zero" skips tiling a particular 338 // dimension. This convention is significantly simpler to handle instead of 339 // adjusting affine maps to account for missing dimensions. 340 assert(op.getNumParallelLoops() + op.getNumReductionLoops() + 341 op.getNumWindowLoops() == 342 tileSizes.size() && 343 "expected matching number of tile sizes and loops"); 344 345 // If permutation is empty, use the identity. Build the permutation map 346 // otherwise. 347 auto invPermutationMap = AffineMap::getMultiDimIdentityMap( 348 tileSizes.size(), ScopedContext::getContext()); 349 if (!permutation.empty()) 350 invPermutationMap = inversePermutation( 351 AffineMap::getPermutationMap(permutation, ScopedContext::getContext())); 352 353 OpBuilder::InsertionGuard g(b); 354 b.setInsertionPoint(op); 355 ScopedContext scope(b, op.getLoc()); 356 // 2. Build the tiled loop ranges. 357 auto viewSizes = getViewSizes(b, op); 358 // The flattened loopToOperandRangesMaps is expected to be an invertible 359 // permutation map (asserted in the inverse calculation). 360 auto mapsRange = op.indexing_maps().getAsRange<AffineMapAttr>(); 361 auto maps = 362 functional::map([](AffineMapAttr a) { return a.getValue(); }, mapsRange); 363 auto viewSizesToLoopsMap = inversePermutation(concatAffineMaps(maps)); 364 assert(viewSizesToLoopsMap && "expected invertible map"); 365 366 SmallVector<SubViewOp::Range, 4> loopRanges; 367 LoopIndexToRangeIndexMap loopIndexToRangeIndex; 368 std::tie(loopRanges, loopIndexToRangeIndex) = 369 makeTiledLoopRanges(b, scope.getLocation(), viewSizesToLoopsMap, 370 viewSizes, tileSizes, folder); 371 if (!permutation.empty()) 372 applyPermutationToVector(loopRanges, permutation); 373 374 // 3. Create the tiled loops. 375 LinalgOp res = op; 376 auto ivs = ValueHandle::makeIndexHandles(loopRanges.size()); 377 auto pivs = makeHandlePointers(MutableArrayRef<ValueHandle>(ivs)); 378 // Convert SubViewOp::Range to linalg_range. 379 SmallVector<Value, 4> linalgRanges; 380 for (auto &range : loopRanges) { 381 linalgRanges.push_back( 382 linalg_range(range.offset, range.size, range.stride)); 383 } 384 GenericLoopNestRangeBuilder<LoopTy>(pivs, linalgRanges)([&] { 385 auto b = ScopedContext::getBuilder(); 386 auto loc = ScopedContext::getLocation(); 387 SmallVector<Value, 4> ivValues(ivs.begin(), ivs.end()); 388 389 // If we have to apply a permutation to the tiled loop nest, we have to 390 // reorder the induction variables This permutation is the right one 391 // assuming that loopRanges have previously been permuted by 392 // (i,j,k)->(k,i,j) So this permutation should be the inversePermutation of 393 // that one: (d0,d1,d2)->(d2,d0,d1) 394 if (!permutation.empty()) 395 ivValues = applyMapToValues(b, loc, invPermutationMap, ivValues, folder); 396 397 auto views = 398 makeTiledViews(b, loc, op, ivValues, tileSizes, viewSizes, folder); 399 auto operands = getAssumedNonViewOperands(op); 400 views.append(operands.begin(), operands.end()); 401 res = op.clone(b, loc, views); 402 }); 403 404 // 4. Transforms index arguments of `linalg.generic` w.r.t. to the tiling. 405 transformIndexedGenericOpIndices(b, res, pivs, loopIndexToRangeIndex); 406 407 // 5. Gather the newly created loops and return them with the new op. 408 SmallVector<Operation *, 8> loops; 409 loops.reserve(ivs.size()); 410 for (auto iv : ivs) 411 loops.push_back(loop::getForInductionVarOwner(iv)); 412 413 return TiledLinalgOp{res, loops}; 414 } 415 416 template <typename LoopTy> 417 Optional<TiledLinalgOp> 418 tileLinalgOpImpl(OpBuilder &b, LinalgOp op, ArrayRef<int64_t> tileSizes, 419 ArrayRef<unsigned> permutation, OperationFolder *folder) { 420 assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics"); 421 if (tileSizes.empty()) 422 return llvm::None; 423 424 // The following uses the convention that "tiling by zero" skips tiling a 425 // particular dimension. This convention is significantly simpler to handle 426 // instead of adjusting affine maps to account for missing dimensions. 427 auto nLoops = op.getNumParallelLoops() + op.getNumReductionLoops() + 428 op.getNumWindowLoops(); 429 tileSizes = tileSizes.take_front(nLoops); 430 // If only 0 tilings are left, then return. 431 if (llvm::all_of(tileSizes, [](int64_t v) { return v == 0; })) 432 return llvm::None; 433 434 // Create a builder for tile size constants. 435 OpBuilder::InsertionGuard g(b); 436 b.setInsertionPoint(op); 437 ScopedContext scope(b, op.getLoc()); 438 439 // Materialize concrete tile size values to pass the generic tiling function. 440 SmallVector<Value, 8> tileSizeValues; 441 tileSizeValues.reserve(tileSizes.size()); 442 for (auto ts : tileSizes) 443 tileSizeValues.push_back(folded_std_constant_index(folder, ts)); 444 // Pad tile sizes with zero values to enforce our convention. 445 if (tileSizeValues.size() < nLoops) { 446 for (unsigned i = tileSizeValues.size(); i < nLoops; ++i) 447 tileSizeValues.push_back(folded_std_constant_index(folder, 0)); 448 } 449 450 return tileLinalgOpImpl<LoopTy>(b, op, tileSizeValues, permutation, folder); 451 } 452 453 Optional<TiledLinalgOp> 454 mlir::linalg::tileLinalgOp(OpBuilder &b, LinalgOp op, ArrayRef<Value> tileSizes, 455 ArrayRef<unsigned> permutation, 456 OperationFolder *folder) { 457 return tileLinalgOpImpl<loop::ForOp>(b, op, tileSizes, permutation, folder); 458 } 459 460 Optional<TiledLinalgOp> mlir::linalg::tileLinalgOpToParallelLoops( 461 OpBuilder &b, LinalgOp op, ArrayRef<Value> tileSizes, 462 ArrayRef<unsigned> permutation, OperationFolder *folder) { 463 return tileLinalgOpImpl<loop::ParallelOp>(b, op, tileSizes, permutation, 464 folder); 465 } 466 467 Optional<TiledLinalgOp> mlir::linalg::tileLinalgOp( 468 OpBuilder &b, LinalgOp op, ArrayRef<int64_t> tileSizes, 469 ArrayRef<unsigned> permutation, OperationFolder *folder) { 470 return tileLinalgOpImpl<loop::ForOp>(b, op, tileSizes, permutation, folder); 471 } 472 473 Optional<TiledLinalgOp> mlir::linalg::tileLinalgOpToParallelLoops( 474 OpBuilder &b, LinalgOp op, ArrayRef<int64_t> tileSizes, 475 ArrayRef<unsigned> permutation, OperationFolder *folder) { 476 return tileLinalgOpImpl<loop::ParallelOp>(b, op, tileSizes, permutation, 477 folder); 478 } 479 480 template <typename LoopTy> 481 static void tileLinalgOps(FuncOp f, ArrayRef<int64_t> tileSizes) { 482 OpBuilder b(f); 483 OperationFolder folder(f.getContext()); 484 f.walk([tileSizes, &b, &folder](LinalgOp op) { 485 if (!op.hasBufferSemantics()) 486 return; 487 auto opLoopsPair = 488 tileLinalgOpImpl<LoopTy>(b, op, tileSizes, /*permutation=*/{}, &folder); 489 // If tiling occurred successfully, erase old op. 490 if (opLoopsPair) 491 op.erase(); 492 }); 493 f.walk([](LinalgOp op) { 494 if (!op.getOperation()->hasNoSideEffect()) 495 return; 496 if (op.getOperation()->use_empty()) 497 op.erase(); 498 }); 499 } 500 501 namespace { 502 503 template <typename LoopTy> 504 struct LinalgTilingPass : public FunctionPass<LinalgTilingPass<LoopTy>> { 505 LinalgTilingPass() = default; 506 LinalgTilingPass(ArrayRef<int64_t> sizes) { 507 this->tileSizes.assign(sizes.begin(), sizes.end()); 508 } 509 510 void runOnFunction() override { 511 tileLinalgOps<LoopTy>(this->getFunction(), tileSizes); 512 } 513 514 SmallVector<int64_t, 8> tileSizes; 515 }; 516 517 } // namespace 518 519 std::unique_ptr<OpPassBase<FuncOp>> 520 mlir::createLinalgTilingPass(ArrayRef<int64_t> tileSizes) { 521 return std::make_unique<LinalgTilingPass<loop::ForOp>>(tileSizes); 522 } 523 524 std::unique_ptr<OpPassBase<FuncOp>> 525 mlir::createLinalgTilingToParallelLoopsPass(ArrayRef<int64_t> tileSizes) { 526 return std::make_unique<LinalgTilingPass<loop::ParallelOp>>(tileSizes); 527 } 528 529 static PassRegistration<LinalgTilingPass<loop::ForOp>> 530 tiling_pass("linalg-tile", "Tile operations in the linalg dialect", [] { 531 auto pass = std::make_unique<LinalgTilingPass<loop::ForOp>>(); 532 pass->tileSizes.assign(clTileSizes.begin(), clTileSizes.end()); 533 return pass; 534 }); 535 536 static PassRegistration<LinalgTilingPass<loop::ParallelOp>> 537 tiling_to_parallel_loops( 538 "linalg-tile-to-parallel-loops", 539 "Tile operations in the linalg dialect to parallel loops", [] { 540 auto pass = std::make_unique<LinalgTilingPass<loop::ParallelOp>>(); 541 pass->tileSizes.assign(clTileSizes.begin(), clTileSizes.end()); 542 return pass; 543 }); 544