1 //===- Tiling.cpp - Implementation of linalg Tiling -----------------------===// 2 // 3 // Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the linalg dialect Tiling pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 14 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h" 15 #include "mlir/Dialect/Linalg/Passes.h" 16 #include "mlir/Dialect/Linalg/Utils/Intrinsics.h" 17 #include "mlir/Dialect/Linalg/Utils/Utils.h" 18 #include "mlir/Dialect/LoopOps/LoopOps.h" 19 #include "mlir/EDSC/Helpers.h" 20 #include "mlir/IR/AffineExpr.h" 21 #include "mlir/IR/AffineExprVisitor.h" 22 #include "mlir/IR/AffineMap.h" 23 #include "mlir/IR/OpImplementation.h" 24 #include "mlir/Pass/Pass.h" 25 #include "mlir/Support/LLVM.h" 26 #include "mlir/Support/STLExtras.h" 27 #include "mlir/Transforms/FoldUtils.h" 28 29 #include "llvm/Support/CommandLine.h" 30 31 using namespace mlir; 32 using namespace mlir::edsc; 33 using namespace mlir::edsc::intrinsics; 34 using namespace mlir::linalg; 35 using namespace mlir::linalg::intrinsics; 36 using namespace mlir::loop; 37 38 #define DEBUG_TYPE "linalg-tiling" 39 40 static llvm::cl::OptionCategory clOptionsCategory(DEBUG_TYPE " options"); 41 static llvm::cl::list<unsigned> 42 clTileSizes("linalg-tile-sizes", 43 llvm::cl::desc("Tile sizes by which to tile linalg operations"), 44 llvm::cl::ZeroOrMore, llvm::cl::MiscFlags::CommaSeparated, 45 llvm::cl::cat(clOptionsCategory)); 46 47 static bool isZero(Value v) { 48 return isa_and_nonnull<ConstantIndexOp>(v->getDefiningOp()) && 49 cast<ConstantIndexOp>(v->getDefiningOp()).getValue() == 0; 50 } 51 52 using LoopIndexToRangeIndexMap = DenseMap<int, int>; 53 54 // Creates a number of ranges equal to the number of non-zero in `tileSizes`. 55 // One for each loop of the LinalgOp that is tiled. The `tileSizes` argument has 56 // one entry per surrounding loop. It uses zero as the convention that a 57 // particular loop is not tiled. This convention simplifies implementations by 58 // avoiding affine map manipulations. 59 // The returned ranges correspond to the loop ranges, in the proper order, that 60 // are tiled and for which new loops will be created. Also the function returns 61 // a map from loop indices of the LinalgOp to the corresponding non-empty range 62 // indices of newly created loops. 63 static std::tuple<SmallVector<SubViewOp::Range, 4>, LoopIndexToRangeIndexMap> 64 makeTiledLoopRanges(OpBuilder &b, Location loc, AffineMap map, 65 ArrayRef<Value> allViewSizes, ArrayRef<Value> allTileSizes, 66 OperationFolder *folder) { 67 assert(allTileSizes.size() == map.getNumResults()); 68 // Apply `map` to get view sizes in loop order. 69 auto viewSizes = applyMapToValues(b, loc, map, allViewSizes, folder); 70 SmallVector<Value, 4> tileSizes(allTileSizes.begin(), allTileSizes.end()); 71 72 // Traverse the tile sizes, which are in loop order, erase zeros everywhere. 73 LoopIndexToRangeIndexMap loopIndexToRangeIndex; 74 for (int idx = 0, e = tileSizes.size(), zerosCount = 0; idx < e; ++idx) { 75 if (isZero(tileSizes[idx - zerosCount])) { 76 viewSizes.erase(viewSizes.begin() + idx - zerosCount); 77 tileSizes.erase(tileSizes.begin() + idx - zerosCount); 78 ++zerosCount; 79 continue; 80 } 81 loopIndexToRangeIndex[idx] = idx - zerosCount; 82 } 83 84 // Create a new range with the applied tile sizes. 85 SmallVector<SubViewOp::Range, 4> res; 86 for (unsigned idx = 0, e = tileSizes.size(); idx < e; ++idx) { 87 res.push_back(SubViewOp::Range{constant_index(folder, 0), viewSizes[idx], 88 tileSizes[idx]}); 89 } 90 return std::make_tuple(res, loopIndexToRangeIndex); 91 } 92 93 namespace { 94 95 // Helper visitor to determine whether an AffineExpr is tiled. 96 // This is achieved by traversing every AffineDimExpr with position `pos` and 97 // checking whether the corresponding `tileSizes[pos]` is non-zero. 98 // This also enforces only positive coefficients occur in multiplications. 99 // 100 // Example: 101 // `d0 + 2 * d1 + d3` is tiled by [0, 0, 0, 2] but not by [0, 0, 2, 0] 102 // 103 struct TileCheck : public AffineExprVisitor<TileCheck> { 104 TileCheck(ArrayRef<Value> tileSizes) : isTiled(false), tileSizes(tileSizes) {} 105 106 void visitDimExpr(AffineDimExpr expr) { 107 isTiled |= !isZero(tileSizes[expr.getPosition()]); 108 } 109 void visitAffineBinaryOpExpr(AffineBinaryOpExpr expr) { 110 visit(expr.getLHS()); 111 visit(expr.getRHS()); 112 if (expr.getKind() == mlir::AffineExprKind::Mul) 113 assert(expr.getRHS().cast<AffineConstantExpr>().getValue() > 0 && 114 "nonpositive multiplying coefficient"); 115 } 116 bool isTiled; 117 ArrayRef<Value> tileSizes; 118 }; 119 120 } // namespace 121 122 // IndexedGenericOp explicitly uses induction variables in the loop body. The 123 // values of the indices that are used in the loop body for any given access of 124 // input/output memref before `subview` op was applied should be invariant with 125 // respect to tiling. 126 // 127 // Therefore, if the operation is tiled, we have to transform the indices 128 // accordingly, i.e. offset them by the values of the corresponding induction 129 // variables that are captured implicitly in the body of the op. 130 // 131 // Example. `linalg.indexed_generic` before tiling: 132 // 133 // #id_2d = (i, j) -> (i, j) 134 // #pointwise_2d_trait = { 135 // indexing_maps = [#id_2d, #id_2d], 136 // iterator_types = ["parallel", "parallel"], 137 // n_views = [1, 1] 138 // } 139 // linalg.indexed_generic #pointwise_2d_trait %operand, %result { 140 // ^bb0(%i: index, %j: index, %operand_in: f32, %result_in: f32): 141 // <some operations that use %i, %j> 142 // }: memref<50x100xf32>, memref<50x100xf32> 143 // 144 // After tiling pass with tiles sizes 10 and 25: 145 // 146 // #strided = (i, j)[s0, s1, s2] -> (i * s1 + s0 + j * s2) 147 // 148 // %c1 = constant 1 : index 149 // %c0 = constant 0 : index 150 // %c25 = constant 25 : index 151 // %c10 = constant 10 : index 152 // operand_dim_0 = dim %operand, 0 : memref<50x100xf32> 153 // operand_dim_1 = dim %operand, 1 : memref<50x100xf32> 154 // loop.for %k = %c0 to operand_dim_0 step %c10 { 155 // loop.for %l = %c0 to operand_dim_1 step %c25 { 156 // %4 = std.subview %operand[%k, %l][%c10, %c25][%c1, %c1] 157 // : memref<50x100xf32> to memref<?x?xf32, #strided> 158 // %5 = std.subview %result[%k, %l][%c10, %c25][%c1, %c1] 159 // : memref<50x100xf32> to memref<?x?xf32, #strided> 160 // linalg.indexed_generic pointwise_2d_trait %4, %5 { 161 // ^bb0(%i: index, %j: index, %operand_in: f32, %result_in: f32): 162 // // Indices `k` and `l` are implicitly captured in the body. 163 // %transformed_i = addi %i, %k : index // index `i` is offset by %k 164 // %transformed_j = addi %j, %l : index // index `j` is offset by %l 165 // // Every use of %i, %j is replaced with %transformed_i, %transformed_j 166 // <some operations that use %transformed_i, %transformed_j> 167 // }: memref<?x?xf32, #strided>, memref<?x?xf32, #strided> 168 // } 169 // } 170 // 171 // TODO(pifon, ntv): Investigate whether mixing implicit and explicit indices 172 // does not lead to losing information. 173 void transformIndexedGenericOpIndices( 174 OpBuilder &b, LinalgOp op, ArrayRef<ValueHandle *> pivs, 175 const LoopIndexToRangeIndexMap &loopIndexToRangeIndex) { 176 auto indexedGenericOp = dyn_cast<IndexedGenericOp>(op.getOperation()); 177 if (!indexedGenericOp) 178 return; 179 180 // `linalg.indexed_generic` comes in two flavours. One has a region with a 181 // single block that defines the loop body. The other has a `fun` attribute 182 // that refers to an existing function symbol. The `fun` function call will be 183 // inserted in the loop body in that case. 184 // 185 // TODO(pifon): Add support for `linalg.indexed_generic` with `fun` attribute. 186 auto ®ion = indexedGenericOp.region(); 187 if (region.empty()) { 188 indexedGenericOp.emitOpError("expected a region"); 189 return; 190 } 191 auto &block = region.getBlocks().front(); 192 193 OpBuilder::InsertionGuard g(b); 194 b.setInsertionPointToStart(&block); 195 for (unsigned i = 0; i < indexedGenericOp.getNumLoops(); ++i) { 196 auto rangeIndex = loopIndexToRangeIndex.find(i); 197 if (rangeIndex == loopIndexToRangeIndex.end()) 198 continue; 199 Value oldIndex = block.getArgument(i); 200 // Offset the index argument `i` by the value of the corresponding induction 201 // variable and replace all uses of the previous value. 202 Value newIndex = b.create<AddIOp>(indexedGenericOp.getLoc(), oldIndex, 203 pivs[rangeIndex->second]->getValue()); 204 for (auto &use : oldIndex->getUses()) { 205 if (use.getOwner() == newIndex->getDefiningOp()) 206 continue; 207 use.set(newIndex); 208 } 209 } 210 } 211 212 static bool isTiled(AffineExpr expr, ArrayRef<Value> tileSizes) { 213 if (!expr) 214 return false; 215 TileCheck t(tileSizes); 216 t.visit(expr); 217 return t.isTiled; 218 } 219 220 // Checks whether the view with index `viewIndex` within `linalgOp` varies with 221 // respect to a non-zero `tileSize`. 222 static bool isTiled(AffineMap map, ArrayRef<Value> tileSizes) { 223 if (!map) 224 return false; 225 for (unsigned r = 0; r < map.getNumResults(); ++r) 226 if (isTiled(map.getResult(r), tileSizes)) 227 return true; 228 return false; 229 } 230 231 static SmallVector<Value, 4> 232 makeTiledViews(OpBuilder &b, Location loc, LinalgOp linalgOp, 233 ArrayRef<Value> ivs, ArrayRef<Value> tileSizes, 234 ArrayRef<Value> viewSizes, OperationFolder *folder) { 235 assert(ivs.size() == static_cast<size_t>(llvm::count_if( 236 llvm::make_range(tileSizes.begin(), tileSizes.end()), 237 [](Value v) { return !isZero(v); })) && 238 "expected as many ivs as non-zero sizes"); 239 240 using edsc::intrinsics::select; 241 using edsc::op::operator+; 242 using edsc::op::operator<; 243 244 // Construct (potentially temporary) mins and maxes on which to apply maps 245 // that define tile subviews. 246 SmallVector<Value, 8> lbs, subViewSizes; 247 for (unsigned idx = 0, idxIvs = 0, e = tileSizes.size(); idx < e; ++idx) { 248 bool isTiled = !isZero(tileSizes[idx]); 249 lbs.push_back(isTiled ? ivs[idxIvs++] : (Value)constant_index(folder, 0)); 250 subViewSizes.push_back(isTiled ? tileSizes[idx] : viewSizes[idx]); 251 } 252 253 auto *op = linalgOp.getOperation(); 254 255 SmallVector<Value, 4> res; 256 res.reserve(op->getNumOperands()); 257 auto viewIteratorBegin = linalgOp.getInputsAndOutputs().begin(); 258 for (unsigned viewIndex = 0; viewIndex < linalgOp.getNumInputsAndOutputs(); 259 ++viewIndex) { 260 Value view = *(viewIteratorBegin + viewIndex); 261 unsigned rank = view->getType().cast<MemRefType>().getRank(); 262 auto map = loopToOperandRangesMaps(linalgOp)[viewIndex]; 263 // If the view is not tiled, we can use it as is. 264 if (!isTiled(map, tileSizes)) { 265 res.push_back(view); 266 continue; 267 } 268 269 // Construct a new subview for the tile. 270 SmallVector<Value, 4> offsets, sizes, strides; 271 offsets.reserve(rank); 272 sizes.reserve(rank); 273 strides.reserve(rank); 274 for (unsigned r = 0; r < rank; ++r) { 275 if (!isTiled(map.getSubMap({r}), tileSizes)) { 276 offsets.push_back(constant_index(folder, 0)); 277 sizes.push_back(dim(view, r)); 278 strides.push_back(constant_index(folder, 1)); 279 continue; 280 } 281 282 // Tiling creates a new slice at the proper index, the slice step is 1 283 // (i.e. the slice view does not subsample, stepping occurs in the loop). 284 auto m = map.getSubMap({r}); 285 auto offset = applyMapToValues(b, loc, m, lbs, folder).front(); 286 offsets.push_back(offset); 287 auto size = applyMapToValues(b, loc, m, subViewSizes, folder).front(); 288 sizes.push_back(size); 289 strides.push_back(constant_index(folder, 1)); 290 } 291 // TODO(b/144419024) Atm std.subview is not guaranteed in-bounds. Depending 292 // on the semantics we attach to it, we may need to use min(size, dim) here 293 // and canonicalize later. 294 res.push_back(b.create<SubViewOp>(loc, view, offsets, sizes, strides)); 295 } 296 297 // Traverse the mins/maxes and erase those that don't have uses left. 298 // This is a special type of folding that we only apply when `folder` is 299 // defined. 300 if (folder) 301 for (auto v : llvm::concat<Value>(lbs, subViewSizes)) 302 if (v->use_empty()) 303 v->getDefiningOp()->erase(); 304 305 return res; 306 } 307 308 Optional<TiledLinalgOp> 309 mlir::linalg::tileLinalgOp(OpBuilder &b, LinalgOp op, ArrayRef<Value> tileSizes, 310 ArrayRef<unsigned> permutation, 311 OperationFolder *folder) { 312 // 1. Enforce the convention that "tiling by zero" skips tiling a particular 313 // dimension. This convention is significantly simpler to handle instead of 314 // adjusting affine maps to account for missing dimensions. 315 assert(op.getNumParallelLoops() + op.getNumReductionLoops() + 316 op.getNumWindowLoops() == 317 tileSizes.size() && 318 "expected matching number of tile sizes and loops"); 319 320 // If permutation is empty, use the identity. Build the permutation map 321 // otherwise. 322 auto invPermutationMap = AffineMap::getMultiDimIdentityMap( 323 tileSizes.size(), ScopedContext::getContext()); 324 if (!permutation.empty()) 325 invPermutationMap = inversePermutation( 326 AffineMap::getPermutationMap(permutation, ScopedContext::getContext())); 327 328 OpBuilder::InsertionGuard g(b); 329 b.setInsertionPoint(op); 330 ScopedContext scope(b, op.getLoc()); 331 // 2. Build the tiled loop ranges. 332 auto viewSizes = getViewSizes(op); 333 // The flattened loopToOperandRangesMaps is expected to be an invertible 334 // permutation map (asserted in the inverse calculation). 335 auto viewSizesToLoopsMap = 336 inversePermutation(concatAffineMaps(loopToOperandRangesMaps(op))); 337 assert(viewSizesToLoopsMap && "expected invertible map"); 338 339 SmallVector<SubViewOp::Range, 4> loopRanges; 340 LoopIndexToRangeIndexMap loopIndexToRangeIndex; 341 std::tie(loopRanges, loopIndexToRangeIndex) = 342 makeTiledLoopRanges(b, scope.getLocation(), viewSizesToLoopsMap, 343 viewSizes, tileSizes, folder); 344 if (!permutation.empty()) 345 applyPermutationToVector(loopRanges, permutation); 346 347 // 3. Create the tiled loops. 348 LinalgOp res = op; 349 SmallVector<IndexHandle, 4> ivs(loopRanges.size()); 350 auto pivs = makeHandlePointers(MutableArrayRef<IndexHandle>(ivs)); 351 LoopNestRangeBuilder(pivs, loopRanges)([&] { 352 auto b = ScopedContext::getBuilder(); 353 auto loc = ScopedContext::getLocation(); 354 SmallVector<Value, 4> ivValues(ivs.begin(), ivs.end()); 355 356 // If we have to apply a permutation to the tiled loop nest, we have to 357 // reorder the induction variables This permutation is the right one 358 // assuming that loopRanges have previously been permuted by 359 // (i,j,k)->(k,i,j) So this permutation should be the inversePermutation of 360 // that one: (d0,d1,d2)->(d2,d0,d1) 361 if (!permutation.empty()) 362 ivValues = applyMapToValues(b, loc, invPermutationMap, ivValues, folder); 363 364 auto views = 365 makeTiledViews(b, loc, op, ivValues, tileSizes, viewSizes, folder); 366 auto operands = getAssumedNonViewOperands(op); 367 views.append(operands.begin(), operands.end()); 368 res = op.clone(b, loc, views); 369 }); 370 371 // 4. Transforms index arguments of `linalg.generic` w.r.t. to the tiling. 372 transformIndexedGenericOpIndices(b, res, pivs, loopIndexToRangeIndex); 373 374 // 5. Gather the newly created loops and return them with the new op. 375 SmallVector<ForOp, 8> loops; 376 loops.reserve(ivs.size()); 377 for (auto iv : ivs) 378 loops.push_back(loop::getForInductionVarOwner(iv)); 379 380 return TiledLinalgOp{res, loops}; 381 } 382 383 Optional<TiledLinalgOp> mlir::linalg::tileLinalgOp( 384 OpBuilder &b, LinalgOp op, ArrayRef<int64_t> tileSizes, 385 ArrayRef<unsigned> permutation, OperationFolder *folder) { 386 if (tileSizes.empty()) 387 return llvm::None; 388 389 // The following uses the convention that "tiling by zero" skips tiling a 390 // particular dimension. This convention is significantly simpler to handle 391 // instead of adjusting affine maps to account for missing dimensions. 392 auto nLoops = op.getNumParallelLoops() + op.getNumReductionLoops() + 393 op.getNumWindowLoops(); 394 tileSizes = tileSizes.take_front(nLoops); 395 // If only 0 tilings are left, then return. 396 if (llvm::all_of(tileSizes, [](int64_t v) { return v == 0; })) 397 return llvm::None; 398 399 // Create a builder for tile size constants. 400 OpBuilder::InsertionGuard g(b); 401 b.setInsertionPoint(op); 402 ScopedContext scope(b, op.getLoc()); 403 404 // Materialize concrete tile size values to pass the generic tiling function. 405 SmallVector<Value, 8> tileSizeValues; 406 tileSizeValues.reserve(tileSizes.size()); 407 for (auto ts : tileSizes) 408 tileSizeValues.push_back(constant_index(folder, ts)); 409 // Pad tile sizes with zero values to enforce our convention. 410 if (tileSizeValues.size() < nLoops) { 411 for (unsigned i = tileSizeValues.size(); i < nLoops; ++i) 412 tileSizeValues.push_back(constant_index(folder, 0)); 413 } 414 415 return tileLinalgOp(b, op, tileSizeValues, permutation, folder); 416 } 417 418 static void tileLinalgOps(FuncOp f, ArrayRef<int64_t> tileSizes) { 419 OpBuilder b(f); 420 OperationFolder folder(f.getContext()); 421 f.walk([tileSizes, &b, &folder](LinalgOp op) { 422 auto opLoopsPair = 423 tileLinalgOp(b, op, tileSizes, /*permutation=*/{}, &folder); 424 // If tiling occurred successfully, erase old op. 425 if (opLoopsPair) 426 op.erase(); 427 }); 428 f.walk([](LinalgOp op) { 429 if (!op.getOperation()->hasNoSideEffect()) 430 return; 431 if (op.getOperation()->use_empty()) 432 op.erase(); 433 }); 434 } 435 436 namespace { 437 struct LinalgTilingPass : public FunctionPass<LinalgTilingPass> { 438 LinalgTilingPass() = default; 439 LinalgTilingPass(ArrayRef<int64_t> sizes); 440 441 void runOnFunction() override { tileLinalgOps(getFunction(), tileSizes); } 442 443 SmallVector<int64_t, 8> tileSizes; 444 }; 445 } // namespace 446 447 LinalgTilingPass::LinalgTilingPass(ArrayRef<int64_t> sizes) { 448 this->tileSizes.assign(sizes.begin(), sizes.end()); 449 } 450 451 std::unique_ptr<OpPassBase<FuncOp>> 452 mlir::linalg::createLinalgTilingPass(ArrayRef<int64_t> tileSizes) { 453 return std::make_unique<LinalgTilingPass>(tileSizes); 454 } 455 456 static PassRegistration<LinalgTilingPass> 457 pass("linalg-tile", "Tile operations in the linalg dialect", [] { 458 auto pass = std::make_unique<LinalgTilingPass>(); 459 pass->tileSizes.assign(clTileSizes.begin(), clTileSizes.end()); 460 return pass; 461 }); 462