1 //===- Tiling.cpp - Implementation of linalg Tiling -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the linalg dialect Tiling pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Dialect/AffineOps/EDSC/Intrinsics.h" 14 #include "mlir/Dialect/Linalg/EDSC/Intrinsics.h" 15 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h" 16 #include "mlir/Dialect/Linalg/Passes.h" 17 #include "mlir/Dialect/Linalg/Utils/Utils.h" 18 #include "mlir/Dialect/LoopOps/EDSC/Builders.h" 19 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h" 20 #include "mlir/IR/AffineExpr.h" 21 #include "mlir/IR/AffineExprVisitor.h" 22 #include "mlir/IR/AffineMap.h" 23 #include "mlir/IR/OpImplementation.h" 24 #include "mlir/Pass/Pass.h" 25 #include "mlir/Support/LLVM.h" 26 #include "mlir/Support/STLExtras.h" 27 #include "mlir/Transforms/FoldUtils.h" 28 29 #include "llvm/Support/CommandLine.h" 30 31 using namespace mlir; 32 using namespace mlir::edsc; 33 using namespace mlir::edsc::intrinsics; 34 using namespace mlir::linalg; 35 using namespace mlir::loop; 36 37 using folded_affine_min = folded::ValueBuilder<AffineMinOp>; 38 39 #define DEBUG_TYPE "linalg-tiling" 40 41 static llvm::cl::OptionCategory clOptionsCategory(DEBUG_TYPE " options"); 42 static llvm::cl::list<unsigned> 43 clTileSizes("linalg-tile-sizes", 44 llvm::cl::desc("Tile sizes by which to tile linalg operations"), 45 llvm::cl::ZeroOrMore, llvm::cl::MiscFlags::CommaSeparated, 46 llvm::cl::cat(clOptionsCategory)); 47 48 static bool isZero(Value v) { 49 return isa_and_nonnull<ConstantIndexOp>(v.getDefiningOp()) && 50 cast<ConstantIndexOp>(v.getDefiningOp()).getValue() == 0; 51 } 52 53 using LoopIndexToRangeIndexMap = DenseMap<int, int>; 54 55 // Creates a number of ranges equal to the number of non-zero in `tileSizes`. 56 // One for each loop of the LinalgOp that is tiled. The `tileSizes` argument has 57 // one entry per surrounding loop. It uses zero as the convention that a 58 // particular loop is not tiled. This convention simplifies implementations by 59 // avoiding affine map manipulations. 60 // The returned ranges correspond to the loop ranges, in the proper order, that 61 // are tiled and for which new loops will be created. Also the function returns 62 // a map from loop indices of the LinalgOp to the corresponding non-empty range 63 // indices of newly created loops. 64 static std::tuple<SmallVector<SubViewOp::Range, 4>, LoopIndexToRangeIndexMap> 65 makeTiledLoopRanges(OpBuilder &b, Location loc, AffineMap map, 66 ArrayRef<Value> allViewSizes, ArrayRef<Value> allTileSizes, 67 OperationFolder *folder) { 68 assert(allTileSizes.size() == map.getNumResults()); 69 // Apply `map` to get view sizes in loop order. 70 auto viewSizes = applyMapToValues(b, loc, map, allViewSizes, folder); 71 SmallVector<Value, 4> tileSizes(allTileSizes.begin(), allTileSizes.end()); 72 73 // Traverse the tile sizes, which are in loop order, erase zeros everywhere. 74 LoopIndexToRangeIndexMap loopIndexToRangeIndex; 75 for (int idx = 0, e = tileSizes.size(), zerosCount = 0; idx < e; ++idx) { 76 if (isZero(tileSizes[idx - zerosCount])) { 77 viewSizes.erase(viewSizes.begin() + idx - zerosCount); 78 tileSizes.erase(tileSizes.begin() + idx - zerosCount); 79 ++zerosCount; 80 continue; 81 } 82 loopIndexToRangeIndex[idx] = idx - zerosCount; 83 } 84 85 // Create a new range with the applied tile sizes. 86 SmallVector<SubViewOp::Range, 4> res; 87 for (unsigned idx = 0, e = tileSizes.size(); idx < e; ++idx) { 88 res.push_back(SubViewOp::Range{folded_std_constant_index(folder, 0), 89 viewSizes[idx], tileSizes[idx]}); 90 } 91 return std::make_tuple(res, loopIndexToRangeIndex); 92 } 93 94 namespace { 95 96 // Helper visitor to determine whether an AffineExpr is tiled. 97 // This is achieved by traversing every AffineDimExpr with position `pos` and 98 // checking whether the corresponding `tileSizes[pos]` is non-zero. 99 // This also enforces only positive coefficients occur in multiplications. 100 // 101 // Example: 102 // `d0 + 2 * d1 + d3` is tiled by [0, 0, 0, 2] but not by [0, 0, 2, 0] 103 // 104 struct TileCheck : public AffineExprVisitor<TileCheck> { 105 TileCheck(ArrayRef<Value> tileSizes) : isTiled(false), tileSizes(tileSizes) {} 106 107 void visitDimExpr(AffineDimExpr expr) { 108 isTiled |= !isZero(tileSizes[expr.getPosition()]); 109 } 110 void visitAffineBinaryOpExpr(AffineBinaryOpExpr expr) { 111 visit(expr.getLHS()); 112 visit(expr.getRHS()); 113 if (expr.getKind() == mlir::AffineExprKind::Mul) 114 assert(expr.getRHS().cast<AffineConstantExpr>().getValue() > 0 && 115 "nonpositive multiplying coefficient"); 116 } 117 bool isTiled; 118 ArrayRef<Value> tileSizes; 119 }; 120 121 } // namespace 122 123 // IndexedGenericOp explicitly uses induction variables in the loop body. The 124 // values of the indices that are used in the loop body for any given access of 125 // input/output memref before `subview` op was applied should be invariant with 126 // respect to tiling. 127 // 128 // Therefore, if the operation is tiled, we have to transform the indices 129 // accordingly, i.e. offset them by the values of the corresponding induction 130 // variables that are captured implicitly in the body of the op. 131 // 132 // Example. `linalg.indexed_generic` before tiling: 133 // 134 // #id_2d = (i, j) -> (i, j) 135 // #pointwise_2d_trait = { 136 // indexing_maps = [#id_2d, #id_2d], 137 // iterator_types = ["parallel", "parallel"], 138 // n_views = [1, 1] 139 // } 140 // linalg.indexed_generic #pointwise_2d_trait %operand, %result { 141 // ^bb0(%i: index, %j: index, %operand_in: f32, %result_in: f32): 142 // <some operations that use %i, %j> 143 // }: memref<50x100xf32>, memref<50x100xf32> 144 // 145 // After tiling pass with tiles sizes 10 and 25: 146 // 147 // #strided = (i, j)[s0, s1, s2] -> (i * s1 + s0 + j * s2) 148 // 149 // %c1 = constant 1 : index 150 // %c0 = constant 0 : index 151 // %c25 = constant 25 : index 152 // %c10 = constant 10 : index 153 // operand_dim_0 = dim %operand, 0 : memref<50x100xf32> 154 // operand_dim_1 = dim %operand, 1 : memref<50x100xf32> 155 // loop.for %k = %c0 to operand_dim_0 step %c10 { 156 // loop.for %l = %c0 to operand_dim_1 step %c25 { 157 // %4 = std.subview %operand[%k, %l][%c10, %c25][%c1, %c1] 158 // : memref<50x100xf32> to memref<?x?xf32, #strided> 159 // %5 = std.subview %result[%k, %l][%c10, %c25][%c1, %c1] 160 // : memref<50x100xf32> to memref<?x?xf32, #strided> 161 // linalg.indexed_generic pointwise_2d_trait %4, %5 { 162 // ^bb0(%i: index, %j: index, %operand_in: f32, %result_in: f32): 163 // // Indices `k` and `l` are implicitly captured in the body. 164 // %transformed_i = addi %i, %k : index // index `i` is offset by %k 165 // %transformed_j = addi %j, %l : index // index `j` is offset by %l 166 // // Every use of %i, %j is replaced with %transformed_i, %transformed_j 167 // <some operations that use %transformed_i, %transformed_j> 168 // }: memref<?x?xf32, #strided>, memref<?x?xf32, #strided> 169 // } 170 // } 171 // 172 // TODO(pifon, ntv): Investigate whether mixing implicit and explicit indices 173 // does not lead to losing information. 174 static void transformIndexedGenericOpIndices( 175 OpBuilder &b, LinalgOp op, ArrayRef<ValueHandle *> pivs, 176 const LoopIndexToRangeIndexMap &loopIndexToRangeIndex) { 177 assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics"); 178 auto indexedGenericOp = dyn_cast<IndexedGenericOp>(op.getOperation()); 179 if (!indexedGenericOp) 180 return; 181 182 // `linalg.indexed_generic` comes in two flavours. One has a region with a 183 // single block that defines the loop body. The other has a `fun` attribute 184 // that refers to an existing function symbol. The `fun` function call will be 185 // inserted in the loop body in that case. 186 // 187 // TODO(pifon): Add support for `linalg.indexed_generic` with `fun` attribute. 188 auto ®ion = indexedGenericOp.region(); 189 if (region.empty()) { 190 indexedGenericOp.emitOpError("expected a region"); 191 return; 192 } 193 auto &block = region.getBlocks().front(); 194 195 OpBuilder::InsertionGuard g(b); 196 b.setInsertionPointToStart(&block); 197 for (unsigned i = 0; i < indexedGenericOp.getNumLoops(); ++i) { 198 auto rangeIndex = loopIndexToRangeIndex.find(i); 199 if (rangeIndex == loopIndexToRangeIndex.end()) 200 continue; 201 Value oldIndex = block.getArgument(i); 202 // Offset the index argument `i` by the value of the corresponding induction 203 // variable and replace all uses of the previous value. 204 Value newIndex = b.create<AddIOp>(indexedGenericOp.getLoc(), oldIndex, 205 pivs[rangeIndex->second]->getValue()); 206 for (auto &use : oldIndex.getUses()) { 207 if (use.getOwner() == newIndex.getDefiningOp()) 208 continue; 209 use.set(newIndex); 210 } 211 } 212 } 213 214 static bool isTiled(AffineExpr expr, ArrayRef<Value> tileSizes) { 215 if (!expr) 216 return false; 217 TileCheck t(tileSizes); 218 t.visit(expr); 219 return t.isTiled; 220 } 221 222 // Checks whether the view with index `viewIndex` within `linalgOp` varies with 223 // respect to a non-zero `tileSize`. 224 static bool isTiled(AffineMap map, ArrayRef<Value> tileSizes) { 225 if (!map) 226 return false; 227 for (unsigned r = 0; r < map.getNumResults(); ++r) 228 if (isTiled(map.getResult(r), tileSizes)) 229 return true; 230 return false; 231 } 232 233 static SmallVector<Value, 4> 234 makeTiledViews(OpBuilder &b, Location loc, LinalgOp linalgOp, 235 ArrayRef<Value> ivs, ArrayRef<Value> tileSizes, 236 ArrayRef<Value> viewSizes, OperationFolder *folder) { 237 assert(linalgOp.hasBufferSemantics() && 238 "expected linalg op with buffer semantics"); 239 assert(ivs.size() == static_cast<size_t>(llvm::count_if( 240 llvm::make_range(tileSizes.begin(), tileSizes.end()), 241 [](Value v) { return !isZero(v); })) && 242 "expected as many ivs as non-zero sizes"); 243 244 using namespace edsc::op; 245 246 // Construct (potentially temporary) mins and maxes on which to apply maps 247 // that define tile subviews. 248 SmallVector<Value, 8> lbs, subViewSizes; 249 for (unsigned idx = 0, idxIvs = 0, e = tileSizes.size(); idx < e; ++idx) { 250 bool isTiled = !isZero(tileSizes[idx]); 251 lbs.push_back(isTiled ? ivs[idxIvs++] 252 : (Value)folded_std_constant_index(folder, 0)); 253 subViewSizes.push_back(isTiled ? tileSizes[idx] : viewSizes[idx]); 254 } 255 256 auto *op = linalgOp.getOperation(); 257 258 SmallVector<Value, 4> res; 259 res.reserve(op->getNumOperands()); 260 auto viewIteratorBegin = linalgOp.getInputsAndOutputBuffers().begin(); 261 for (unsigned viewIndex = 0; viewIndex < linalgOp.getNumInputsAndOutputs(); 262 ++viewIndex) { 263 Value view = *(viewIteratorBegin + viewIndex); 264 auto viewType = view.getType().cast<MemRefType>(); 265 unsigned rank = viewType.getRank(); 266 auto map = loopToOperandRangesMaps(linalgOp)[viewIndex]; 267 // If the view is not tiled, we can use it as is. 268 if (!isTiled(map, tileSizes)) { 269 res.push_back(view); 270 continue; 271 } 272 273 // Construct a new subview for the tile. 274 SmallVector<Value, 4> offsets, sizes, strides; 275 offsets.reserve(rank); 276 sizes.reserve(rank); 277 strides.reserve(rank); 278 for (unsigned r = 0; r < rank; ++r) { 279 if (!isTiled(map.getSubMap({r}), tileSizes)) { 280 offsets.push_back(folded_std_constant_index(folder, 0)); 281 sizes.push_back(std_dim(view, r)); 282 strides.push_back(folded_std_constant_index(folder, 1)); 283 continue; 284 } 285 286 // Tiling creates a new slice at the proper index, the slice step is 1 287 // (i.e. the slice view does not subsample, stepping occurs in the loop). 288 auto m = map.getSubMap({r}); 289 auto offset = applyMapToValues(b, loc, m, lbs, folder).front(); 290 offsets.push_back(offset); 291 auto size = applyMapToValues(b, loc, m, subViewSizes, folder).front(); 292 293 // The size of the subview should be trimmed to avoid out-of-bounds 294 // accesses, unless we statically know the subview size divides the view 295 // size evenly. 296 int64_t viewSize = viewType.getDimSize(r); 297 auto sizeCst = dyn_cast_or_null<ConstantIndexOp>(size.getDefiningOp()); 298 if (ShapedType::isDynamic(viewSize) || !sizeCst || 299 (viewSize % sizeCst.getValue()) != 0) { 300 // Compute min(size, dim - offset) to avoid out-of-bounds accesses. 301 auto minMap = AffineMap::get( 302 /*dimCount=*/3, /*symbolCount=*/0, 303 {getAffineDimExpr(/*position=*/0, b.getContext()), 304 getAffineDimExpr(/*position=*/1, b.getContext()) - 305 getAffineDimExpr(/*position=*/2, b.getContext())}); 306 auto d = folded_std_dim(folder, view, r); 307 size = folded_affine_min(folder, b.getIndexType(), minMap, 308 ValueRange{size, d, offset}); 309 } 310 311 sizes.push_back(size); 312 strides.push_back(folded_std_constant_index(folder, 1)); 313 } 314 315 res.push_back(b.create<SubViewOp>(loc, view, offsets, sizes, strides)); 316 } 317 318 // Traverse the mins/maxes and erase those that don't have uses left. 319 // This is a special type of folding that we only apply when `folder` is 320 // defined. 321 if (folder) 322 for (auto v : llvm::concat<Value>(lbs, subViewSizes)) 323 if (v.use_empty()) 324 v.getDefiningOp()->erase(); 325 326 return res; 327 } 328 329 template <typename LoopTy> 330 Optional<TiledLinalgOp> static tileLinalgOpImpl(OpBuilder &b, LinalgOp op, 331 ArrayRef<Value> tileSizes, 332 ArrayRef<unsigned> permutation, 333 OperationFolder *folder) { 334 assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics"); 335 // 1. Enforce the convention that "tiling by zero" skips tiling a particular 336 // dimension. This convention is significantly simpler to handle instead of 337 // adjusting affine maps to account for missing dimensions. 338 assert(op.getNumParallelLoops() + op.getNumReductionLoops() + 339 op.getNumWindowLoops() == 340 tileSizes.size() && 341 "expected matching number of tile sizes and loops"); 342 343 // If permutation is empty, use the identity. Build the permutation map 344 // otherwise. 345 auto invPermutationMap = AffineMap::getMultiDimIdentityMap( 346 tileSizes.size(), ScopedContext::getContext()); 347 if (!permutation.empty()) 348 invPermutationMap = inversePermutation( 349 AffineMap::getPermutationMap(permutation, ScopedContext::getContext())); 350 351 OpBuilder::InsertionGuard g(b); 352 b.setInsertionPoint(op); 353 ScopedContext scope(b, op.getLoc()); 354 // 2. Build the tiled loop ranges. 355 auto viewSizes = getViewSizes(b, op); 356 // The flattened loopToOperandRangesMaps is expected to be an invertible 357 // permutation map (asserted in the inverse calculation). 358 auto viewSizesToLoopsMap = 359 inversePermutation(concatAffineMaps(loopToOperandRangesMaps(op))); 360 assert(viewSizesToLoopsMap && "expected invertible map"); 361 362 SmallVector<SubViewOp::Range, 4> loopRanges; 363 LoopIndexToRangeIndexMap loopIndexToRangeIndex; 364 std::tie(loopRanges, loopIndexToRangeIndex) = 365 makeTiledLoopRanges(b, scope.getLocation(), viewSizesToLoopsMap, 366 viewSizes, tileSizes, folder); 367 if (!permutation.empty()) 368 applyPermutationToVector(loopRanges, permutation); 369 370 // 3. Create the tiled loops. 371 LinalgOp res = op; 372 auto ivs = ValueHandle::makeIndexHandles(loopRanges.size()); 373 auto pivs = makeHandlePointers(MutableArrayRef<ValueHandle>(ivs)); 374 // Convert SubViewOp::Range to linalg_range. 375 SmallVector<Value, 4> linalgRanges; 376 for (auto &range : loopRanges) { 377 linalgRanges.push_back( 378 linalg_range(range.offset, range.size, range.stride)); 379 } 380 GenericLoopNestRangeBuilder<LoopTy>(pivs, linalgRanges)([&] { 381 auto b = ScopedContext::getBuilder(); 382 auto loc = ScopedContext::getLocation(); 383 SmallVector<Value, 4> ivValues(ivs.begin(), ivs.end()); 384 385 // If we have to apply a permutation to the tiled loop nest, we have to 386 // reorder the induction variables This permutation is the right one 387 // assuming that loopRanges have previously been permuted by 388 // (i,j,k)->(k,i,j) So this permutation should be the inversePermutation of 389 // that one: (d0,d1,d2)->(d2,d0,d1) 390 if (!permutation.empty()) 391 ivValues = applyMapToValues(b, loc, invPermutationMap, ivValues, folder); 392 393 auto views = 394 makeTiledViews(b, loc, op, ivValues, tileSizes, viewSizes, folder); 395 auto operands = getAssumedNonViewOperands(op); 396 views.append(operands.begin(), operands.end()); 397 res = op.clone(b, loc, views); 398 }); 399 400 // 4. Transforms index arguments of `linalg.generic` w.r.t. to the tiling. 401 transformIndexedGenericOpIndices(b, res, pivs, loopIndexToRangeIndex); 402 403 // 5. Gather the newly created loops and return them with the new op. 404 SmallVector<Operation *, 8> loops; 405 loops.reserve(ivs.size()); 406 for (auto iv : ivs) 407 loops.push_back(loop::getForInductionVarOwner(iv)); 408 409 return TiledLinalgOp{res, loops}; 410 } 411 412 template <typename LoopTy> 413 Optional<TiledLinalgOp> 414 tileLinalgOpImpl(OpBuilder &b, LinalgOp op, ArrayRef<int64_t> tileSizes, 415 ArrayRef<unsigned> permutation, OperationFolder *folder) { 416 assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics"); 417 if (tileSizes.empty()) 418 return llvm::None; 419 420 // The following uses the convention that "tiling by zero" skips tiling a 421 // particular dimension. This convention is significantly simpler to handle 422 // instead of adjusting affine maps to account for missing dimensions. 423 auto nLoops = op.getNumParallelLoops() + op.getNumReductionLoops() + 424 op.getNumWindowLoops(); 425 tileSizes = tileSizes.take_front(nLoops); 426 // If only 0 tilings are left, then return. 427 if (llvm::all_of(tileSizes, [](int64_t v) { return v == 0; })) 428 return llvm::None; 429 430 // Create a builder for tile size constants. 431 OpBuilder::InsertionGuard g(b); 432 b.setInsertionPoint(op); 433 ScopedContext scope(b, op.getLoc()); 434 435 // Materialize concrete tile size values to pass the generic tiling function. 436 SmallVector<Value, 8> tileSizeValues; 437 tileSizeValues.reserve(tileSizes.size()); 438 for (auto ts : tileSizes) 439 tileSizeValues.push_back(folded_std_constant_index(folder, ts)); 440 // Pad tile sizes with zero values to enforce our convention. 441 if (tileSizeValues.size() < nLoops) { 442 for (unsigned i = tileSizeValues.size(); i < nLoops; ++i) 443 tileSizeValues.push_back(folded_std_constant_index(folder, 0)); 444 } 445 446 return tileLinalgOpImpl<LoopTy>(b, op, tileSizeValues, permutation, folder); 447 } 448 449 Optional<TiledLinalgOp> 450 mlir::linalg::tileLinalgOp(OpBuilder &b, LinalgOp op, ArrayRef<Value> tileSizes, 451 ArrayRef<unsigned> permutation, 452 OperationFolder *folder) { 453 return tileLinalgOpImpl<loop::ForOp>(b, op, tileSizes, permutation, folder); 454 } 455 456 Optional<TiledLinalgOp> mlir::linalg::tileLinalgOpToParallelLoops( 457 OpBuilder &b, LinalgOp op, ArrayRef<Value> tileSizes, 458 ArrayRef<unsigned> permutation, OperationFolder *folder) { 459 return tileLinalgOpImpl<loop::ParallelOp>(b, op, tileSizes, permutation, 460 folder); 461 } 462 463 Optional<TiledLinalgOp> mlir::linalg::tileLinalgOp( 464 OpBuilder &b, LinalgOp op, ArrayRef<int64_t> tileSizes, 465 ArrayRef<unsigned> permutation, OperationFolder *folder) { 466 return tileLinalgOpImpl<loop::ForOp>(b, op, tileSizes, permutation, folder); 467 } 468 469 Optional<TiledLinalgOp> mlir::linalg::tileLinalgOpToParallelLoops( 470 OpBuilder &b, LinalgOp op, ArrayRef<int64_t> tileSizes, 471 ArrayRef<unsigned> permutation, OperationFolder *folder) { 472 return tileLinalgOpImpl<loop::ParallelOp>(b, op, tileSizes, permutation, 473 folder); 474 } 475 476 template <typename LoopTy> 477 static void tileLinalgOps(FuncOp f, ArrayRef<int64_t> tileSizes) { 478 OpBuilder b(f); 479 OperationFolder folder(f.getContext()); 480 f.walk([tileSizes, &b, &folder](LinalgOp op) { 481 if (!op.hasBufferSemantics()) 482 return; 483 auto opLoopsPair = 484 tileLinalgOpImpl<LoopTy>(b, op, tileSizes, /*permutation=*/{}, &folder); 485 // If tiling occurred successfully, erase old op. 486 if (opLoopsPair) 487 op.erase(); 488 }); 489 f.walk([](LinalgOp op) { 490 if (!op.getOperation()->hasNoSideEffect()) 491 return; 492 if (op.getOperation()->use_empty()) 493 op.erase(); 494 }); 495 } 496 497 namespace { 498 499 template <typename LoopTy> 500 struct LinalgTilingPass : public FunctionPass<LinalgTilingPass<LoopTy>> { 501 LinalgTilingPass() = default; 502 LinalgTilingPass(ArrayRef<int64_t> sizes) { 503 this->tileSizes.assign(sizes.begin(), sizes.end()); 504 } 505 506 void runOnFunction() override { 507 tileLinalgOps<LoopTy>(this->getFunction(), tileSizes); 508 } 509 510 SmallVector<int64_t, 8> tileSizes; 511 }; 512 513 } // namespace 514 515 std::unique_ptr<OpPassBase<FuncOp>> 516 mlir::createLinalgTilingPass(ArrayRef<int64_t> tileSizes) { 517 return std::make_unique<LinalgTilingPass<loop::ForOp>>(tileSizes); 518 } 519 520 std::unique_ptr<OpPassBase<FuncOp>> 521 mlir::createLinalgTilingToParallelLoopsPass(ArrayRef<int64_t> tileSizes) { 522 return std::make_unique<LinalgTilingPass<loop::ParallelOp>>(tileSizes); 523 } 524 525 static PassRegistration<LinalgTilingPass<loop::ForOp>> 526 tiling_pass("linalg-tile", "Tile operations in the linalg dialect", [] { 527 auto pass = std::make_unique<LinalgTilingPass<loop::ForOp>>(); 528 pass->tileSizes.assign(clTileSizes.begin(), clTileSizes.end()); 529 return pass; 530 }); 531 532 static PassRegistration<LinalgTilingPass<loop::ParallelOp>> 533 tiling_to_parallel_loops( 534 "linalg-tile-to-parallel-loops", 535 "Tile operations in the linalg dialect to parallel loops", [] { 536 auto pass = std::make_unique<LinalgTilingPass<loop::ParallelOp>>(); 537 pass->tileSizes.assign(clTileSizes.begin(), clTileSizes.end()); 538 return pass; 539 }); 540