1 //===- Tiling.cpp - Implementation of linalg Tiling -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the linalg dialect Tiling pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PassDetail.h" 14 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h" 15 #include "mlir/Dialect/Linalg/Passes.h" 16 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 17 #include "mlir/Dialect/Linalg/Utils/Utils.h" 18 #include "mlir/Dialect/MemRef/IR/MemRef.h" 19 #include "mlir/Dialect/Tensor/IR/Tensor.h" 20 #include "mlir/IR/AffineExpr.h" 21 #include "mlir/IR/AffineMap.h" 22 #include "mlir/Transforms/FoldUtils.h" 23 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 24 25 #include "llvm/Support/CommandLine.h" 26 27 using namespace mlir; 28 using namespace mlir::linalg; 29 using namespace mlir::scf; 30 31 #define DEBUG_TYPE "linalg-tiling" 32 33 static bool isZero(Value v) { 34 if (auto cst = v.getDefiningOp<ConstantIndexOp>()) 35 return cst.getValue() == 0; 36 return false; 37 } 38 39 using LoopIndexToRangeIndexMap = DenseMap<int, int>; 40 41 // Creates a number of ranges equal to the number of non-zero in `tileSizes`. 42 // One for each loop of the LinalgOp that is tiled. The `tileSizes` argument has 43 // one entry per surrounding loop. It uses zero as the convention that a 44 // particular loop is not tiled. This convention simplifies implementations by 45 // avoiding affine map manipulations. 46 // The returned ranges correspond to the loop ranges, in the proper order, that 47 // are tiled and for which new loops will be created. Also the function returns 48 // a map from loop indices of the LinalgOp to the corresponding non-empty range 49 // indices of newly created loops. 50 static std::tuple<SmallVector<Range, 4>, LoopIndexToRangeIndexMap> 51 makeTiledLoopRanges(OpBuilder &b, Location loc, AffineMap map, 52 ValueRange allShapeSizes, ValueRange allTileSizes) { 53 assert(allTileSizes.size() == map.getNumResults()); 54 // Apply `map` to get shape sizes in loop order. 55 auto shapeSizes = applyMapToValues(b, loc, map, allShapeSizes); 56 SmallVector<Value, 4> tileSizes(allTileSizes.begin(), allTileSizes.end()); 57 58 // Traverse the tile sizes, which are in loop order, erase zeros everywhere. 59 LoopIndexToRangeIndexMap loopIndexToRangeIndex; 60 for (int idx = 0, e = tileSizes.size(), zerosCount = 0; idx < e; ++idx) { 61 if (isZero(tileSizes[idx - zerosCount])) { 62 shapeSizes.erase(shapeSizes.begin() + idx - zerosCount); 63 tileSizes.erase(tileSizes.begin() + idx - zerosCount); 64 ++zerosCount; 65 continue; 66 } 67 loopIndexToRangeIndex[idx] = idx - zerosCount; 68 } 69 70 // Create a new range with the applied tile sizes. 71 SmallVector<Range, 4> res; 72 for (unsigned idx = 0, e = tileSizes.size(); idx < e; ++idx) 73 res.push_back(Range{b.create<ConstantIndexOp>(loc, 0), shapeSizes[idx], 74 tileSizes[idx]}); 75 return std::make_tuple(res, loopIndexToRangeIndex); 76 } 77 78 // All indices returned by IndexOp should be invariant with respect to tiling. 79 // Therefore, if an operation is tiled, we have to transform the indices 80 // accordingly, i.e. offset them by the values of the corresponding induction 81 // variables that are captured implicitly in the body of the op. 82 // 83 // Example. `linalg.generic` before tiling: 84 // 85 // #id_2d = (i, j) -> (i, j) 86 // #pointwise_2d_trait = { 87 // indexing_maps = [#id_2d, #id_2d], 88 // iterator_types = ["parallel", "parallel"] 89 // } 90 // linalg.generic #pointwise_2d_trait %operand, %result { 91 // ^bb0(%operand_in: f32, %result_in: f32): 92 // %i = linalg.index 0 : index 93 // %j = linalg.index 1 : index 94 // <some operations that use %i, %j> 95 // }: memref<50x100xf32>, memref<50x100xf32> 96 // 97 // After tiling pass with tiles sizes 10 and 25: 98 // 99 // #strided = (i, j)[s0, s1, s2] -> (i * s1 + s0 + j * s2) 100 // 101 // %c1 = constant 1 : index 102 // %c0 = constant 0 : index 103 // %c25 = constant 25 : index 104 // %c10 = constant 10 : index 105 // operand_dim_0 = dim %operand, 0 : memref<50x100xf32> 106 // operand_dim_1 = dim %operand, 1 : memref<50x100xf32> 107 // scf.for %k = %c0 to operand_dim_0 step %c10 { 108 // scf.for %l = %c0 to operand_dim_1 step %c25 { 109 // %4 = std.subview %operand[%k, %l][%c10, %c25][%c1, %c1] 110 // : memref<50x100xf32> to memref<?x?xf32, #strided> 111 // %5 = std.subview %result[%k, %l][%c10, %c25][%c1, %c1] 112 // : memref<50x100xf32> to memref<?x?xf32, #strided> 113 // linalg.generic pointwise_2d_trait %4, %5 { 114 // ^bb0(%operand_in: f32, %result_in: f32): 115 // %i = linalg.index 0 : index 116 // %j = linalg.index 1 : index 117 // // Indices `k` and `l` are implicitly captured in the body. 118 // %transformed_i = addi %i, %k : index // index `i` is offset by %k 119 // %transformed_j = addi %j, %l : index // index `j` is offset by %l 120 // // Every use of %i, %j is replaced with %transformed_i, %transformed_j 121 // <some operations that use %transformed_i, %transformed_j> 122 // }: memref<?x?xf32, #strided>, memref<?x?xf32, #strided> 123 // } 124 // } 125 // 126 // TODO: Investigate whether mixing implicit and explicit indices 127 // does not lead to losing information. 128 static void 129 transformIndexOps(OpBuilder &b, LinalgOp op, SmallVectorImpl<Value> &ivs, 130 const LoopIndexToRangeIndexMap &loopIndexToRangeIndex) { 131 // Skip operations that have no region attached. 132 if (op->getNumRegions() == 0) 133 return; 134 assert(op->getNumRegions() == 1 && op->getRegion(0).getBlocks().size() == 1 && 135 "expected linalg operation to have one block."); 136 Block &block = op->getRegion(0).front(); 137 138 for (IndexOp indexOp : block.getOps<linalg::IndexOp>()) { 139 auto rangeIndex = loopIndexToRangeIndex.find(indexOp.dim()); 140 if (rangeIndex == loopIndexToRangeIndex.end()) 141 continue; 142 // Offset the index by the value of the corresponding induction variable and 143 // replace all uses of the previous value. 144 OpBuilder::InsertionGuard g(b); 145 b.setInsertionPointAfter(indexOp); 146 AffineExpr index, iv; 147 bindDims(b.getContext(), index, iv); 148 AffineApplyOp applyOp = b.create<AffineApplyOp>( 149 indexOp.getLoc(), index + iv, 150 ValueRange{indexOp.getResult(), ivs[rangeIndex->second]}); 151 indexOp.getResult().replaceAllUsesExcept(applyOp, applyOp); 152 } 153 } 154 155 // Insert a tile `source` into the destination tensor `dest`. The position at 156 // which the tile is inserted (as well as size of tile) is taken from a given 157 // ExtractSliceOp `sliceOp`. 158 static Value insertSliceIntoTensor(OpBuilder &b, Location loc, 159 tensor::ExtractSliceOp sliceOp, Value source, 160 Value dest) { 161 return b.create<tensor::InsertSliceOp>( 162 loc, sliceOp.source().getType(), source, dest, sliceOp.offsets(), 163 sliceOp.sizes(), sliceOp.strides(), sliceOp.static_offsets(), 164 sliceOp.static_sizes(), sliceOp.static_strides()); 165 } 166 167 template <typename LoopTy> 168 static Optional<TiledLinalgOp> 169 tileLinalgOpImpl(OpBuilder &b, LinalgOp op, ValueRange tileSizes, 170 const LinalgTilingOptions &options) { 171 auto nLoops = op.getNumLoops(); 172 // Initial tile sizes may be too big, only take the first nLoops. 173 tileSizes = tileSizes.take_front(nLoops); 174 175 if (llvm::all_of(tileSizes, isZero)) 176 return llvm::None; 177 178 if (auto convOp = dyn_cast<linalg::ConvOp>(op.getOperation())) { 179 // For conv op only support tiling along batch dimension (which is the first 180 // loop). 181 if (convOp.padding() && !llvm::all_of(tileSizes.drop_front(), isZero)) 182 return llvm::None; 183 } 184 185 // 1. Build the tiled loop ranges. 186 auto allShapeSizes = op.createFlatListOfOperandDims(b, op.getLoc()); 187 AffineMap shapeSizesToLoopsMap = op.getShapesToLoopsMap(); 188 if (!shapeSizesToLoopsMap) 189 return llvm::None; 190 191 SmallVector<Range, 4> loopRanges; 192 LoopIndexToRangeIndexMap loopIndexToRangeIndex; 193 std::tie(loopRanges, loopIndexToRangeIndex) = makeTiledLoopRanges( 194 b, op.getLoc(), shapeSizesToLoopsMap, allShapeSizes, tileSizes); 195 196 SmallVector<Attribute, 4> iteratorTypes; 197 for (auto attr : 198 enumerate(op.iterator_types().cast<ArrayAttr>().getValue())) { 199 if (loopIndexToRangeIndex.count(attr.index())) 200 iteratorTypes.push_back(attr.value()); 201 } 202 // If interchangeVector is empty, use the identity. Build the permutation map 203 // otherwise. 204 auto invPermutationMap = 205 AffineMap::getMultiDimIdentityMap(tileSizes.size(), b.getContext()); 206 if (!options.interchangeVector.empty()) { 207 // Based on the pruned iterations (due to zero tile size), recompute the 208 // interchange vector. 209 SmallVector<unsigned, 4> interchangeVector; 210 interchangeVector.reserve(options.interchangeVector.size()); 211 for (auto pos : options.interchangeVector) { 212 auto it = loopIndexToRangeIndex.find(pos); 213 if (it == loopIndexToRangeIndex.end()) 214 continue; 215 interchangeVector.push_back(it->second); 216 } 217 // Interchange vector is guaranteed to be a permutation, 218 // `inversePermutation` must succeed. 219 invPermutationMap = inversePermutation( 220 AffineMap::getPermutationMap(interchangeVector, b.getContext())); 221 assert(invPermutationMap); 222 applyPermutationToVector(loopRanges, interchangeVector); 223 applyPermutationToVector(iteratorTypes, interchangeVector); 224 } 225 226 // 2. Create the tiled loops. 227 LinalgOp res = op; 228 SmallVector<Value, 4> ivs, tensorResults; 229 auto tiledLoopBodyBuilder = [&](OpBuilder &b, Location loc, 230 ValueRange localIvs, 231 ValueRange iterArgs) -> scf::ValueVector { 232 ivs.assign(localIvs.begin(), localIvs.end()); 233 234 // When an `interchangeVector` is present, it has been applied to the 235 // loop ranges and the iterator types. Apply its inverse to the 236 // resulting loop `ivs` to match the op definition. 237 SmallVector<Value, 4> interchangedIvs; 238 if (!options.interchangeVector.empty()) 239 interchangedIvs = applyMapToValues(b, loc, invPermutationMap, ivs); 240 else 241 interchangedIvs.assign(ivs.begin(), ivs.end()); 242 243 assert(op.getOutputTensorOperands().size() == iterArgs.size() && 244 "num output tensors must match number of loop iter arguments"); 245 246 SmallVector<Value> operands = op.getInputOperands(); 247 SmallVector<Value> outputBuffers = op.getOutputBufferOperands(); 248 // TODO: thanks to simplifying assumption we do not need to worry about 249 // order of output buffers and tensors: there is only ever one kind. 250 assert(outputBuffers.empty() || iterArgs.empty()); 251 operands.append(outputBuffers.begin(), outputBuffers.end()); 252 operands.append(iterArgs.begin(), iterArgs.end()); 253 auto sizeBounds = 254 applyMapToValues(b, loc, shapeSizesToLoopsMap, allShapeSizes); 255 SmallVector<Value, 4> tiledOperands = makeTiledShapes( 256 b, loc, op, operands, interchangedIvs, tileSizes, sizeBounds); 257 258 // TODO: use an interface/adaptor to avoid leaking position in 259 // `tiledOperands`. 260 SmallVector<Type, 4> resultTensorTypes; 261 for (OpOperand *opOperand : op.getOutputTensorOperands()) 262 resultTensorTypes.push_back( 263 tiledOperands[opOperand->getOperandNumber()].getType()); 264 265 res = op.clone(b, loc, resultTensorTypes, tiledOperands); 266 267 // Insert a insert_slice for each output tensor. 268 unsigned resultIdx = 0; 269 for (OpOperand *opOperand : op.getOutputTensorOperands()) { 270 // TODO: use an interface/adaptor to avoid leaking position in 271 // `tiledOperands`. 272 Value outputTensor = tiledOperands[opOperand->getOperandNumber()]; 273 if (auto sliceOp = outputTensor.getDefiningOp<tensor::ExtractSliceOp>()) { 274 tensorResults.push_back(insertSliceIntoTensor( 275 b, loc, sliceOp, res->getResult(resultIdx), sliceOp.source())); 276 } else { 277 tensorResults.push_back(res->getResult(resultIdx)); 278 } 279 ++resultIdx; 280 } 281 return scf::ValueVector(tensorResults.begin(), tensorResults.end()); 282 }; 283 GenerateLoopNest<LoopTy>::doit(b, op.getLoc(), loopRanges, op, iteratorTypes, 284 tiledLoopBodyBuilder, options.distribution, 285 options.distributionTypes); 286 287 // 3. Transform IndexOp results w.r.t. the tiling. 288 transformIndexOps(b, res, ivs, loopIndexToRangeIndex); 289 290 // 4. Gather the newly created loops and return them with the new op. 291 SmallVector<Operation *, 8> loops; 292 loops.reserve(ivs.size()); 293 for (auto iv : ivs) { 294 if (iv.isa<BlockArgument>()) { 295 loops.push_back(iv.cast<BlockArgument>().getOwner()->getParentOp()); 296 assert(loops.back() && "no owner found for induction variable!"); 297 } else { 298 // TODO: Instead of doing this, try to recover the ops used instead of the 299 // loop. 300 loops.push_back(nullptr); 301 } 302 } 303 304 // 5. Get the tensor results from the outermost loop if available. Otherwise 305 // use the previously captured `tensorResults`. 306 Operation *outermostLoop = nullptr; 307 for (Operation *loop : loops) 308 if ((outermostLoop = loop)) 309 break; 310 311 return TiledLinalgOp{ 312 res, loops, outermostLoop ? outermostLoop->getResults() : tensorResults}; 313 } 314 315 template <typename LoopTy> 316 Optional<TiledLinalgOp> static tileLinalgOpImpl( 317 OpBuilder &b, LinalgOp op, const LinalgTilingOptions &options) { 318 OpBuilder::InsertionGuard g(b); 319 b.setInsertionPoint(op); 320 321 if (!options.tileSizeComputationFunction) 322 return llvm::None; 323 324 // Enforce the convention that "tiling by zero" skips tiling a particular 325 // dimension. This convention is significantly simpler to handle instead of 326 // adjusting affine maps to account for missing dimensions. 327 auto nLoops = op.getNumLoops(); 328 SmallVector<Value, 4> tileSizeVector = 329 options.tileSizeComputationFunction(b, op); 330 if (tileSizeVector.size() < nLoops) { 331 auto zero = b.create<ConstantIndexOp>(op.getLoc(), 0); 332 tileSizeVector.append(nLoops - tileSizeVector.size(), zero); 333 } 334 335 return tileLinalgOpImpl<LoopTy>(b, op, tileSizeVector, options); 336 } 337 338 Optional<TiledLinalgOp> 339 mlir::linalg::tileLinalgOp(OpBuilder &b, LinalgOp op, 340 const LinalgTilingOptions &options) { 341 switch (options.loopType) { 342 case LinalgTilingLoopType::Loops: 343 return tileLinalgOpImpl<scf::ForOp>(b, op, options); 344 case LinalgTilingLoopType::ParallelLoops: 345 return tileLinalgOpImpl<scf::ParallelOp>(b, op, options); 346 case LinalgTilingLoopType::TiledLoops: 347 return tileLinalgOpImpl<linalg::TiledLoopOp>(b, op, options); 348 default:; 349 } 350 return llvm::None; 351 } 352 353 /// Generate a loop nest around a given PadTensorOp (for tiling). `newPadOp` 354 /// and `loopNest` are output parameters that return the new (tiled) PadTensorOp 355 /// and the loop nest. 356 static LogicalResult tilePadTensorOp(OpBuilder &builder, PadTensorOp op, 357 PadTensorOp &newPadOp, LoopNest &loopNest, 358 const LinalgTilingOptions &options) { 359 // Can tile only PadTensorOp that have an output operand. 360 if (!op.output()) 361 return failure(); 362 363 Location loc = op.getLoc(); 364 OpBuilder::InsertionGuard g(builder); 365 builder.setInsertionPoint(op); 366 367 // Clone PadTensorOp so that the existing op can be replaced more easily. 368 newPadOp = cast<PadTensorOp>(builder.clone(*op.getOperation())); 369 // Get rank and tile sizes. 370 int64_t rank = op.getResultType().getRank(); 371 SmallVector<Value> tileSizes = 372 options.tileSizeComputationFunction(builder, op); 373 assert(static_cast<int64_t>(tileSizes.size()) == rank); 374 // Compute lower and upper bounds of the loop nest. 375 SmallVector<Value> lbs, dims, steps; 376 for (int64_t i = 0; i < rank; ++i) { 377 if (!isZero(tileSizes[i])) { 378 lbs.push_back(builder.create<ConstantIndexOp>(loc, 0)); 379 dims.push_back(builder.create<tensor::DimOp>(loc, op.output(), i)); 380 steps.push_back(tileSizes[i]); 381 } 382 } 383 // Generate loop nest: One loop per dimension. 384 loopNest = mlir::scf::buildLoopNest( 385 builder, loc, lbs, /*ubs=*/dims, steps, ValueRange(op.output()), 386 [&](OpBuilder &b, Location loc, ValueRange localIvs, 387 ValueRange iterArgs) -> scf::ValueVector { 388 // Compute offsets and sizes of ExtractSliceOp. 389 SmallVector<Value> offsets = 390 computeTileOffsets(b, loc, localIvs, tileSizes); 391 SmallVector<Value> sizes = 392 computeTileSizes(b, loc, localIvs, tileSizes, dims); 393 // Create ExtractSliceOp: Extract a tile from the PadTensorOp. 394 // Note: The PadTensorOp is located outside of the loop nest. It is 395 // later moved inside by ExtractSliceOfPadTensorSwapPattern. 396 auto map = AffineMap::getMultiDimIdentityMap(rank, b.getContext()); 397 Value tiledOutput = makeTiledShape(b, loc, newPadOp->getResult(0), 398 tileSizes, map, offsets, sizes); 399 auto sliceOp = tiledOutput.getDefiningOp<tensor::ExtractSliceOp>(); 400 assert(sliceOp && "expected ExtractSliceOp"); 401 // Insert the tile into the output tensor. 402 Value yieldValue = 403 insertSliceIntoTensor(b, loc, sliceOp, sliceOp, iterArgs[0]); 404 return scf::ValueVector({yieldValue}); 405 }); 406 return success(); 407 } 408 409 namespace { 410 struct PadTensorOpTilingPattern : public OpRewritePattern<PadTensorOp> { 411 PadTensorOpTilingPattern(MLIRContext *ctx, LinalgTilingOptions opt) 412 : OpRewritePattern<PadTensorOp>(ctx), options(opt) {} 413 414 LogicalResult matchAndRewrite(PadTensorOp op, 415 PatternRewriter &rewriter) const override { 416 if (op->hasAttr(LinalgTransforms::kLinalgTransformMarker)) 417 return failure(); 418 PadTensorOp newPadOp; 419 LoopNest loopNest; 420 if (failed(tilePadTensorOp(rewriter, op, newPadOp, loopNest, options))) 421 return failure(); 422 newPadOp->setAttr(LinalgTransforms::kLinalgTransformMarker, 423 rewriter.getUnitAttr()); 424 // Replace all uses of the original PadTensorOp. 425 rewriter.replaceOp(op, loopNest.getResults()[0]); 426 return success(); 427 } 428 429 LinalgTilingOptions options; 430 }; 431 } // namespace 432 433 namespace { 434 /// Helper classes for type list expansion. 435 template <typename... OpTypes> 436 class CanonicalizationPatternList; 437 438 template <> 439 class CanonicalizationPatternList<> { 440 public: 441 static void insert(RewritePatternSet &patterns) {} 442 }; 443 444 template <typename OpTy, typename... OpTypes> 445 class CanonicalizationPatternList<OpTy, OpTypes...> { 446 public: 447 static void insert(RewritePatternSet &patterns) { 448 OpTy::getCanonicalizationPatterns(patterns, patterns.getContext()); 449 CanonicalizationPatternList<OpTypes...>::insert(patterns); 450 } 451 }; 452 453 /// Helper classes for type list expansion. 454 template <typename... OpTypes> 455 class RewritePatternList; 456 457 template <> 458 class RewritePatternList<> { 459 public: 460 static void insert(RewritePatternSet &patterns, 461 const LinalgTilingOptions &options) {} 462 }; 463 464 template <typename OpTy, typename... OpTypes> 465 class RewritePatternList<OpTy, OpTypes...> { 466 public: 467 static void insert(RewritePatternSet &patterns, 468 const LinalgTilingOptions &options) { 469 auto *ctx = patterns.getContext(); 470 patterns.add<LinalgTilingPattern<OpTy>>( 471 ctx, options, 472 LinalgTransformationFilter(ArrayRef<Identifier>{}, 473 Identifier::get("tiled", ctx))); 474 RewritePatternList<OpTypes...>::insert(patterns, options); 475 } 476 }; 477 } // namespace 478 479 RewritePatternSet 480 mlir::linalg::getLinalgTilingCanonicalizationPatterns(MLIRContext *ctx) { 481 RewritePatternSet patterns(ctx); 482 populateLinalgTilingCanonicalizationPatterns(patterns); 483 return patterns; 484 } 485 486 void mlir::linalg::populateLinalgTilingCanonicalizationPatterns( 487 RewritePatternSet &patterns) { 488 auto *ctx = patterns.getContext(); 489 AffineApplyOp::getCanonicalizationPatterns(patterns, ctx); 490 AffineForOp::getCanonicalizationPatterns(patterns, ctx); 491 AffineMinOp::getCanonicalizationPatterns(patterns, ctx); 492 AffineMaxOp::getCanonicalizationPatterns(patterns, ctx); 493 scf::ForOp::getCanonicalizationPatterns(patterns, ctx); 494 scf::ParallelOp::getCanonicalizationPatterns(patterns, ctx); 495 ConstantIndexOp::getCanonicalizationPatterns(patterns, ctx); 496 tensor::ExtractSliceOp::getCanonicalizationPatterns(patterns, ctx); 497 tensor::InsertSliceOp::getCanonicalizationPatterns(patterns, ctx); 498 memref::SubViewOp::getCanonicalizationPatterns(patterns, ctx); 499 tensor::CastOp::getCanonicalizationPatterns(patterns, ctx); 500 memref::ViewOp::getCanonicalizationPatterns(patterns, ctx); 501 PadTensorOp::getCanonicalizationPatterns(patterns, ctx); 502 ctx->getLoadedDialect<LinalgDialect>()->getCanonicalizationPatterns(patterns); 503 CanonicalizationPatternList< 504 #define GET_OP_LIST 505 #include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc" 506 >::insert(patterns); 507 } 508 509 /// Populate the given list with patterns that apply Linalg tiling. 510 static void insertTilingPatterns(RewritePatternSet &patterns, 511 const LinalgTilingOptions &options) { 512 RewritePatternList<GenericOp, 513 #define GET_OP_LIST 514 #include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc" 515 >::insert(patterns, options); 516 patterns.add<PadTensorOpTilingPattern>(patterns.getContext(), options); 517 } 518 519 static void applyExtractSliceOfPadTensorSwapPattern(FuncOp funcOp) { 520 MLIRContext *ctx = funcOp.getContext(); 521 RewritePatternSet patterns(ctx); 522 patterns.add<ExtractSliceOfPadTensorSwapPattern>(patterns.getContext()); 523 (void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns)); 524 (void)applyPatternsAndFoldGreedily( 525 funcOp, getLinalgTilingCanonicalizationPatterns(ctx)); 526 } 527 528 static void 529 applyTilingToLoopPatterns(LinalgTilingLoopType loopType, FuncOp funcOp, 530 ArrayRef<int64_t> tileSizes, 531 ArrayRef<StringRef> distributionTypes = {}) { 532 auto options = LinalgTilingOptions() 533 .setTileSizes(tileSizes) 534 .setLoopType(loopType) 535 .setDistributionTypes(distributionTypes); 536 MLIRContext *ctx = funcOp.getContext(); 537 RewritePatternSet patterns(ctx); 538 insertTilingPatterns(patterns, options); 539 patterns.add<AffineMinSCFCanonicalizationPattern>(patterns.getContext()); 540 (void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns)); 541 (void)applyPatternsAndFoldGreedily( 542 funcOp, getLinalgTilingCanonicalizationPatterns(ctx)); 543 // Drop the marker. 544 funcOp.walk([](LinalgOp op) { 545 op->removeAttr(LinalgTransforms::kLinalgTransformMarker); 546 }); 547 548 // Apply swap pattern after generating loop nest and running 549 // canonicalizations. 550 applyExtractSliceOfPadTensorSwapPattern(funcOp); 551 } 552 553 namespace { 554 struct LinalgTilingPass : public LinalgTilingBase<LinalgTilingPass> { 555 LinalgTilingPass() = default; 556 LinalgTilingPass(ArrayRef<int64_t> sizes) { tileSizes = sizes; } 557 558 void runOnFunction() override { 559 applyTilingToLoopPatterns(LinalgTilingLoopType::Loops, getFunction(), 560 tileSizes); 561 } 562 }; 563 564 struct LinalgTilingToParallelLoopsPass 565 : public LinalgTilingToParallelLoopsBase<LinalgTilingToParallelLoopsPass> { 566 LinalgTilingToParallelLoopsPass() = default; 567 LinalgTilingToParallelLoopsPass(ArrayRef<int64_t> sizes) { 568 tileSizes = sizes; 569 } 570 571 void runOnFunction() override { 572 applyTilingToLoopPatterns(LinalgTilingLoopType::ParallelLoops, 573 getFunction(), tileSizes); 574 } 575 }; 576 577 struct LinalgTilingToTiledLoopsPass 578 : public LinalgTilingToTiledLoopsBase<LinalgTilingToTiledLoopsPass> { 579 LinalgTilingToTiledLoopsPass() = default; 580 LinalgTilingToTiledLoopsPass(ArrayRef<int64_t> sizes, 581 ArrayRef<StringRef> types) { 582 tileSizes = sizes; 583 distributionTypes = llvm::to_vector<2>( 584 llvm::map_range(types, [](StringRef ref) { return ref.str(); })); 585 } 586 587 void runOnFunction() override { 588 applyTilingToLoopPatterns( 589 LinalgTilingLoopType::TiledLoops, getFunction(), tileSizes, 590 llvm::to_vector<2>( 591 llvm::map_range(distributionTypes, 592 [](std::string &str) { return StringRef(str); }))); 593 } 594 }; 595 596 } // namespace 597 598 std::unique_ptr<OperationPass<FuncOp>> 599 mlir::createLinalgTilingPass(ArrayRef<int64_t> tileSizes) { 600 return std::make_unique<LinalgTilingPass>(tileSizes); 601 } 602 603 std::unique_ptr<OperationPass<FuncOp>> 604 mlir::createLinalgTilingToParallelLoopsPass(ArrayRef<int64_t> tileSizes) { 605 return std::make_unique<LinalgTilingToParallelLoopsPass>(tileSizes); 606 } 607 608 std::unique_ptr<OperationPass<FuncOp>> 609 mlir::createLinalgTilingToTiledLoopPass(ArrayRef<int64_t> tileSizes, 610 ArrayRef<StringRef> distributionTypes) { 611 return std::make_unique<LinalgTilingToTiledLoopsPass>(tileSizes, 612 distributionTypes); 613 } 614