1 //===- Tiling.cpp - Implementation of linalg Tiling -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the linalg dialect Tiling pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PassDetail.h" 14 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h" 15 #include "mlir/Dialect/Linalg/Passes.h" 16 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 17 #include "mlir/Dialect/Linalg/Utils/Utils.h" 18 #include "mlir/Dialect/MemRef/IR/MemRef.h" 19 #include "mlir/Dialect/SCF/Transforms.h" 20 #include "mlir/Dialect/Tensor/IR/Tensor.h" 21 #include "mlir/IR/AffineExpr.h" 22 #include "mlir/IR/AffineMap.h" 23 #include "mlir/Transforms/FoldUtils.h" 24 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 25 26 #include "llvm/Support/CommandLine.h" 27 28 using namespace mlir; 29 using namespace mlir::linalg; 30 using namespace mlir::scf; 31 32 #define DEBUG_TYPE "linalg-tiling" 33 34 static bool isZero(Value v) { 35 if (auto cst = v.getDefiningOp<ConstantIndexOp>()) 36 return cst.getValue() == 0; 37 return false; 38 } 39 40 using LoopIndexToRangeIndexMap = DenseMap<int, int>; 41 42 // Creates a number of ranges equal to the number of non-zero in `tileSizes`. 43 // One for each loop of the LinalgOp that is tiled. The `tileSizes` argument has 44 // one entry per surrounding loop. It uses zero as the convention that a 45 // particular loop is not tiled. This convention simplifies implementations by 46 // avoiding affine map manipulations. 47 // The returned ranges correspond to the loop ranges, in the proper order, that 48 // are tiled and for which new loops will be created. Also the function returns 49 // a map from loop indices of the LinalgOp to the corresponding non-empty range 50 // indices of newly created loops. 51 static std::tuple<SmallVector<Range, 4>, LoopIndexToRangeIndexMap> 52 makeTiledLoopRanges(OpBuilder &b, Location loc, AffineMap map, 53 ValueRange allShapeSizes, ValueRange allTileSizes) { 54 assert(allTileSizes.size() == map.getNumResults()); 55 // Apply `map` to get shape sizes in loop order. 56 auto shapeSizes = applyMapToValues(b, loc, map, allShapeSizes); 57 SmallVector<Value, 4> tileSizes(allTileSizes.begin(), allTileSizes.end()); 58 59 // Traverse the tile sizes, which are in loop order, erase zeros everywhere. 60 LoopIndexToRangeIndexMap loopIndexToRangeIndex; 61 for (int idx = 0, e = tileSizes.size(), zerosCount = 0; idx < e; ++idx) { 62 if (isZero(tileSizes[idx - zerosCount])) { 63 shapeSizes.erase(shapeSizes.begin() + idx - zerosCount); 64 tileSizes.erase(tileSizes.begin() + idx - zerosCount); 65 ++zerosCount; 66 continue; 67 } 68 loopIndexToRangeIndex[idx] = idx - zerosCount; 69 } 70 71 // Create a new range with the applied tile sizes. 72 SmallVector<Range, 4> res; 73 for (unsigned idx = 0, e = tileSizes.size(); idx < e; ++idx) 74 res.push_back(Range{b.create<ConstantIndexOp>(loc, 0), shapeSizes[idx], 75 tileSizes[idx]}); 76 return std::make_tuple(res, loopIndexToRangeIndex); 77 } 78 79 // All indices returned by IndexOp should be invariant with respect to tiling. 80 // Therefore, if an operation is tiled, we have to transform the indices 81 // accordingly, i.e. offset them by the values of the corresponding induction 82 // variables that are captured implicitly in the body of the op. 83 // 84 // Example. `linalg.generic` before tiling: 85 // 86 // #id_2d = (i, j) -> (i, j) 87 // #pointwise_2d_trait = { 88 // indexing_maps = [#id_2d, #id_2d], 89 // iterator_types = ["parallel", "parallel"] 90 // } 91 // linalg.generic #pointwise_2d_trait %operand, %result { 92 // ^bb0(%operand_in: f32, %result_in: f32): 93 // %i = linalg.index 0 : index 94 // %j = linalg.index 1 : index 95 // <some operations that use %i, %j> 96 // }: memref<50x100xf32>, memref<50x100xf32> 97 // 98 // After tiling pass with tiles sizes 10 and 25: 99 // 100 // #strided = (i, j)[s0, s1, s2] -> (i * s1 + s0 + j * s2) 101 // 102 // %c1 = constant 1 : index 103 // %c0 = constant 0 : index 104 // %c25 = constant 25 : index 105 // %c10 = constant 10 : index 106 // operand_dim_0 = dim %operand, 0 : memref<50x100xf32> 107 // operand_dim_1 = dim %operand, 1 : memref<50x100xf32> 108 // scf.for %k = %c0 to operand_dim_0 step %c10 { 109 // scf.for %l = %c0 to operand_dim_1 step %c25 { 110 // %4 = std.subview %operand[%k, %l][%c10, %c25][%c1, %c1] 111 // : memref<50x100xf32> to memref<?x?xf32, #strided> 112 // %5 = std.subview %result[%k, %l][%c10, %c25][%c1, %c1] 113 // : memref<50x100xf32> to memref<?x?xf32, #strided> 114 // linalg.generic pointwise_2d_trait %4, %5 { 115 // ^bb0(%operand_in: f32, %result_in: f32): 116 // %i = linalg.index 0 : index 117 // %j = linalg.index 1 : index 118 // // Indices `k` and `l` are implicitly captured in the body. 119 // %transformed_i = addi %i, %k : index // index `i` is offset by %k 120 // %transformed_j = addi %j, %l : index // index `j` is offset by %l 121 // // Every use of %i, %j is replaced with %transformed_i, %transformed_j 122 // <some operations that use %transformed_i, %transformed_j> 123 // }: memref<?x?xf32, #strided>, memref<?x?xf32, #strided> 124 // } 125 // } 126 // 127 // TODO: Investigate whether mixing implicit and explicit indices 128 // does not lead to losing information. 129 static void 130 transformIndexOps(OpBuilder &b, LinalgOp op, SmallVectorImpl<Value> &ivs, 131 const LoopIndexToRangeIndexMap &loopIndexToRangeIndex) { 132 // Skip operations that have no region attached. 133 if (op->getNumRegions() == 0) 134 return; 135 assert(op->getNumRegions() == 1 && op->getRegion(0).getBlocks().size() == 1 && 136 "expected linalg operation to have one block."); 137 Block &block = op->getRegion(0).front(); 138 139 for (IndexOp indexOp : block.getOps<linalg::IndexOp>()) { 140 auto rangeIndex = loopIndexToRangeIndex.find(indexOp.dim()); 141 if (rangeIndex == loopIndexToRangeIndex.end()) 142 continue; 143 // Offset the index by the value of the corresponding induction variable and 144 // replace all uses of the previous value. 145 OpBuilder::InsertionGuard g(b); 146 b.setInsertionPointAfter(indexOp); 147 AffineExpr index, iv; 148 bindDims(b.getContext(), index, iv); 149 AffineApplyOp applyOp = b.create<AffineApplyOp>( 150 indexOp.getLoc(), index + iv, 151 ValueRange{indexOp.getResult(), ivs[rangeIndex->second]}); 152 indexOp.getResult().replaceAllUsesExcept(applyOp, applyOp); 153 } 154 } 155 156 // Insert a tile `source` into the destination tensor `dest`. The position at 157 // which the tile is inserted (as well as size of tile) is taken from a given 158 // ExtractSliceOp `sliceOp`. 159 static Value insertSliceIntoTensor(OpBuilder &b, Location loc, 160 tensor::ExtractSliceOp sliceOp, Value source, 161 Value dest) { 162 return b.create<tensor::InsertSliceOp>( 163 loc, sliceOp.source().getType(), source, dest, sliceOp.offsets(), 164 sliceOp.sizes(), sliceOp.strides(), sliceOp.static_offsets(), 165 sliceOp.static_sizes(), sliceOp.static_strides()); 166 } 167 168 template <typename LoopTy> 169 static Optional<TiledLinalgOp> 170 tileLinalgOpImpl(OpBuilder &b, LinalgOp op, ValueRange tileSizes, 171 const LinalgTilingOptions &options) { 172 auto nLoops = op.getNumLoops(); 173 // Initial tile sizes may be too big, only take the first nLoops. 174 tileSizes = tileSizes.take_front(nLoops); 175 176 if (llvm::all_of(tileSizes, isZero)) 177 return llvm::None; 178 179 if (auto convOp = dyn_cast<linalg::ConvOp>(op.getOperation())) { 180 // For conv op only support tiling along batch dimension (which is the first 181 // loop). 182 if (convOp.padding() && !llvm::all_of(tileSizes.drop_front(), isZero)) 183 return llvm::None; 184 } 185 186 // 1. Build the tiled loop ranges. 187 auto allShapeSizes = op.createFlatListOfOperandDims(b, op.getLoc()); 188 AffineMap shapeSizesToLoopsMap = op.getShapesToLoopsMap(); 189 if (!shapeSizesToLoopsMap) 190 return llvm::None; 191 192 SmallVector<Range, 4> loopRanges; 193 LoopIndexToRangeIndexMap loopIndexToRangeIndex; 194 std::tie(loopRanges, loopIndexToRangeIndex) = makeTiledLoopRanges( 195 b, op.getLoc(), shapeSizesToLoopsMap, allShapeSizes, tileSizes); 196 197 SmallVector<Attribute, 4> iteratorTypes; 198 for (auto attr : 199 enumerate(op.iterator_types().cast<ArrayAttr>().getValue())) { 200 if (loopIndexToRangeIndex.count(attr.index())) 201 iteratorTypes.push_back(attr.value()); 202 } 203 // If interchangeVector is empty, use the identity. Build the permutation map 204 // otherwise. 205 auto invPermutationMap = 206 AffineMap::getMultiDimIdentityMap(tileSizes.size(), b.getContext()); 207 if (!options.interchangeVector.empty()) { 208 // Based on the pruned iterations (due to zero tile size), recompute the 209 // interchange vector. 210 SmallVector<unsigned, 4> interchangeVector; 211 interchangeVector.reserve(options.interchangeVector.size()); 212 for (auto pos : options.interchangeVector) { 213 auto it = loopIndexToRangeIndex.find(pos); 214 if (it == loopIndexToRangeIndex.end()) 215 continue; 216 interchangeVector.push_back(it->second); 217 } 218 // Interchange vector is guaranteed to be a permutation, 219 // `inversePermutation` must succeed. 220 invPermutationMap = inversePermutation( 221 AffineMap::getPermutationMap(interchangeVector, b.getContext())); 222 assert(invPermutationMap); 223 applyPermutationToVector(loopRanges, interchangeVector); 224 applyPermutationToVector(iteratorTypes, interchangeVector); 225 } 226 227 // 2. Create the tiled loops. 228 LinalgOp res = op; 229 SmallVector<Value, 4> ivs, tensorResults; 230 auto tiledLoopBodyBuilder = [&](OpBuilder &b, Location loc, 231 ValueRange localIvs, 232 ValueRange iterArgs) -> scf::ValueVector { 233 ivs.assign(localIvs.begin(), localIvs.end()); 234 235 // When an `interchangeVector` is present, it has been applied to the 236 // loop ranges and the iterator types. Apply its inverse to the 237 // resulting loop `ivs` to match the op definition. 238 SmallVector<Value, 4> interchangedIvs; 239 if (!options.interchangeVector.empty()) 240 interchangedIvs = applyMapToValues(b, loc, invPermutationMap, ivs); 241 else 242 interchangedIvs.assign(ivs.begin(), ivs.end()); 243 244 assert(op.getOutputTensorOperands().size() == iterArgs.size() && 245 "num output tensors must match number of loop iter arguments"); 246 247 SmallVector<Value> operands = op.getInputOperands(); 248 SmallVector<Value> outputBuffers = op.getOutputBufferOperands(); 249 // TODO: thanks to simplifying assumption we do not need to worry about 250 // order of output buffers and tensors: there is only ever one kind. 251 assert(outputBuffers.empty() || iterArgs.empty()); 252 operands.append(outputBuffers.begin(), outputBuffers.end()); 253 operands.append(iterArgs.begin(), iterArgs.end()); 254 auto sizeBounds = 255 applyMapToValues(b, loc, shapeSizesToLoopsMap, allShapeSizes); 256 SmallVector<Value, 4> tiledOperands = makeTiledShapes( 257 b, loc, op, operands, interchangedIvs, tileSizes, sizeBounds); 258 259 // TODO: use an interface/adaptor to avoid leaking position in 260 // `tiledOperands`. 261 SmallVector<Type, 4> resultTensorTypes; 262 for (OpOperand *opOperand : op.getOutputTensorOperands()) 263 resultTensorTypes.push_back( 264 tiledOperands[opOperand->getOperandNumber()].getType()); 265 266 res = op.clone(b, loc, resultTensorTypes, tiledOperands); 267 268 // Insert a insert_slice for each output tensor. 269 unsigned resultIdx = 0; 270 for (OpOperand *opOperand : op.getOutputTensorOperands()) { 271 // TODO: use an interface/adaptor to avoid leaking position in 272 // `tiledOperands`. 273 Value outputTensor = tiledOperands[opOperand->getOperandNumber()]; 274 if (auto sliceOp = outputTensor.getDefiningOp<tensor::ExtractSliceOp>()) { 275 tensorResults.push_back(insertSliceIntoTensor( 276 b, loc, sliceOp, res->getResult(resultIdx), sliceOp.source())); 277 } else { 278 tensorResults.push_back(res->getResult(resultIdx)); 279 } 280 ++resultIdx; 281 } 282 return scf::ValueVector(tensorResults.begin(), tensorResults.end()); 283 }; 284 GenerateLoopNest<LoopTy>::doit(b, op.getLoc(), loopRanges, op, iteratorTypes, 285 tiledLoopBodyBuilder, options.distribution, 286 options.distributionTypes); 287 288 // 3. Transform IndexOp results w.r.t. the tiling. 289 transformIndexOps(b, res, ivs, loopIndexToRangeIndex); 290 291 // 4. Gather the newly created loops and return them with the new op. 292 SmallVector<Operation *, 8> loops; 293 loops.reserve(ivs.size()); 294 for (auto iv : ivs) { 295 if (iv.isa<BlockArgument>()) { 296 loops.push_back(iv.cast<BlockArgument>().getOwner()->getParentOp()); 297 assert(loops.back() && "no owner found for induction variable!"); 298 } else { 299 // TODO: Instead of doing this, try to recover the ops used instead of the 300 // loop. 301 loops.push_back(nullptr); 302 } 303 } 304 305 // 5. Get the tensor results from the outermost loop if available. Otherwise 306 // use the previously captured `tensorResults`. 307 Operation *outermostLoop = nullptr; 308 for (Operation *loop : loops) 309 if ((outermostLoop = loop)) 310 break; 311 312 return TiledLinalgOp{ 313 res, loops, outermostLoop ? outermostLoop->getResults() : tensorResults}; 314 } 315 316 template <typename LoopTy> 317 Optional<TiledLinalgOp> static tileLinalgOpImpl( 318 OpBuilder &b, LinalgOp op, const LinalgTilingOptions &options) { 319 OpBuilder::InsertionGuard g(b); 320 b.setInsertionPoint(op); 321 322 if (!options.tileSizeComputationFunction) 323 return llvm::None; 324 325 // Enforce the convention that "tiling by zero" skips tiling a particular 326 // dimension. This convention is significantly simpler to handle instead of 327 // adjusting affine maps to account for missing dimensions. 328 auto nLoops = op.getNumLoops(); 329 SmallVector<Value, 4> tileSizeVector = 330 options.tileSizeComputationFunction(b, op); 331 if (tileSizeVector.size() < nLoops) { 332 auto zero = b.create<ConstantIndexOp>(op.getLoc(), 0); 333 tileSizeVector.append(nLoops - tileSizeVector.size(), zero); 334 } 335 336 return tileLinalgOpImpl<LoopTy>(b, op, tileSizeVector, options); 337 } 338 339 Optional<TiledLinalgOp> 340 mlir::linalg::tileLinalgOp(OpBuilder &b, LinalgOp op, 341 const LinalgTilingOptions &options) { 342 switch (options.loopType) { 343 case LinalgTilingLoopType::Loops: 344 return tileLinalgOpImpl<scf::ForOp>(b, op, options); 345 case LinalgTilingLoopType::ParallelLoops: 346 return tileLinalgOpImpl<scf::ParallelOp>(b, op, options); 347 case LinalgTilingLoopType::TiledLoops: 348 return tileLinalgOpImpl<linalg::TiledLoopOp>(b, op, options); 349 default:; 350 } 351 return llvm::None; 352 } 353 354 /// Generate a loop nest around a given PadTensorOp (for tiling). `newPadOp` 355 /// and `loopNest` are output parameters that return the new (tiled) PadTensorOp 356 /// and the loop nest. 357 static LogicalResult tilePadTensorOp(OpBuilder &builder, PadTensorOp op, 358 PadTensorOp &newPadOp, LoopNest &loopNest, 359 const LinalgTilingOptions &options) { 360 // Can tile only PadTensorOp that have an output operand. 361 if (!op.output()) 362 return failure(); 363 364 Location loc = op.getLoc(); 365 OpBuilder::InsertionGuard g(builder); 366 builder.setInsertionPoint(op); 367 368 // Clone PadTensorOp so that the existing op can be replaced more easily. 369 newPadOp = cast<PadTensorOp>(builder.clone(*op.getOperation())); 370 // Get rank and tile sizes. 371 int64_t rank = op.getResultType().getRank(); 372 SmallVector<Value> tileSizes = 373 options.tileSizeComputationFunction(builder, op); 374 assert(static_cast<int64_t>(tileSizes.size()) == rank); 375 // Compute lower and upper bounds of the loop nest. 376 SmallVector<Value> lbs, dims, steps; 377 for (int64_t i = 0; i < rank; ++i) { 378 if (!isZero(tileSizes[i])) { 379 lbs.push_back(builder.create<ConstantIndexOp>(loc, 0)); 380 dims.push_back(builder.create<tensor::DimOp>(loc, op.output(), i)); 381 steps.push_back(tileSizes[i]); 382 } 383 } 384 // Generate loop nest: One loop per dimension. 385 loopNest = mlir::scf::buildLoopNest( 386 builder, loc, lbs, /*ubs=*/dims, steps, ValueRange(op.output()), 387 [&](OpBuilder &b, Location loc, ValueRange localIvs, 388 ValueRange iterArgs) -> scf::ValueVector { 389 // Compute offsets and sizes of ExtractSliceOp. 390 SmallVector<Value> offsets = 391 computeTileOffsets(b, loc, localIvs, tileSizes); 392 SmallVector<Value> sizes = 393 computeTileSizes(b, loc, localIvs, tileSizes, dims); 394 // Create ExtractSliceOp: Extract a tile from the PadTensorOp. 395 // Note: The PadTensorOp is located outside of the loop nest. It is 396 // later moved inside by ExtractSliceOfPadTensorSwapPattern. 397 auto map = AffineMap::getMultiDimIdentityMap(rank, b.getContext()); 398 Value tiledOutput = makeTiledShape(b, loc, newPadOp->getResult(0), 399 tileSizes, map, offsets, sizes); 400 auto sliceOp = tiledOutput.getDefiningOp<tensor::ExtractSliceOp>(); 401 assert(sliceOp && "expected ExtractSliceOp"); 402 // Insert the tile into the output tensor. 403 Value yieldValue = 404 insertSliceIntoTensor(b, loc, sliceOp, sliceOp, iterArgs[0]); 405 return scf::ValueVector({yieldValue}); 406 }); 407 return success(); 408 } 409 410 namespace { 411 struct PadTensorOpTilingPattern : public OpRewritePattern<PadTensorOp> { 412 PadTensorOpTilingPattern(MLIRContext *ctx, LinalgTilingOptions opt) 413 : OpRewritePattern<PadTensorOp>(ctx), options(opt) {} 414 415 LogicalResult matchAndRewrite(PadTensorOp op, 416 PatternRewriter &rewriter) const override { 417 if (op->hasAttr(LinalgTransforms::kLinalgTransformMarker)) 418 return failure(); 419 PadTensorOp newPadOp; 420 LoopNest loopNest; 421 if (failed(tilePadTensorOp(rewriter, op, newPadOp, loopNest, options))) 422 return failure(); 423 newPadOp->setAttr(LinalgTransforms::kLinalgTransformMarker, 424 rewriter.getUnitAttr()); 425 // Replace all uses of the original PadTensorOp. 426 rewriter.replaceOp(op, loopNest.getResults()[0]); 427 return success(); 428 } 429 430 LinalgTilingOptions options; 431 }; 432 } // namespace 433 434 namespace { 435 /// Helper classes for type list expansion. 436 template <typename... OpTypes> 437 class CanonicalizationPatternList; 438 439 template <> 440 class CanonicalizationPatternList<> { 441 public: 442 static void insert(RewritePatternSet &patterns) {} 443 }; 444 445 template <typename OpTy, typename... OpTypes> 446 class CanonicalizationPatternList<OpTy, OpTypes...> { 447 public: 448 static void insert(RewritePatternSet &patterns) { 449 OpTy::getCanonicalizationPatterns(patterns, patterns.getContext()); 450 CanonicalizationPatternList<OpTypes...>::insert(patterns); 451 } 452 }; 453 454 /// Helper classes for type list expansion. 455 template <typename... OpTypes> 456 class RewritePatternList; 457 458 template <> 459 class RewritePatternList<> { 460 public: 461 static void insert(RewritePatternSet &patterns, 462 const LinalgTilingOptions &options) {} 463 }; 464 465 template <typename OpTy, typename... OpTypes> 466 class RewritePatternList<OpTy, OpTypes...> { 467 public: 468 static void insert(RewritePatternSet &patterns, 469 const LinalgTilingOptions &options) { 470 auto *ctx = patterns.getContext(); 471 patterns.add<LinalgTilingPattern<OpTy>>( 472 ctx, options, 473 LinalgTransformationFilter(ArrayRef<Identifier>{}, 474 Identifier::get("tiled", ctx))); 475 RewritePatternList<OpTypes...>::insert(patterns, options); 476 } 477 }; 478 } // namespace 479 480 RewritePatternSet 481 mlir::linalg::getLinalgTilingCanonicalizationPatterns(MLIRContext *ctx) { 482 RewritePatternSet patterns(ctx); 483 populateLinalgTilingCanonicalizationPatterns(patterns); 484 return patterns; 485 } 486 487 void mlir::linalg::populateLinalgTilingCanonicalizationPatterns( 488 RewritePatternSet &patterns) { 489 auto *ctx = patterns.getContext(); 490 AffineApplyOp::getCanonicalizationPatterns(patterns, ctx); 491 AffineForOp::getCanonicalizationPatterns(patterns, ctx); 492 AffineMinOp::getCanonicalizationPatterns(patterns, ctx); 493 AffineMaxOp::getCanonicalizationPatterns(patterns, ctx); 494 scf::ForOp::getCanonicalizationPatterns(patterns, ctx); 495 scf::ParallelOp::getCanonicalizationPatterns(patterns, ctx); 496 ConstantIndexOp::getCanonicalizationPatterns(patterns, ctx); 497 tensor::ExtractSliceOp::getCanonicalizationPatterns(patterns, ctx); 498 tensor::InsertSliceOp::getCanonicalizationPatterns(patterns, ctx); 499 memref::SubViewOp::getCanonicalizationPatterns(patterns, ctx); 500 tensor::CastOp::getCanonicalizationPatterns(patterns, ctx); 501 memref::ViewOp::getCanonicalizationPatterns(patterns, ctx); 502 PadTensorOp::getCanonicalizationPatterns(patterns, ctx); 503 ctx->getLoadedDialect<LinalgDialect>()->getCanonicalizationPatterns(patterns); 504 CanonicalizationPatternList< 505 #define GET_OP_LIST 506 #include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc" 507 >::insert(patterns); 508 } 509 510 /// Populate the given list with patterns that apply Linalg tiling. 511 static void insertTilingPatterns(RewritePatternSet &patterns, 512 const LinalgTilingOptions &options) { 513 RewritePatternList<GenericOp, 514 #define GET_OP_LIST 515 #include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc" 516 >::insert(patterns, options); 517 patterns.add<PadTensorOpTilingPattern>(patterns.getContext(), options); 518 } 519 520 static void applyExtractSliceOfPadTensorSwapPattern(FuncOp funcOp) { 521 MLIRContext *ctx = funcOp.getContext(); 522 RewritePatternSet patterns(ctx); 523 patterns.add<ExtractSliceOfPadTensorSwapPattern>(patterns.getContext()); 524 (void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns)); 525 (void)applyPatternsAndFoldGreedily( 526 funcOp, getLinalgTilingCanonicalizationPatterns(ctx)); 527 } 528 529 static void 530 applyTilingToLoopPatterns(LinalgTilingLoopType loopType, FuncOp funcOp, 531 ArrayRef<int64_t> tileSizes, 532 ArrayRef<StringRef> distributionTypes = {}) { 533 auto options = LinalgTilingOptions() 534 .setTileSizes(tileSizes) 535 .setLoopType(loopType) 536 .setDistributionTypes(distributionTypes); 537 MLIRContext *ctx = funcOp.getContext(); 538 RewritePatternSet patterns(ctx); 539 insertTilingPatterns(patterns, options); 540 scf::populateSCFForLoopCanonicalizationPatterns(patterns); 541 (void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns)); 542 (void)applyPatternsAndFoldGreedily( 543 funcOp, getLinalgTilingCanonicalizationPatterns(ctx)); 544 // Drop the marker. 545 funcOp.walk([](LinalgOp op) { 546 op->removeAttr(LinalgTransforms::kLinalgTransformMarker); 547 }); 548 549 // Apply swap pattern after generating loop nest and running 550 // canonicalizations. 551 applyExtractSliceOfPadTensorSwapPattern(funcOp); 552 } 553 554 namespace { 555 struct LinalgTilingPass : public LinalgTilingBase<LinalgTilingPass> { 556 LinalgTilingPass() = default; 557 LinalgTilingPass(ArrayRef<int64_t> sizes) { tileSizes = sizes; } 558 559 void runOnFunction() override { 560 applyTilingToLoopPatterns(LinalgTilingLoopType::Loops, getFunction(), 561 tileSizes); 562 } 563 }; 564 565 struct LinalgTilingToParallelLoopsPass 566 : public LinalgTilingToParallelLoopsBase<LinalgTilingToParallelLoopsPass> { 567 LinalgTilingToParallelLoopsPass() = default; 568 LinalgTilingToParallelLoopsPass(ArrayRef<int64_t> sizes) { 569 tileSizes = sizes; 570 } 571 572 void runOnFunction() override { 573 applyTilingToLoopPatterns(LinalgTilingLoopType::ParallelLoops, 574 getFunction(), tileSizes); 575 } 576 }; 577 578 struct LinalgTilingToTiledLoopsPass 579 : public LinalgTilingToTiledLoopsBase<LinalgTilingToTiledLoopsPass> { 580 LinalgTilingToTiledLoopsPass() = default; 581 LinalgTilingToTiledLoopsPass(ArrayRef<int64_t> sizes, 582 ArrayRef<StringRef> types) { 583 tileSizes = sizes; 584 distributionTypes = llvm::to_vector<2>( 585 llvm::map_range(types, [](StringRef ref) { return ref.str(); })); 586 } 587 588 void runOnFunction() override { 589 applyTilingToLoopPatterns( 590 LinalgTilingLoopType::TiledLoops, getFunction(), tileSizes, 591 llvm::to_vector<2>( 592 llvm::map_range(distributionTypes, 593 [](std::string &str) { return StringRef(str); }))); 594 } 595 }; 596 597 } // namespace 598 599 std::unique_ptr<OperationPass<FuncOp>> 600 mlir::createLinalgTilingPass(ArrayRef<int64_t> tileSizes) { 601 return std::make_unique<LinalgTilingPass>(tileSizes); 602 } 603 604 std::unique_ptr<OperationPass<FuncOp>> 605 mlir::createLinalgTilingToParallelLoopsPass(ArrayRef<int64_t> tileSizes) { 606 return std::make_unique<LinalgTilingToParallelLoopsPass>(tileSizes); 607 } 608 609 std::unique_ptr<OperationPass<FuncOp>> 610 mlir::createLinalgTilingToTiledLoopPass(ArrayRef<int64_t> tileSizes, 611 ArrayRef<StringRef> distributionTypes) { 612 return std::make_unique<LinalgTilingToTiledLoopsPass>(tileSizes, 613 distributionTypes); 614 } 615