1 //===- Tiling.cpp - Implementation of linalg Tiling -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the linalg dialect Tiling pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PassDetail.h" 14 #include "mlir/Dialect/Affine/EDSC/Intrinsics.h" 15 #include "mlir/Dialect/Linalg/EDSC/FoldedIntrinsics.h" 16 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h" 17 #include "mlir/Dialect/Linalg/Passes.h" 18 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 19 #include "mlir/Dialect/Linalg/Utils/Utils.h" 20 #include "mlir/Dialect/SCF/EDSC/Builders.h" 21 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h" 22 #include "mlir/IR/AffineExpr.h" 23 #include "mlir/IR/AffineExprVisitor.h" 24 #include "mlir/IR/AffineMap.h" 25 #include "mlir/Support/LLVM.h" 26 #include "mlir/Transforms/FoldUtils.h" 27 28 #include "llvm/Support/CommandLine.h" 29 30 using namespace mlir; 31 using namespace mlir::edsc; 32 using namespace mlir::edsc::intrinsics; 33 using namespace mlir::linalg; 34 using namespace mlir::scf; 35 36 using folded_affine_min = FoldedValueBuilder<AffineMinOp>; 37 38 #define DEBUG_TYPE "linalg-tiling" 39 40 static bool isZero(Value v) { 41 if (auto cst = v.getDefiningOp<ConstantIndexOp>()) 42 return cst.getValue() == 0; 43 return false; 44 } 45 46 using LoopIndexToRangeIndexMap = DenseMap<int, int>; 47 48 // Creates a number of ranges equal to the number of non-zero in `tileSizes`. 49 // One for each loop of the LinalgOp that is tiled. The `tileSizes` argument has 50 // one entry per surrounding loop. It uses zero as the convention that a 51 // particular loop is not tiled. This convention simplifies implementations by 52 // avoiding affine map manipulations. 53 // The returned ranges correspond to the loop ranges, in the proper order, that 54 // are tiled and for which new loops will be created. Also the function returns 55 // a map from loop indices of the LinalgOp to the corresponding non-empty range 56 // indices of newly created loops. 57 static std::tuple<SmallVector<SubViewOp::Range, 4>, LoopIndexToRangeIndexMap> 58 makeTiledLoopRanges(OpBuilder &b, Location loc, AffineMap map, 59 ArrayRef<Value> allViewSizes, 60 ArrayRef<Value> allTileSizes) { 61 assert(allTileSizes.size() == map.getNumResults()); 62 // Apply `map` to get view sizes in loop order. 63 auto viewSizes = applyMapToValues(b, loc, map, allViewSizes); 64 SmallVector<Value, 4> tileSizes(allTileSizes.begin(), allTileSizes.end()); 65 66 // Traverse the tile sizes, which are in loop order, erase zeros everywhere. 67 LoopIndexToRangeIndexMap loopIndexToRangeIndex; 68 for (int idx = 0, e = tileSizes.size(), zerosCount = 0; idx < e; ++idx) { 69 if (isZero(tileSizes[idx - zerosCount])) { 70 viewSizes.erase(viewSizes.begin() + idx - zerosCount); 71 tileSizes.erase(tileSizes.begin() + idx - zerosCount); 72 ++zerosCount; 73 continue; 74 } 75 loopIndexToRangeIndex[idx] = idx - zerosCount; 76 } 77 78 // Create a new range with the applied tile sizes. 79 SmallVector<SubViewOp::Range, 4> res; 80 for (unsigned idx = 0, e = tileSizes.size(); idx < e; ++idx) 81 res.push_back(SubViewOp::Range{std_constant_index(0), viewSizes[idx], 82 tileSizes[idx]}); 83 return std::make_tuple(res, loopIndexToRangeIndex); 84 } 85 86 namespace { 87 88 // Helper visitor to determine whether an AffineExpr is tiled. 89 // This is achieved by traversing every AffineDimExpr with position `pos` and 90 // checking whether the corresponding `tileSizes[pos]` is non-zero. 91 // This also enforces only positive coefficients occur in multiplications. 92 // 93 // Example: 94 // `d0 + 2 * d1 + d3` is tiled by [0, 0, 0, 2] but not by [0, 0, 2, 0] 95 // 96 struct TileCheck : public AffineExprVisitor<TileCheck> { 97 TileCheck(ArrayRef<Value> tileSizes) : isTiled(false), tileSizes(tileSizes) {} 98 99 void visitDimExpr(AffineDimExpr expr) { 100 isTiled |= !isZero(tileSizes[expr.getPosition()]); 101 } 102 void visitAffineBinaryOpExpr(AffineBinaryOpExpr expr) { 103 visit(expr.getLHS()); 104 visit(expr.getRHS()); 105 if (expr.getKind() == mlir::AffineExprKind::Mul) 106 assert(expr.getRHS().cast<AffineConstantExpr>().getValue() > 0 && 107 "nonpositive multiplying coefficient"); 108 } 109 bool isTiled; 110 ArrayRef<Value> tileSizes; 111 }; 112 113 } // namespace 114 115 // IndexedGenericOp explicitly uses induction variables in the loop body. The 116 // values of the indices that are used in the loop body for any given access of 117 // input/output memref before `subview` op was applied should be invariant with 118 // respect to tiling. 119 // 120 // Therefore, if the operation is tiled, we have to transform the indices 121 // accordingly, i.e. offset them by the values of the corresponding induction 122 // variables that are captured implicitly in the body of the op. 123 // 124 // Example. `linalg.indexed_generic` before tiling: 125 // 126 // #id_2d = (i, j) -> (i, j) 127 // #pointwise_2d_trait = { 128 // indexing_maps = [#id_2d, #id_2d], 129 // iterator_types = ["parallel", "parallel"], 130 // n_views = [1, 1] 131 // } 132 // linalg.indexed_generic #pointwise_2d_trait %operand, %result { 133 // ^bb0(%i: index, %j: index, %operand_in: f32, %result_in: f32): 134 // <some operations that use %i, %j> 135 // }: memref<50x100xf32>, memref<50x100xf32> 136 // 137 // After tiling pass with tiles sizes 10 and 25: 138 // 139 // #strided = (i, j)[s0, s1, s2] -> (i * s1 + s0 + j * s2) 140 // 141 // %c1 = constant 1 : index 142 // %c0 = constant 0 : index 143 // %c25 = constant 25 : index 144 // %c10 = constant 10 : index 145 // operand_dim_0 = dim %operand, 0 : memref<50x100xf32> 146 // operand_dim_1 = dim %operand, 1 : memref<50x100xf32> 147 // scf.for %k = %c0 to operand_dim_0 step %c10 { 148 // scf.for %l = %c0 to operand_dim_1 step %c25 { 149 // %4 = std.subview %operand[%k, %l][%c10, %c25][%c1, %c1] 150 // : memref<50x100xf32> to memref<?x?xf32, #strided> 151 // %5 = std.subview %result[%k, %l][%c10, %c25][%c1, %c1] 152 // : memref<50x100xf32> to memref<?x?xf32, #strided> 153 // linalg.indexed_generic pointwise_2d_trait %4, %5 { 154 // ^bb0(%i: index, %j: index, %operand_in: f32, %result_in: f32): 155 // // Indices `k` and `l` are implicitly captured in the body. 156 // %transformed_i = addi %i, %k : index // index `i` is offset by %k 157 // %transformed_j = addi %j, %l : index // index `j` is offset by %l 158 // // Every use of %i, %j is replaced with %transformed_i, %transformed_j 159 // <some operations that use %transformed_i, %transformed_j> 160 // }: memref<?x?xf32, #strided>, memref<?x?xf32, #strided> 161 // } 162 // } 163 // 164 // TODO(pifon, ntv): Investigate whether mixing implicit and explicit indices 165 // does not lead to losing information. 166 static void transformIndexedGenericOpIndices( 167 OpBuilder &b, LinalgOp op, SmallVectorImpl<Value> &ivs, 168 const LoopIndexToRangeIndexMap &loopIndexToRangeIndex) { 169 assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics"); 170 auto indexedGenericOp = dyn_cast<IndexedGenericOp>(op.getOperation()); 171 if (!indexedGenericOp) 172 return; 173 174 // `linalg.indexed_generic` comes in two flavours. One has a region with a 175 // single block that defines the loop body. The other has a `fun` attribute 176 // that refers to an existing function symbol. The `fun` function call will be 177 // inserted in the loop body in that case. 178 // 179 // TODO(pifon): Add support for `linalg.indexed_generic` with `fun` attribute. 180 auto ®ion = indexedGenericOp.region(); 181 if (region.empty()) { 182 indexedGenericOp.emitOpError("expected a region"); 183 return; 184 } 185 auto &block = region.getBlocks().front(); 186 187 OpBuilder::InsertionGuard g(b); 188 b.setInsertionPointToStart(&block); 189 for (unsigned i = 0; i < indexedGenericOp.getNumLoops(); ++i) { 190 auto rangeIndex = loopIndexToRangeIndex.find(i); 191 if (rangeIndex == loopIndexToRangeIndex.end()) 192 continue; 193 Value oldIndex = block.getArgument(i); 194 // Offset the index argument `i` by the value of the corresponding induction 195 // variable and replace all uses of the previous value. 196 Value newIndex = b.create<AddIOp>(indexedGenericOp.getLoc(), oldIndex, 197 ivs[rangeIndex->second]); 198 for (auto &use : oldIndex.getUses()) { 199 if (use.getOwner() == newIndex.getDefiningOp()) 200 continue; 201 use.set(newIndex); 202 } 203 } 204 } 205 206 static bool isTiled(AffineExpr expr, ArrayRef<Value> tileSizes) { 207 if (!expr) 208 return false; 209 TileCheck t(tileSizes); 210 t.visit(expr); 211 return t.isTiled; 212 } 213 214 // Checks whether the view with index `viewIndex` within `linalgOp` varies with 215 // respect to a non-zero `tileSize`. 216 static bool isTiled(AffineMap map, ArrayRef<Value> tileSizes) { 217 if (!map) 218 return false; 219 for (unsigned r = 0; r < map.getNumResults(); ++r) 220 if (isTiled(map.getResult(r), tileSizes)) 221 return true; 222 return false; 223 } 224 225 static SmallVector<Value, 4> makeTiledViews(OpBuilder &b, Location loc, 226 LinalgOp linalgOp, 227 ArrayRef<Value> ivs, 228 ArrayRef<Value> tileSizes, 229 ArrayRef<Value> viewSizes) { 230 assert(linalgOp.hasBufferSemantics() && 231 "expected linalg op with buffer semantics"); 232 assert(ivs.size() == static_cast<size_t>(llvm::count_if( 233 llvm::make_range(tileSizes.begin(), tileSizes.end()), 234 [](Value v) { return !isZero(v); })) && 235 "expected as many ivs as non-zero sizes"); 236 237 using namespace edsc::op; 238 239 // Construct (potentially temporary) mins and maxes on which to apply maps 240 // that define tile subviews. 241 SmallVector<Value, 8> lbs, subViewSizes; 242 for (unsigned idx = 0, idxIvs = 0, e = tileSizes.size(); idx < e; ++idx) { 243 bool isTiled = !isZero(tileSizes[idx]); 244 lbs.push_back(isTiled ? ivs[idxIvs++] : (Value)std_constant_index(0)); 245 subViewSizes.push_back(isTiled ? tileSizes[idx] : viewSizes[idx]); 246 } 247 248 auto *op = linalgOp.getOperation(); 249 250 SmallVector<Value, 4> res; 251 res.reserve(op->getNumOperands()); 252 auto viewIteratorBegin = linalgOp.getInputsAndOutputBuffers().begin(); 253 for (unsigned viewIndex = 0; viewIndex < linalgOp.getNumInputsAndOutputs(); 254 ++viewIndex) { 255 Value view = *(viewIteratorBegin + viewIndex); 256 auto viewType = view.getType().cast<MemRefType>(); 257 unsigned rank = viewType.getRank(); 258 auto mapAttr = linalgOp.indexing_maps()[viewIndex]; 259 auto map = mapAttr.cast<AffineMapAttr>().getValue(); 260 // If the view is not tiled, we can use it as is. 261 if (!isTiled(map, tileSizes)) { 262 res.push_back(view); 263 continue; 264 } 265 266 // Construct a new subview for the tile. 267 SmallVector<Value, 4> offsets, sizes, strides; 268 offsets.reserve(rank); 269 sizes.reserve(rank); 270 strides.reserve(rank); 271 for (unsigned r = 0; r < rank; ++r) { 272 if (!isTiled(map.getSubMap({r}), tileSizes)) { 273 offsets.push_back(std_constant_index(0)); 274 sizes.push_back(std_dim(view, r)); 275 strides.push_back(std_constant_index(1)); 276 continue; 277 } 278 279 // Tiling creates a new slice at the proper index, the slice step is 1 280 // (i.e. the slice view does not subsample, stepping occurs in the loop). 281 auto m = map.getSubMap({r}); 282 auto offset = applyMapToValues(b, loc, m, lbs).front(); 283 offsets.push_back(offset); 284 auto size = applyMapToValues(b, loc, m, subViewSizes).front(); 285 286 // The size of the subview should be trimmed to avoid out-of-bounds 287 // accesses, unless we statically know the subview size divides the view 288 // size evenly. 289 int64_t viewSize = viewType.getDimSize(r); 290 auto sizeCst = size.getDefiningOp<ConstantIndexOp>(); 291 if (ShapedType::isDynamic(viewSize) || !sizeCst || 292 (viewSize % sizeCst.getValue()) != 0) { 293 // Compute min(size, dim - offset) to avoid out-of-bounds accesses. 294 auto minMap = AffineMap::get( 295 /*dimCount=*/3, /*symbolCount=*/0, 296 {getAffineDimExpr(/*position=*/0, b.getContext()), 297 getAffineDimExpr(/*position=*/1, b.getContext()) - 298 getAffineDimExpr(/*position=*/2, b.getContext())}, 299 b.getContext()); 300 auto d = std_dim(view, r); 301 size = 302 affine_min(b.getIndexType(), minMap, ValueRange{size, d, offset}); 303 } 304 305 sizes.push_back(size); 306 strides.push_back(std_constant_index(1)); 307 } 308 309 res.push_back(b.create<SubViewOp>(loc, view, offsets, sizes, strides)); 310 } 311 312 return res; 313 } 314 315 template <typename LoopTy> 316 Optional<TiledLinalgOp> static tileLinalgOpImpl( 317 OpBuilder &b, LinalgOp op, const LinalgTilingOptions &options) { 318 OpBuilder::InsertionGuard g(b); 319 b.setInsertionPoint(op); 320 ScopedContext scope(b, op.getLoc()); 321 322 assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics"); 323 // 1. Enforce the convention that "tiling by zero" skips tiling a particular 324 // dimension. This convention is significantly simpler to handle instead of 325 // adjusting affine maps to account for missing dimensions. 326 auto nLoops = op.getNumLoops(); 327 SmallVector<Value, 4> tileSizeVector = 328 options.tileSizeComputationFunction(b, op); 329 if (tileSizeVector.size() < nLoops) { 330 auto zero = std_constant_index(0); 331 tileSizeVector.append(nLoops - tileSizeVector.size(), zero); 332 } 333 334 ArrayRef<Value> tileSizes = tileSizeVector; 335 // Initial tile sizes may be too big, only take the first nLoops. 336 tileSizes = tileSizes.take_front(nLoops); 337 338 if (llvm::all_of(tileSizes, isZero)) 339 return llvm::None; 340 341 if (auto convOp = dyn_cast<linalg::ConvOp>(op.getOperation())) { 342 // For conv op only support tiling along batch dimension (which is the first 343 // loop). 344 if (convOp.padding() && !llvm::all_of(tileSizes.drop_front(), isZero)) 345 return llvm::None; 346 } 347 348 // If interchangeVector is empty, use the identity. Build the permutation map 349 // otherwise. 350 auto invPermutationMap = 351 AffineMap::getMultiDimIdentityMap(tileSizes.size(), b.getContext()); 352 if (!options.interchangeVector.empty()) 353 invPermutationMap = inversePermutation(AffineMap::getPermutationMap( 354 options.interchangeVector, b.getContext())); 355 if (!invPermutationMap) 356 return llvm::None; 357 358 // 2. Build the tiled loop ranges. 359 auto viewSizes = getViewSizes(b, op); 360 // The flattened loopToOperandRangesMaps is expected to be an invertible 361 // permutation map (asserted in the inverse calculation). 362 auto mapsRange = op.indexing_maps().getAsRange<AffineMapAttr>(); 363 auto maps = llvm::to_vector<8>( 364 llvm::map_range(mapsRange, [](AffineMapAttr a) { return a.getValue(); })); 365 auto viewSizesToLoopsMap = inversePermutation(concatAffineMaps(maps)); 366 if (!viewSizesToLoopsMap) 367 return llvm::None; 368 369 SmallVector<SubViewOp::Range, 4> loopRanges; 370 LoopIndexToRangeIndexMap loopIndexToRangeIndex; 371 std::tie(loopRanges, loopIndexToRangeIndex) = makeTiledLoopRanges( 372 b, scope.getLocation(), viewSizesToLoopsMap, viewSizes, tileSizes); 373 if (!options.interchangeVector.empty()) 374 applyPermutationToVector(loopRanges, options.interchangeVector); 375 376 // 3. Create the tiled loops. 377 LinalgOp res = op; 378 SmallVector<Value, 4> ivs(loopRanges.size()); 379 SmallVector<Attribute, 4> iteratorTypes = 380 llvm::to_vector<4>(op.iterator_types().cast<ArrayAttr>().getValue()); 381 if (!options.interchangeVector.empty()) 382 applyPermutationToVector(iteratorTypes, options.interchangeVector); 383 GenerateLoopNest<LoopTy>::doit(ivs, loopRanges, iteratorTypes, [&] { 384 auto &b = ScopedContext::getBuilderRef(); 385 auto loc = ScopedContext::getLocation(); 386 SmallVector<Value, 4> ivValues(ivs.begin(), ivs.end()); 387 388 // If we have to apply a permutation to the tiled loop nest, we have to 389 // reorder the induction variables This permutation is the right one 390 // assuming that loopRanges have previously been permuted by 391 // (i,j,k)->(k,i,j) So this permutation should be the inversePermutation 392 // of that one: (d0,d1,d2)->(d2,d0,d1) 393 if (!options.interchangeVector.empty()) 394 ivValues = applyMapToValues(b, loc, invPermutationMap, ivValues); 395 396 auto views = makeTiledViews(b, loc, op, ivValues, tileSizes, viewSizes); 397 auto operands = getAssumedNonViewOperands(op); 398 views.append(operands.begin(), operands.end()); 399 res = op.clone(b, loc, views); 400 }); 401 402 // 4. Transforms index arguments of `linalg.generic` w.r.t. to the tiling. 403 transformIndexedGenericOpIndices(b, res, ivs, loopIndexToRangeIndex); 404 405 // 5. Gather the newly created loops and return them with the new op. 406 SmallVector<Operation *, 8> loops; 407 loops.reserve(ivs.size()); 408 for (auto iv : ivs) { 409 loops.push_back(iv.cast<BlockArgument>().getOwner()->getParentOp()); 410 assert(loops.back() && "no owner found for induction variable!"); 411 } 412 return TiledLinalgOp{res, loops}; 413 } 414 415 Optional<TiledLinalgOp> 416 mlir::linalg::tileLinalgOp(OpBuilder &b, LinalgOp op, 417 const LinalgTilingOptions &options) { 418 if (options.loopType == LinalgTilingLoopType::Loops) 419 return tileLinalgOpImpl<scf::ForOp>(b, op, options); 420 if (options.loopType == LinalgTilingLoopType::ParallelLoops) 421 return tileLinalgOpImpl<scf::ParallelOp>(b, op, options); 422 // TODO: Impl tiling to affine loops when it makes sense. 423 return llvm::None; 424 } 425 426 namespace { 427 /// Helper classes for type list expansion. 428 template <typename... OpTypes> 429 class CanonicalizationPatternList; 430 431 template <> 432 class CanonicalizationPatternList<> { 433 public: 434 static void insert(OwningRewritePatternList &patterns, MLIRContext *ctx) {} 435 }; 436 437 template <typename OpTy, typename... OpTypes> 438 class CanonicalizationPatternList<OpTy, OpTypes...> { 439 public: 440 static void insert(OwningRewritePatternList &patterns, MLIRContext *ctx) { 441 OpTy::getCanonicalizationPatterns(patterns, ctx); 442 CanonicalizationPatternList<OpTypes...>::insert(patterns, ctx); 443 } 444 }; 445 446 /// Helper classes for type list expansion. 447 template <typename... OpTypes> 448 class RewritePatternList; 449 450 template <> 451 class RewritePatternList<> { 452 public: 453 static void insert(OwningRewritePatternList &patterns, 454 const LinalgTilingOptions &options, MLIRContext *ctx) {} 455 }; 456 457 template <typename OpTy, typename... OpTypes> 458 class RewritePatternList<OpTy, OpTypes...> { 459 public: 460 static void insert(OwningRewritePatternList &patterns, 461 const LinalgTilingOptions &options, MLIRContext *ctx) { 462 patterns.insert<LinalgTilingPattern<OpTy>>( 463 ctx, options, LinalgMarker({}, Identifier::get("tiled", ctx))); 464 RewritePatternList<OpTypes...>::insert(patterns, options, ctx); 465 } 466 }; 467 } // namespace 468 469 OwningRewritePatternList 470 mlir::linalg::getLinalgTilingCanonicalizationPatterns(MLIRContext *ctx) { 471 OwningRewritePatternList patterns; 472 AffineApplyOp::getCanonicalizationPatterns(patterns, ctx); 473 AffineForOp::getCanonicalizationPatterns(patterns, ctx); 474 AffineMinOp::getCanonicalizationPatterns(patterns, ctx); 475 AffineMaxOp::getCanonicalizationPatterns(patterns, ctx); 476 scf::ForOp::getCanonicalizationPatterns(patterns, ctx); 477 scf::ParallelOp::getCanonicalizationPatterns(patterns, ctx); 478 ConstantIndexOp::getCanonicalizationPatterns(patterns, ctx); 479 SubViewOp::getCanonicalizationPatterns(patterns, ctx); 480 ViewOp::getCanonicalizationPatterns(patterns, ctx); 481 CanonicalizationPatternList< 482 #define GET_OP_LIST 483 #include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc" 484 >::insert(patterns, ctx); 485 return patterns; 486 } 487 488 /// Populate the given list with patterns that apply Linalg tiling. 489 static void insertTilingPatterns(OwningRewritePatternList &patterns, 490 const LinalgTilingOptions &options, 491 MLIRContext *ctx) { 492 RewritePatternList< 493 #define GET_OP_LIST 494 #include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc" 495 >::insert(patterns, options, ctx); 496 } 497 498 static void applyTilingToLoopPatterns(LinalgTilingLoopType loopType, 499 FuncOp funcOp, 500 ArrayRef<int64_t> tileSizes) { 501 auto options = 502 LinalgTilingOptions().setTileSizes(tileSizes).setLoopType(loopType); 503 MLIRContext *ctx = funcOp.getContext(); 504 OwningRewritePatternList patterns; 505 insertTilingPatterns(patterns, options, ctx); 506 applyPatternsAndFoldGreedily(funcOp, patterns); 507 applyPatternsAndFoldGreedily(funcOp, 508 getLinalgTilingCanonicalizationPatterns(ctx)); 509 // Drop the marker. 510 funcOp.walk([](LinalgOp op) { 511 op.removeAttr(LinalgTransforms::kLinalgTransformMarker); 512 }); 513 } 514 515 namespace { 516 struct LinalgTilingPass : public LinalgTilingBase<LinalgTilingPass> { 517 LinalgTilingPass() = default; 518 LinalgTilingPass(ArrayRef<int64_t> sizes) { tileSizes = sizes; } 519 520 void runOnFunction() override { 521 applyTilingToLoopPatterns(LinalgTilingLoopType::Loops, getFunction(), 522 tileSizes); 523 } 524 }; 525 526 struct LinalgTilingToParallelLoopsPass 527 : public LinalgTilingToParallelLoopsBase<LinalgTilingToParallelLoopsPass> { 528 LinalgTilingToParallelLoopsPass() = default; 529 LinalgTilingToParallelLoopsPass(ArrayRef<int64_t> sizes) { 530 tileSizes = sizes; 531 } 532 533 void runOnFunction() override { 534 applyTilingToLoopPatterns(LinalgTilingLoopType::ParallelLoops, 535 getFunction(), tileSizes); 536 } 537 }; 538 539 } // namespace 540 541 std::unique_ptr<OperationPass<FuncOp>> 542 mlir::createLinalgTilingPass(ArrayRef<int64_t> tileSizes) { 543 return std::make_unique<LinalgTilingPass>(tileSizes); 544 } 545 546 std::unique_ptr<OperationPass<FuncOp>> 547 mlir::createLinalgTilingToParallelLoopsPass(ArrayRef<int64_t> tileSizes) { 548 return std::make_unique<LinalgTilingToParallelLoopsPass>(tileSizes); 549 } 550