1 //===- Tiling.cpp - Implementation of linalg Tiling -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the linalg dialect Tiling pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PassDetail.h"
14 #include "mlir/Dialect/Affine/EDSC/Intrinsics.h"
15 #include "mlir/Dialect/Linalg/EDSC/FoldedIntrinsics.h"
16 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
17 #include "mlir/Dialect/Linalg/Passes.h"
18 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
19 #include "mlir/Dialect/Linalg/Utils/Utils.h"
20 #include "mlir/Dialect/SCF/EDSC/Builders.h"
21 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
22 #include "mlir/IR/AffineExpr.h"
23 #include "mlir/IR/AffineExprVisitor.h"
24 #include "mlir/IR/AffineMap.h"
25 #include "mlir/Support/LLVM.h"
26 #include "mlir/Transforms/FoldUtils.h"
27 
28 #include "llvm/Support/CommandLine.h"
29 
30 using namespace mlir;
31 using namespace mlir::edsc;
32 using namespace mlir::edsc::intrinsics;
33 using namespace mlir::linalg;
34 using namespace mlir::scf;
35 
36 using folded_affine_min = FoldedValueBuilder<AffineMinOp>;
37 
38 #define DEBUG_TYPE "linalg-tiling"
39 
40 static bool isZero(Value v) {
41   if (auto cst = v.getDefiningOp<ConstantIndexOp>())
42     return cst.getValue() == 0;
43   return false;
44 }
45 
46 using LoopIndexToRangeIndexMap = DenseMap<int, int>;
47 
48 // Creates a number of ranges equal to the number of non-zero in `tileSizes`.
49 // One for each loop of the LinalgOp that is tiled. The `tileSizes` argument has
50 // one entry per surrounding loop. It uses zero as the convention that a
51 // particular loop is not tiled. This convention simplifies implementations by
52 // avoiding affine map manipulations.
53 // The returned ranges correspond to the loop ranges, in the proper order, that
54 // are tiled and for which new loops will be created. Also the function returns
55 // a map from loop indices of the LinalgOp to the corresponding non-empty range
56 // indices of newly created loops.
57 static std::tuple<SmallVector<SubViewOp::Range, 4>, LoopIndexToRangeIndexMap>
58 makeTiledLoopRanges(OpBuilder &b, Location loc, AffineMap map,
59                     ArrayRef<Value> allViewSizes,
60                     ArrayRef<Value> allTileSizes) {
61   assert(allTileSizes.size() == map.getNumResults());
62   // Apply `map` to get view sizes in loop order.
63   auto viewSizes = applyMapToValues(b, loc, map, allViewSizes);
64   SmallVector<Value, 4> tileSizes(allTileSizes.begin(), allTileSizes.end());
65 
66   // Traverse the tile sizes, which are in loop order, erase zeros everywhere.
67   LoopIndexToRangeIndexMap loopIndexToRangeIndex;
68   for (int idx = 0, e = tileSizes.size(), zerosCount = 0; idx < e; ++idx) {
69     if (isZero(tileSizes[idx - zerosCount])) {
70       viewSizes.erase(viewSizes.begin() + idx - zerosCount);
71       tileSizes.erase(tileSizes.begin() + idx - zerosCount);
72       ++zerosCount;
73       continue;
74     }
75     loopIndexToRangeIndex[idx] = idx - zerosCount;
76   }
77 
78   // Create a new range with the applied tile sizes.
79   SmallVector<SubViewOp::Range, 4> res;
80   for (unsigned idx = 0, e = tileSizes.size(); idx < e; ++idx)
81     res.push_back(SubViewOp::Range{std_constant_index(0), viewSizes[idx],
82                                    tileSizes[idx]});
83   return std::make_tuple(res, loopIndexToRangeIndex);
84 }
85 
86 namespace {
87 
88 // Helper visitor to determine whether an AffineExpr is tiled.
89 // This is achieved by traversing every AffineDimExpr with position `pos` and
90 // checking whether the corresponding `tileSizes[pos]` is non-zero.
91 // This also enforces only positive coefficients occur in multiplications.
92 //
93 // Example:
94 //   `d0 + 2 * d1 + d3` is tiled by [0, 0, 0, 2] but not by [0, 0, 2, 0]
95 //
96 struct TileCheck : public AffineExprVisitor<TileCheck> {
97   TileCheck(ArrayRef<Value> tileSizes) : isTiled(false), tileSizes(tileSizes) {}
98 
99   void visitDimExpr(AffineDimExpr expr) {
100     isTiled |= !isZero(tileSizes[expr.getPosition()]);
101   }
102   void visitAffineBinaryOpExpr(AffineBinaryOpExpr expr) {
103     visit(expr.getLHS());
104     visit(expr.getRHS());
105     if (expr.getKind() == mlir::AffineExprKind::Mul)
106       assert(expr.getRHS().cast<AffineConstantExpr>().getValue() > 0 &&
107              "nonpositive multiplying coefficient");
108   }
109   bool isTiled;
110   ArrayRef<Value> tileSizes;
111 };
112 
113 } // namespace
114 
115 // IndexedGenericOp explicitly uses induction variables in the loop body. The
116 // values of the indices that are used in the loop body for any given access of
117 // input/output memref before `subview` op was applied should be invariant with
118 // respect to tiling.
119 //
120 // Therefore, if the operation is tiled, we have to transform the indices
121 // accordingly, i.e. offset them by the values of the corresponding induction
122 // variables that are captured implicitly in the body of the op.
123 //
124 // Example. `linalg.indexed_generic` before tiling:
125 //
126 // #id_2d = (i, j) -> (i, j)
127 // #pointwise_2d_trait = {
128 //   indexing_maps = [#id_2d, #id_2d],
129 //   iterator_types = ["parallel", "parallel"],
130 //   n_views = [1, 1]
131 // }
132 // linalg.indexed_generic #pointwise_2d_trait %operand, %result {
133 //   ^bb0(%i: index, %j: index, %operand_in: f32, %result_in: f32):
134 //     <some operations that use %i, %j>
135 // }: memref<50x100xf32>, memref<50x100xf32>
136 //
137 // After tiling pass with tiles sizes 10 and 25:
138 //
139 // #strided = (i, j)[s0, s1, s2] -> (i * s1 + s0 + j * s2)
140 //
141 // %c1 = constant 1 : index
142 // %c0 = constant 0 : index
143 // %c25 = constant 25 : index
144 // %c10 = constant 10 : index
145 // operand_dim_0 = dim %operand, 0 : memref<50x100xf32>
146 // operand_dim_1 = dim %operand, 1 : memref<50x100xf32>
147 // scf.for %k = %c0 to operand_dim_0 step %c10 {
148 //   scf.for %l = %c0 to operand_dim_1 step %c25 {
149 //     %4 = std.subview %operand[%k, %l][%c10, %c25][%c1, %c1]
150 //       : memref<50x100xf32> to memref<?x?xf32, #strided>
151 //     %5 = std.subview %result[%k, %l][%c10, %c25][%c1, %c1]
152 //       : memref<50x100xf32> to memref<?x?xf32, #strided>
153 //     linalg.indexed_generic pointwise_2d_trait %4, %5 {
154 //     ^bb0(%i: index, %j: index, %operand_in: f32, %result_in: f32):
155 //       // Indices `k` and `l` are implicitly captured in the body.
156 //       %transformed_i = addi %i, %k : index // index `i` is offset by %k
157 //       %transformed_j = addi %j, %l : index // index `j` is offset by %l
158 //       // Every use of %i, %j is replaced with %transformed_i, %transformed_j
159 //       <some operations that use %transformed_i, %transformed_j>
160 //     }: memref<?x?xf32, #strided>, memref<?x?xf32, #strided>
161 //   }
162 // }
163 //
164 // TODO(pifon, ntv): Investigate whether mixing implicit and explicit indices
165 // does not lead to losing information.
166 static void transformIndexedGenericOpIndices(
167     OpBuilder &b, LinalgOp op, SmallVectorImpl<Value> &ivs,
168     const LoopIndexToRangeIndexMap &loopIndexToRangeIndex) {
169   assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics");
170   auto indexedGenericOp = dyn_cast<IndexedGenericOp>(op.getOperation());
171   if (!indexedGenericOp)
172     return;
173 
174   // `linalg.indexed_generic` comes in two flavours. One has a region with a
175   // single block that defines the loop body. The other has a `fun` attribute
176   // that refers to an existing function symbol. The `fun` function call will be
177   // inserted in the loop body in that case.
178   //
179   // TODO(pifon): Add support for `linalg.indexed_generic` with `fun` attribute.
180   auto &region = indexedGenericOp.region();
181   if (region.empty()) {
182     indexedGenericOp.emitOpError("expected a region");
183     return;
184   }
185   auto &block = region.getBlocks().front();
186 
187   OpBuilder::InsertionGuard g(b);
188   b.setInsertionPointToStart(&block);
189   for (unsigned i = 0; i < indexedGenericOp.getNumLoops(); ++i) {
190     auto rangeIndex = loopIndexToRangeIndex.find(i);
191     if (rangeIndex == loopIndexToRangeIndex.end())
192       continue;
193     Value oldIndex = block.getArgument(i);
194     // Offset the index argument `i` by the value of the corresponding induction
195     // variable and replace all uses of the previous value.
196     Value newIndex = b.create<AddIOp>(indexedGenericOp.getLoc(), oldIndex,
197                                       ivs[rangeIndex->second]);
198     for (auto &use : oldIndex.getUses()) {
199       if (use.getOwner() == newIndex.getDefiningOp())
200         continue;
201       use.set(newIndex);
202     }
203   }
204 }
205 
206 static bool isTiled(AffineExpr expr, ArrayRef<Value> tileSizes) {
207   if (!expr)
208     return false;
209   TileCheck t(tileSizes);
210   t.visit(expr);
211   return t.isTiled;
212 }
213 
214 // Checks whether the view with index `viewIndex` within `linalgOp` varies with
215 // respect to a non-zero `tileSize`.
216 static bool isTiled(AffineMap map, ArrayRef<Value> tileSizes) {
217   if (!map)
218     return false;
219   for (unsigned r = 0; r < map.getNumResults(); ++r)
220     if (isTiled(map.getResult(r), tileSizes))
221       return true;
222   return false;
223 }
224 
225 static SmallVector<Value, 4> makeTiledViews(OpBuilder &b, Location loc,
226                                             LinalgOp linalgOp,
227                                             ArrayRef<Value> ivs,
228                                             ArrayRef<Value> tileSizes,
229                                             ArrayRef<Value> viewSizes) {
230   assert(linalgOp.hasBufferSemantics() &&
231          "expected linalg op with buffer semantics");
232   assert(ivs.size() == static_cast<size_t>(llvm::count_if(
233                            llvm::make_range(tileSizes.begin(), tileSizes.end()),
234                            [](Value v) { return !isZero(v); })) &&
235          "expected as many ivs as non-zero sizes");
236 
237   using namespace edsc::op;
238 
239   // Construct (potentially temporary) mins and maxes on which to apply maps
240   // that define tile subviews.
241   SmallVector<Value, 8> lbs, subViewSizes;
242   for (unsigned idx = 0, idxIvs = 0, e = tileSizes.size(); idx < e; ++idx) {
243     bool isTiled = !isZero(tileSizes[idx]);
244     lbs.push_back(isTiled ? ivs[idxIvs++] : (Value)std_constant_index(0));
245     subViewSizes.push_back(isTiled ? tileSizes[idx] : viewSizes[idx]);
246   }
247 
248   auto *op = linalgOp.getOperation();
249 
250   SmallVector<Value, 4> res;
251   res.reserve(op->getNumOperands());
252   auto viewIteratorBegin = linalgOp.getInputsAndOutputBuffers().begin();
253   for (unsigned viewIndex = 0; viewIndex < linalgOp.getNumInputsAndOutputs();
254        ++viewIndex) {
255     Value view = *(viewIteratorBegin + viewIndex);
256     auto viewType = view.getType().cast<MemRefType>();
257     unsigned rank = viewType.getRank();
258     auto mapAttr = linalgOp.indexing_maps()[viewIndex];
259     auto map = mapAttr.cast<AffineMapAttr>().getValue();
260     // If the view is not tiled, we can use it as is.
261     if (!isTiled(map, tileSizes)) {
262       res.push_back(view);
263       continue;
264     }
265 
266     // Construct a new subview for the tile.
267     SmallVector<Value, 4> offsets, sizes, strides;
268     offsets.reserve(rank);
269     sizes.reserve(rank);
270     strides.reserve(rank);
271     for (unsigned r = 0; r < rank; ++r) {
272       if (!isTiled(map.getSubMap({r}), tileSizes)) {
273         offsets.push_back(std_constant_index(0));
274         sizes.push_back(std_dim(view, r));
275         strides.push_back(std_constant_index(1));
276         continue;
277       }
278 
279       // Tiling creates a new slice at the proper index, the slice step is 1
280       // (i.e. the slice view does not subsample, stepping occurs in the loop).
281       auto m = map.getSubMap({r});
282       auto offset = applyMapToValues(b, loc, m, lbs).front();
283       offsets.push_back(offset);
284       auto size = applyMapToValues(b, loc, m, subViewSizes).front();
285 
286       // The size of the subview should be trimmed to avoid out-of-bounds
287       // accesses, unless we statically know the subview size divides the view
288       // size evenly.
289       int64_t viewSize = viewType.getDimSize(r);
290       auto sizeCst = size.getDefiningOp<ConstantIndexOp>();
291       if (ShapedType::isDynamic(viewSize) || !sizeCst ||
292           (viewSize % sizeCst.getValue()) != 0) {
293         // Compute min(size, dim - offset) to avoid out-of-bounds accesses.
294         auto minMap = AffineMap::get(
295             /*dimCount=*/3, /*symbolCount=*/0,
296             {getAffineDimExpr(/*position=*/0, b.getContext()),
297              getAffineDimExpr(/*position=*/1, b.getContext()) -
298                  getAffineDimExpr(/*position=*/2, b.getContext())},
299             b.getContext());
300         auto d = std_dim(view, r);
301         size =
302             affine_min(b.getIndexType(), minMap, ValueRange{size, d, offset});
303       }
304 
305       sizes.push_back(size);
306       strides.push_back(std_constant_index(1));
307     }
308 
309     res.push_back(b.create<SubViewOp>(loc, view, offsets, sizes, strides));
310   }
311 
312   return res;
313 }
314 
315 template <typename LoopTy>
316 Optional<TiledLinalgOp> static tileLinalgOpImpl(
317     OpBuilder &b, LinalgOp op, const LinalgTilingOptions &options) {
318   OpBuilder::InsertionGuard g(b);
319   b.setInsertionPoint(op);
320   ScopedContext scope(b, op.getLoc());
321 
322   assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics");
323   // 1. Enforce the convention that "tiling by zero" skips tiling a particular
324   // dimension. This convention is significantly simpler to handle instead of
325   // adjusting affine maps to account for missing dimensions.
326   auto nLoops = op.getNumLoops();
327   SmallVector<Value, 4> tileSizeVector =
328       options.tileSizeComputationFunction(b, op);
329   if (tileSizeVector.size() < nLoops) {
330     auto zero = std_constant_index(0);
331     tileSizeVector.append(nLoops - tileSizeVector.size(), zero);
332   }
333 
334   ArrayRef<Value> tileSizes = tileSizeVector;
335   // Initial tile sizes may be too big, only take the first nLoops.
336   tileSizes = tileSizes.take_front(nLoops);
337 
338   if (llvm::all_of(tileSizes, isZero))
339     return llvm::None;
340 
341   if (auto convOp = dyn_cast<linalg::ConvOp>(op.getOperation())) {
342     // For conv op only support tiling along batch dimension (which is the first
343     // loop).
344     if (convOp.padding() && !llvm::all_of(tileSizes.drop_front(), isZero))
345       return llvm::None;
346   }
347 
348   // If interchangeVector is empty, use the identity. Build the permutation map
349   // otherwise.
350   auto invPermutationMap =
351       AffineMap::getMultiDimIdentityMap(tileSizes.size(), b.getContext());
352   if (!options.interchangeVector.empty())
353     invPermutationMap = inversePermutation(AffineMap::getPermutationMap(
354         options.interchangeVector, b.getContext()));
355   if (!invPermutationMap)
356     return llvm::None;
357 
358   // 2. Build the tiled loop ranges.
359   auto viewSizes = getViewSizes(b, op);
360   // The flattened loopToOperandRangesMaps is expected to be an invertible
361   // permutation map (asserted in the inverse calculation).
362   auto mapsRange = op.indexing_maps().getAsRange<AffineMapAttr>();
363   auto maps = llvm::to_vector<8>(
364       llvm::map_range(mapsRange, [](AffineMapAttr a) { return a.getValue(); }));
365   auto viewSizesToLoopsMap = inversePermutation(concatAffineMaps(maps));
366   if (!viewSizesToLoopsMap)
367     return llvm::None;
368 
369   SmallVector<SubViewOp::Range, 4> loopRanges;
370   LoopIndexToRangeIndexMap loopIndexToRangeIndex;
371   std::tie(loopRanges, loopIndexToRangeIndex) = makeTiledLoopRanges(
372       b, scope.getLocation(), viewSizesToLoopsMap, viewSizes, tileSizes);
373   if (!options.interchangeVector.empty())
374     applyPermutationToVector(loopRanges, options.interchangeVector);
375 
376   // 3. Create the tiled loops.
377   LinalgOp res = op;
378   SmallVector<Value, 4> ivs(loopRanges.size());
379   SmallVector<Attribute, 4> iteratorTypes =
380       llvm::to_vector<4>(op.iterator_types().cast<ArrayAttr>().getValue());
381   if (!options.interchangeVector.empty())
382     applyPermutationToVector(iteratorTypes, options.interchangeVector);
383   GenerateLoopNest<LoopTy>::doit(ivs, loopRanges, iteratorTypes, [&] {
384     auto &b = ScopedContext::getBuilderRef();
385     auto loc = ScopedContext::getLocation();
386     SmallVector<Value, 4> ivValues(ivs.begin(), ivs.end());
387 
388     // If we have to apply a permutation to the tiled loop nest, we have to
389     // reorder the induction variables This permutation is the right one
390     // assuming that loopRanges have previously been permuted by
391     // (i,j,k)->(k,i,j) So this permutation should be the inversePermutation
392     // of that one: (d0,d1,d2)->(d2,d0,d1)
393     if (!options.interchangeVector.empty())
394       ivValues = applyMapToValues(b, loc, invPermutationMap, ivValues);
395 
396     auto views = makeTiledViews(b, loc, op, ivValues, tileSizes, viewSizes);
397     auto operands = getAssumedNonViewOperands(op);
398     views.append(operands.begin(), operands.end());
399     res = op.clone(b, loc, views);
400   });
401 
402   // 4. Transforms index arguments of `linalg.generic` w.r.t. to the tiling.
403   transformIndexedGenericOpIndices(b, res, ivs, loopIndexToRangeIndex);
404 
405   // 5. Gather the newly created loops and return them with the new op.
406   SmallVector<Operation *, 8> loops;
407   loops.reserve(ivs.size());
408   for (auto iv : ivs) {
409     loops.push_back(iv.cast<BlockArgument>().getOwner()->getParentOp());
410     assert(loops.back() && "no owner found for induction variable!");
411   }
412   return TiledLinalgOp{res, loops};
413 }
414 
415 Optional<TiledLinalgOp>
416 mlir::linalg::tileLinalgOp(OpBuilder &b, LinalgOp op,
417                            const LinalgTilingOptions &options) {
418   if (options.loopType == LinalgTilingLoopType::Loops)
419     return tileLinalgOpImpl<scf::ForOp>(b, op, options);
420   if (options.loopType == LinalgTilingLoopType::ParallelLoops)
421     return tileLinalgOpImpl<scf::ParallelOp>(b, op, options);
422   // TODO: Impl tiling to affine loops when it makes sense.
423   return llvm::None;
424 }
425 
426 namespace {
427 /// Helper classes for type list expansion.
428 template <typename... OpTypes>
429 class CanonicalizationPatternList;
430 
431 template <>
432 class CanonicalizationPatternList<> {
433 public:
434   static void insert(OwningRewritePatternList &patterns, MLIRContext *ctx) {}
435 };
436 
437 template <typename OpTy, typename... OpTypes>
438 class CanonicalizationPatternList<OpTy, OpTypes...> {
439 public:
440   static void insert(OwningRewritePatternList &patterns, MLIRContext *ctx) {
441     OpTy::getCanonicalizationPatterns(patterns, ctx);
442     CanonicalizationPatternList<OpTypes...>::insert(patterns, ctx);
443   }
444 };
445 
446 /// Helper classes for type list expansion.
447 template <typename... OpTypes>
448 class RewritePatternList;
449 
450 template <>
451 class RewritePatternList<> {
452 public:
453   static void insert(OwningRewritePatternList &patterns,
454                      const LinalgTilingOptions &options, MLIRContext *ctx) {}
455 };
456 
457 template <typename OpTy, typename... OpTypes>
458 class RewritePatternList<OpTy, OpTypes...> {
459 public:
460   static void insert(OwningRewritePatternList &patterns,
461                      const LinalgTilingOptions &options, MLIRContext *ctx) {
462     patterns.insert<LinalgTilingPattern<OpTy>>(
463         ctx, options, LinalgMarker({}, Identifier::get("tiled", ctx)));
464     RewritePatternList<OpTypes...>::insert(patterns, options, ctx);
465   }
466 };
467 } // namespace
468 
469 OwningRewritePatternList
470 mlir::linalg::getLinalgTilingCanonicalizationPatterns(MLIRContext *ctx) {
471   OwningRewritePatternList patterns;
472   AffineApplyOp::getCanonicalizationPatterns(patterns, ctx);
473   AffineForOp::getCanonicalizationPatterns(patterns, ctx);
474   AffineMinOp::getCanonicalizationPatterns(patterns, ctx);
475   AffineMaxOp::getCanonicalizationPatterns(patterns, ctx);
476   scf::ForOp::getCanonicalizationPatterns(patterns, ctx);
477   scf::ParallelOp::getCanonicalizationPatterns(patterns, ctx);
478   ConstantIndexOp::getCanonicalizationPatterns(patterns, ctx);
479   SubViewOp::getCanonicalizationPatterns(patterns, ctx);
480   ViewOp::getCanonicalizationPatterns(patterns, ctx);
481   CanonicalizationPatternList<
482 #define GET_OP_LIST
483 #include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"
484       >::insert(patterns, ctx);
485   return patterns;
486 }
487 
488 /// Populate the given list with patterns that apply Linalg tiling.
489 static void insertTilingPatterns(OwningRewritePatternList &patterns,
490                                  const LinalgTilingOptions &options,
491                                  MLIRContext *ctx) {
492   RewritePatternList<
493 #define GET_OP_LIST
494 #include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"
495       >::insert(patterns, options, ctx);
496 }
497 
498 static void applyTilingToLoopPatterns(LinalgTilingLoopType loopType,
499                                       FuncOp funcOp,
500                                       ArrayRef<int64_t> tileSizes) {
501   auto options =
502       LinalgTilingOptions().setTileSizes(tileSizes).setLoopType(loopType);
503   MLIRContext *ctx = funcOp.getContext();
504   OwningRewritePatternList patterns;
505   insertTilingPatterns(patterns, options, ctx);
506   applyPatternsAndFoldGreedily(funcOp, patterns);
507   applyPatternsAndFoldGreedily(funcOp,
508                                getLinalgTilingCanonicalizationPatterns(ctx));
509   // Drop the marker.
510   funcOp.walk([](LinalgOp op) {
511     op.removeAttr(LinalgTransforms::kLinalgTransformMarker);
512   });
513 }
514 
515 namespace {
516 struct LinalgTilingPass : public LinalgTilingBase<LinalgTilingPass> {
517   LinalgTilingPass() = default;
518   LinalgTilingPass(ArrayRef<int64_t> sizes) { tileSizes = sizes; }
519 
520   void runOnFunction() override {
521     applyTilingToLoopPatterns(LinalgTilingLoopType::Loops, getFunction(),
522                               tileSizes);
523   }
524 };
525 
526 struct LinalgTilingToParallelLoopsPass
527     : public LinalgTilingToParallelLoopsBase<LinalgTilingToParallelLoopsPass> {
528   LinalgTilingToParallelLoopsPass() = default;
529   LinalgTilingToParallelLoopsPass(ArrayRef<int64_t> sizes) {
530     tileSizes = sizes;
531   }
532 
533   void runOnFunction() override {
534     applyTilingToLoopPatterns(LinalgTilingLoopType::ParallelLoops,
535                               getFunction(), tileSizes);
536   }
537 };
538 
539 } // namespace
540 
541 std::unique_ptr<OperationPass<FuncOp>>
542 mlir::createLinalgTilingPass(ArrayRef<int64_t> tileSizes) {
543   return std::make_unique<LinalgTilingPass>(tileSizes);
544 }
545 
546 std::unique_ptr<OperationPass<FuncOp>>
547 mlir::createLinalgTilingToParallelLoopsPass(ArrayRef<int64_t> tileSizes) {
548   return std::make_unique<LinalgTilingToParallelLoopsPass>(tileSizes);
549 }
550