1 //===- Loops.cpp - conversion from Linalg named and generic ops to loops --===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "PassDetail.h" 10 #include "mlir/Dialect/Affine/EDSC/Intrinsics.h" 11 #include "mlir/Dialect/Linalg/EDSC/FoldedIntrinsics.h" 12 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 13 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h" 14 #include "mlir/Dialect/Linalg/Passes.h" 15 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 16 #include "mlir/Dialect/Linalg/Utils/Utils.h" 17 #include "mlir/Dialect/SCF/EDSC/Builders.h" 18 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h" 19 #include "mlir/IR/AffineExpr.h" 20 #include "mlir/IR/AffineMap.h" 21 #include "mlir/IR/BlockAndValueMapping.h" 22 #include "mlir/Support/LLVM.h" 23 #include "mlir/Transforms/DialectConversion.h" 24 #include "mlir/Transforms/FoldUtils.h" 25 26 #include "llvm/ADT/TypeSwitch.h" 27 28 using namespace mlir; 29 using namespace mlir::edsc; 30 using namespace mlir::edsc::intrinsics; 31 using namespace mlir::linalg; 32 33 using edsc::op::operator+; 34 35 static SmallVector<Value, 8> makeCanonicalAffineApplies(OpBuilder &b, 36 Location loc, 37 AffineMap map, 38 ArrayRef<Value> vals) { 39 if (map.isEmpty()) 40 return {}; 41 42 assert(map.getNumInputs() == vals.size()); 43 SmallVector<Value, 8> res; 44 res.reserve(map.getNumResults()); 45 auto dims = map.getNumDims(); 46 for (auto e : map.getResults()) { 47 auto exprMap = AffineMap::get(dims, map.getNumSymbols(), e); 48 SmallVector<Value, 4> operands(vals.begin(), vals.end()); 49 canonicalizeMapAndOperands(&exprMap, &operands); 50 res.push_back(affine_apply(exprMap, operands)); 51 } 52 return res; 53 } 54 55 static SmallVector<Value, 4> permuteIvs(ArrayRef<Value> ivs, 56 Optional<AffineMap> permutation) { 57 return permutation ? applyMapToValues(ScopedContext::getBuilderRef(), 58 ScopedContext::getLocation(), 59 permutation.getValue(), ivs) 60 : SmallVector<Value, 4>(ivs.begin(), ivs.end()); 61 } 62 63 template <typename IndexedValueType, typename OpType> 64 static void inlineRegionAndEmitStore(OpType op, ArrayRef<Value> indexedValues, 65 ArrayRef<SmallVector<Value, 8>> indexing, 66 ArrayRef<Value> outputBuffers) { 67 assert(op.getOperation()->getNumRegions() == 1 && 68 "Expected single region op"); 69 auto &b = ScopedContext::getBuilderRef(); 70 auto &block = op.getOperation()->getRegion(0).front(); 71 BlockAndValueMapping map; 72 map.map(block.getArguments(), indexedValues); 73 for (auto &op : block.without_terminator()) { 74 assert(op.getNumRegions() == 0 && "expected a non-nested region"); 75 auto *newOp = b.clone(op, map); 76 map.map(op.getResults(), newOp->getResults()); 77 } 78 79 Operation &terminator = block.back(); 80 assert(isa<linalg::YieldOp>(terminator) && 81 "expected a yield op in the end of the region"); 82 for (unsigned i = 0, e = terminator.getNumOperands(); i < e; ++i) { 83 IndexedValueType O(outputBuffers[i]); 84 O(indexing[i]) = map.lookupOrDefault(terminator.getOperand(i)); 85 } 86 } 87 88 // Returns a pair that contains input indices and output indices of a 89 // SingleInputPoolingOp `op`. 90 struct InputAndOutputIndices { 91 SmallVector<Value, 8> inputs; 92 SmallVector<Value, 8> outputs; 93 }; 94 template <typename SingleInputPoolingOp> 95 static InputAndOutputIndices getInputAndOutputIndices(ArrayRef<Value> allIvs, 96 SingleInputPoolingOp op) { 97 auto &b = ScopedContext::getBuilderRef(); 98 auto loc = ScopedContext::getLocation(); 99 auto mapsRange = op.indexing_maps().template getAsRange<AffineMapAttr>(); 100 auto maps = llvm::to_vector<8>( 101 llvm::map_range(mapsRange, [](AffineMapAttr a) { return a.getValue(); })); 102 return InputAndOutputIndices{ 103 makeCanonicalAffineApplies(b, loc, maps[0], allIvs), 104 makeCanonicalAffineApplies(b, loc, maps[2], allIvs)}; 105 } 106 107 /// Emits the MLIR for the scalar part of the generic op by: 108 /// 1. Emitting load ops for each input and output view in order. This is 109 /// achieved by applying the appropriate input or output map to the 110 /// enclosing induction variables. 111 /// 2. Emitting a call to `op.fun()` that takes as arguments the scalars 112 /// from point 1. above. 113 /// 3. Emitting store ops to store the results of 2. to the output 114 /// views. 115 /// 116 /// An example output may resemble: 117 /// 118 /// ``` 119 /// scf.for %i = %c0 to %0 step %c1 { 120 /// scf.for %j = %c0 to %1 step %c1 { 121 /// scf.for %k = %c0 to %4 step %c1 { 122 /// %11 = load %arg0[%i, %j] : 123 /// memref<?x?xf32, stride_specification> 124 /// %12 = load %arg1[%i, %j, %k] : 125 /// memref<?x?x?xf32, stride_specification> 126 /// %13 = load %arg2[%i, %k, %j] : 127 /// memref<?x?x?xf32, stride_specification> 128 /// %14:2 = call @foo(%11, %12, %13) : (f32, f32, f32) -> (f32, f32) 129 /// store %14#0, %arg1[%i, %j, %k] : 130 /// memref<?x?x?Xf32, stride_specification> 131 /// store %14#1, %arg2[%i, %k, %j] : 132 /// memref<?x?x?Xf32, stride_specification> 133 /// } 134 /// } 135 /// } 136 /// ``` 137 template <typename IndexedValueType> 138 static void emitScalarImplementation(ArrayRef<Value> allIvs, 139 LinalgOp linalgOp) { 140 assert(linalgOp.hasBufferSemantics() && 141 "expected linalg op with buffer semantics"); 142 auto &b = ScopedContext::getBuilderRef(); 143 auto loc = ScopedContext::getLocation(); 144 unsigned nInputs = linalgOp.getNumInputs(); 145 unsigned nOutputs = linalgOp.getNumOutputs(); 146 SmallVector<Value, 4> indexedValues; 147 indexedValues.reserve(nInputs + nOutputs); 148 149 auto attr = linalgOp.template getAttrOfType<IntegerAttr>("symbol_source"); 150 auto allIvsPlusDims = SmallVector<Value, 4>(allIvs.begin(), allIvs.end()); 151 if (attr) { 152 auto operand = linalgOp.getOperation()->getOperand(attr.getInt()); 153 auto shapedType = operand.getType().template cast<ShapedType>(); 154 allIvsPlusDims.reserve(allIvs.size() + shapedType.getRank()); 155 for (unsigned idx = 0, e = shapedType.getRank(); idx < e; ++idx) 156 allIvsPlusDims.push_back(b.create<DimOp>(loc, operand, idx)); 157 } 158 159 // TODO: Avoid the loads if the corresponding argument of the 160 // region has no uses. 161 // 1.a. Emit load from input views. 162 for (unsigned i = 0; i < nInputs; ++i) { 163 auto indexing = makeCanonicalAffineApplies( 164 b, loc, linalgOp.getInputIndexingMap(i), allIvsPlusDims); 165 // Passing through IndexedValueType emits the proper load operation. 166 indexedValues.push_back(IndexedValueType(linalgOp.getInput(i))(indexing)); 167 } 168 // 1.b. Emit load from output views. 169 for (unsigned i = 0; i < nOutputs; ++i) { 170 auto indexing = makeCanonicalAffineApplies( 171 b, loc, linalgOp.getOutputIndexingMap(i), allIvsPlusDims); 172 // Passing through IndexedValueType emits the proper load operation. 173 indexedValues.push_back( 174 IndexedValueType(linalgOp.getOutputBuffer(i))(indexing)); 175 } 176 177 // TODO: When a region inliner exists, use it. 178 // 2. Inline region, currently only works for a single basic block. 179 // 3. Emit store. 180 SmallVector<SmallVector<Value, 8>, 8> indexing; 181 SmallVector<Value, 8> outputBuffers; 182 for (unsigned i = 0; i < nOutputs; ++i) { 183 indexing.push_back(makeCanonicalAffineApplies( 184 b, loc, linalgOp.getOutputIndexingMap(i), allIvsPlusDims)); 185 outputBuffers.push_back(linalgOp.getOutputBuffer(i)); 186 } 187 inlineRegionAndEmitStore<IndexedValueType>(linalgOp, indexedValues, indexing, 188 outputBuffers); 189 } 190 191 template <typename IndexedValueType> 192 static void emitScalarImplementation(ArrayRef<Value> allIvs, CopyOp copyOp) { 193 assert(copyOp.hasBufferSemantics() && 194 "expected linalg op with buffer semantics"); 195 auto nPar = copyOp.getNumParallelLoops(); 196 assert(nPar == allIvs.size()); 197 auto inputIvs = 198 permuteIvs(allIvs.take_front(nPar), copyOp.inputPermutation()); 199 auto outputIvs = 200 permuteIvs(allIvs.take_front(nPar), copyOp.outputPermutation()); 201 SmallVector<Value, 8> iivs(inputIvs.begin(), inputIvs.end()); 202 SmallVector<Value, 8> oivs(outputIvs.begin(), outputIvs.end()); 203 IndexedValueType O(copyOp.getOutputBuffer(0)), I(copyOp.getInput(0)); 204 // Emit the proper scalar assignment, whether we are dealing with a 0-D or 205 // an n-D loop nest; with or without permutations. 206 // clang-format off 207 nPar > 0 ? O(oivs) = I(iivs) : 208 O() = I(); 209 // clang-format on 210 } 211 212 template <typename IndexedValueType> 213 static void emitScalarImplementation(ArrayRef<Value> allIvs, FillOp fillOp) { 214 assert(fillOp.hasBufferSemantics() && 215 "expected linalg op with buffer semantics"); 216 auto nPar = fillOp.getNumParallelLoops(); 217 assert(nPar == allIvs.size()); 218 auto ivs = SmallVector<Value, 4>(allIvs.begin(), allIvs.begin() + nPar); 219 IndexedValueType O(fillOp.getOutputBuffer(0)); 220 // Emit the proper scalar assignment, whether we are dealing with a 0-D or 221 // an n-D loop nest; with or without permutations. 222 nPar > 0 ? O(ivs) = fillOp.value() : O() = fillOp.value(); 223 } 224 225 // Create a padded view into the given `input` tensor using the 'indices' 226 // to access the tensor. `skipPadding` lists the dimensions for which no padding 227 // is needed e.g. the non-spatial dimensions for convolutions. 228 template <typename IndexedValueType> 229 Value getPaddedInput(Value input, ArrayRef<Value> indices, 230 ArrayRef<int> skipPadding, Value padValue) { 231 // TODO: add a level of indirection to linalg.generic. 232 233 IndexedValueType indexedInput(input); 234 235 auto *context = ScopedContext::getContext(); 236 Value zeroIndex = std_constant_index(0); 237 SmallVector<Value, 8> conds; 238 SmallVector<Value, 8> clampedImIdx; 239 for (auto iter : llvm::enumerate(indices)) { 240 int idx = iter.index(); 241 auto dim = iter.value(); 242 if (is_contained(skipPadding, idx)) { 243 clampedImIdx.push_back(dim); 244 continue; 245 } 246 247 using edsc::op::sge; 248 using edsc::op::slt; 249 using edsc::op::operator||; 250 Value leftOutOfBound = slt(dim, zeroIndex); 251 if (conds.empty()) 252 conds.push_back(leftOutOfBound); 253 else 254 conds.push_back(conds.back() || leftOutOfBound); 255 Value rightBound = std_dim(input, idx); 256 conds.push_back(conds.back() || (sge(dim, rightBound))); 257 258 // When padding is involved, the indices will only be shifted to negative, 259 // so having a max op is enough. 260 auto maxMap = AffineMap::get(/*dimCount=*/1, 0, 261 {getAffineDimExpr(/*position=*/0, context), 262 getAffineConstantExpr(0, context)}, 263 context); 264 clampedImIdx.push_back(affine_max(dim.getType(), maxMap, ValueRange{dim})); 265 } 266 267 Value readInput = indexedInput(clampedImIdx); 268 return conds.empty() ? readInput 269 : (Value)std_select(conds.back(), padValue, readInput); 270 } 271 272 namespace { 273 274 /// The padding value for a given Op depends on the semantics of the Op. 275 /// The identity value for ConvOp and PoolingSumOp is 0, for PoolingMaxOp is 276 /// -inf or minInt and for PoolingMinOp is inf or maxInt. 277 template <typename OpType> 278 Attribute getPadValueAttr(Type type) { 279 llvm_unreachable("Unexpected op type for getPadValueAttr"); 280 return {}; 281 } 282 283 template <> 284 Attribute getPadValueAttr<PoolingMaxOp>(Type type) { 285 auto &b = ScopedContext::getBuilderRef(); 286 if (auto floatType = type.dyn_cast<FloatType>()) { 287 return b.getFloatAttr( 288 floatType, 289 APFloat::getInf(floatType.getFloatSemantics(), /*Negative*/ true)); 290 } 291 if (auto intType = type.dyn_cast<IntegerType>()) { 292 unsigned width = intType.getWidth(); 293 // The select instruction used to lower the PoolingMin uses a signed 294 // comparison, use a signed constant irrespective of the signedness of the 295 // integer type. 296 return b.getIntegerAttr(intType, APInt::getSignedMinValue(width)); 297 } 298 llvm_unreachable("Unsupported data type for PoolingMaxOp"); 299 return {}; 300 } 301 302 template <> 303 Attribute getPadValueAttr<PoolingMinOp>(Type type) { 304 auto &b = ScopedContext::getBuilderRef(); 305 if (auto floatType = type.dyn_cast<FloatType>()) { 306 return b.getFloatAttr(floatType, 307 APFloat::getInf(floatType.getFloatSemantics())); 308 } 309 if (auto intType = type.dyn_cast<IntegerType>()) { 310 unsigned width = intType.getWidth(); 311 // The select instruction used to lower the PoolingMin uses a signed 312 // comparison, use a signed constant irrespective of the signedness of the 313 // integer type. 314 return b.getIntegerAttr(intType, APInt::getSignedMaxValue(width)); 315 } 316 llvm_unreachable("Unsupported data type for PoolingMinOp"); 317 return {}; 318 } 319 320 template <> 321 Attribute getPadValueAttr<PoolingSumOp>(Type type) { 322 auto &b = ScopedContext::getBuilderRef(); 323 return b.getZeroAttr(type); 324 } 325 326 template <> 327 Attribute getPadValueAttr<ConvOp>(Type type) { 328 auto &b = ScopedContext::getBuilderRef(); 329 return b.getZeroAttr(type); 330 } 331 332 } // namespace 333 334 /// Returns true is `convOp` has a non-zero padding. 335 static bool hasPadding(ConvOp convOp) { 336 for (unsigned i = 0, e = convOp.getNumSpatialDimensions(); i < e; ++i) { 337 if (convOp.getLowPad(i) > 0 || convOp.getHighPad(i) > 0) 338 return true; 339 } 340 return false; 341 } 342 343 template <typename IndexedValueType> 344 static void emitScalarImplementation(ArrayRef<Value> allIvs, ConvOp convOp) { 345 assert(convOp.hasBufferSemantics() && 346 "expected linalg op with buffer semantics"); 347 auto &b = ScopedContext::getBuilderRef(); 348 auto loc = ScopedContext::getLocation(); 349 auto mapsRange = convOp.indexing_maps().getAsRange<AffineMapAttr>(); 350 auto maps = llvm::to_vector<8>( 351 llvm::map_range(mapsRange, [](AffineMapAttr a) { return a.getValue(); })); 352 SmallVector<Value, 8> fIdx( 353 makeCanonicalAffineApplies(b, loc, maps[0], allIvs)); 354 SmallVector<Value, 8> imIdx( 355 makeCanonicalAffineApplies(b, loc, maps[1], allIvs)); 356 SmallVector<Value, 8> oIdx( 357 makeCanonicalAffineApplies(b, loc, maps[2], allIvs)); 358 359 IndexedValueType F(convOp.filter()), O(convOp.output()); 360 361 // Emit scalar form. Padded conv involves an affine.max in the memory access 362 // which is not allowed by affine.load. Override to use an StdIndexedValue 363 // when there is non-zero padding. 364 if (hasPadding(convOp)) { 365 Type type = convOp.input().getType().cast<MemRefType>().getElementType(); 366 Value padValue = std_constant(type, getPadValueAttr<ConvOp>(type)); 367 Value paddedInput = getPaddedInput<StdIndexedValue>( 368 convOp.input(), imIdx, 369 /* Only need to pad the window dimensions */ 370 {0, static_cast<int>(imIdx.size()) - 1}, padValue); 371 O(oIdx) += F(fIdx) * paddedInput; 372 } else { 373 IndexedValueType I(convOp.input()); 374 O(oIdx) += F(fIdx) * I(imIdx); 375 } 376 } 377 378 template <typename PoolingOp> 379 static bool hasPadding(PoolingOp poolingOp) { 380 for (unsigned i = 0, e = poolingOp.getNumWindowLoops(); i < e; ++i) { 381 if (poolingOp.getLowPad(i) > 0 || poolingOp.getHighPad(i) > 0) 382 return true; 383 } 384 return false; 385 } 386 387 template <typename IndexedValueType, typename PoolingOp> 388 static Value getPoolingInput(PoolingOp op, ArrayRef<Value> inputIndices) { 389 if (hasPadding(op)) { 390 Type type = 391 op.input().getType().template cast<MemRefType>().getElementType(); 392 Value padValue = std_constant(type, getPadValueAttr<PoolingOp>(type)); 393 return getPaddedInput<StdIndexedValue>(op.input(), inputIndices, 394 /*Pad every dimension*/ {}, 395 padValue); 396 } 397 IndexedValueType input(op.input()); 398 return input(inputIndices); 399 } 400 401 template <typename IndexedValueType, typename OpType> 402 void emitPoolingMinMaxScalarImplementation(ArrayRef<Value> allIvs, OpType op) { 403 InputAndOutputIndices indices = getInputAndOutputIndices(allIvs, op); 404 // Emit scalar form. 405 IndexedValueType output(op.output()); 406 Value lhs = output(indices.outputs); 407 Value rhs = getPoolingInput<IndexedValueType>(op, indices.inputs); 408 using edsc::op::sgt; 409 using edsc::op::slt; 410 Value value = std::is_same<OpType, PoolingMinOp>() 411 ? std_select(slt(lhs, rhs), lhs, rhs) 412 : std_select(sgt(lhs, rhs), lhs, rhs); 413 output(indices.outputs) = value; 414 } 415 416 template <typename IndexedValueType> 417 static void emitScalarImplementation(ArrayRef<Value> allIvs, PoolingMaxOp op) { 418 emitPoolingMinMaxScalarImplementation<IndexedValueType, PoolingMaxOp>(allIvs, 419 op); 420 } 421 422 template <typename IndexedValueType> 423 static void emitScalarImplementation(ArrayRef<Value> allIvs, PoolingMinOp op) { 424 emitPoolingMinMaxScalarImplementation<IndexedValueType, PoolingMinOp>(allIvs, 425 op); 426 } 427 428 template <typename IndexedValueType> 429 static void emitScalarImplementation(ArrayRef<Value> allIvs, PoolingSumOp op) { 430 auto indices = getInputAndOutputIndices(allIvs, op); 431 IndexedValueType output(op.output()); 432 433 // Emit scalar form. 434 output(indices.outputs) += 435 getPoolingInput<IndexedValueType>(op, indices.inputs); 436 } 437 438 /// Emits the MLIR for the scalar part of the indexed generic op by: 439 /// 1. Emitting load ops for each input and output view in order. This is 440 /// achieved by applying the appropriate input or output map to the 441 /// enclosing induction variables. 442 /// 2. Emitting a call to `op.fun()` that takes as arguments the induction 443 /// variables and the scalars from point 1. above. 444 /// 3. Emitting store ops to store the results of 2. to the output views. 445 /// 446 /// An example output may resemble: 447 /// 448 /// ``` 449 /// scf.for %i = %c0 to %0 step %c1 { 450 /// scf.for %j = %c0 to %1 step %c1 { 451 /// scf.for %k = %c0 to %4 step %c1 { 452 /// %11 = load %arg0[%i, %j] : 453 /// memref<?x?xf32, stride_specification> 454 /// %12 = load %arg1[%i, %j, %k] : 455 /// memref<?x?x?xf32, stride_specification> 456 /// %13 = load %arg2[%i, %k, %j] : 457 /// memref<?x?x?xf32, stride_specification> 458 /// %14:2 = call @foo(%i, %j, %k, %11, %12, %13) : 459 /// (index, index, index, f32, f32, f32) -> (f32, f32) 460 /// store %14#0, %arg1[%i, %j, %k] : 461 /// memref<?x?x?Xf32, stride_specification> 462 /// store %14#1, %arg2[%i, %k, %j] : 463 /// memref<?x?x?Xf32, stride_specification> 464 /// } 465 /// } 466 /// } 467 /// ``` 468 template <typename IndexedValueType> 469 static void emitScalarImplementation(ArrayRef<Value> allIvs, 470 IndexedGenericOp indexedGenericOp) { 471 assert(indexedGenericOp.hasBufferSemantics() && 472 "expected linalg op with buffer semantics"); 473 auto &b = ScopedContext::getBuilderRef(); 474 auto loc = ScopedContext::getLocation(); 475 unsigned nInputs = indexedGenericOp.getNumInputs(); 476 unsigned nOutputs = indexedGenericOp.getNumOutputs(); 477 unsigned nLoops = allIvs.size(); 478 SmallVector<Value, 4> indexedValues; 479 indexedValues.reserve(nLoops + nInputs + nOutputs); 480 for (unsigned i = 0; i < nLoops; ++i) 481 indexedValues.push_back(allIvs[i]); 482 483 // TODO: Avoid the loads if the corresponding argument of the 484 // region has no uses. 485 // 1.a. Emit load from input views. 486 for (unsigned i = 0; i < nInputs; ++i) { 487 auto indexing = makeCanonicalAffineApplies( 488 b, loc, indexedGenericOp.getInputIndexingMap(i), allIvs); 489 // Pass input i through IndexedValueType emits the proper load operation. 490 indexedValues.push_back( 491 IndexedValueType(indexedGenericOp.getInput(i))(indexing)); 492 } 493 // 1.b. Emit load from output views. 494 for (unsigned i = 0; i < nOutputs; ++i) { 495 auto indexing = makeCanonicalAffineApplies( 496 b, loc, indexedGenericOp.getOutputIndexingMap(i), allIvs); 497 // Pass output i through IndexedValueType emits the proper load operation. 498 indexedValues.push_back( 499 IndexedValueType(indexedGenericOp.getOutputBuffer(i))(indexing)); 500 } 501 502 // TODO: When a region inliner exists, use it. 503 // 2. Inline region, currently only works for a single basic block. 504 // 3. Emit store. 505 SmallVector<SmallVector<Value, 8>, 8> indexing; 506 SmallVector<Value, 8> outputBuffers; 507 for (unsigned i = 0; i < nOutputs; ++i) { 508 indexing.push_back(makeCanonicalAffineApplies( 509 b, loc, indexedGenericOp.getOutputIndexingMap(i), allIvs)); 510 outputBuffers.push_back(indexedGenericOp.getOutputBuffer(i)); 511 } 512 inlineRegionAndEmitStore<IndexedValueType>(indexedGenericOp, indexedValues, 513 indexing, outputBuffers); 514 } 515 516 template <typename LoopTy> 517 static Optional<LinalgLoops> linalgOpToLoopsImpl(Operation *op, 518 OpBuilder &builder) { 519 using IndexedValueTy = typename GenerateLoopNest<LoopTy>::IndexedValueTy; 520 521 ScopedContext scope(builder, op->getLoc()); 522 523 // The flattened loopToOperandRangesMaps is expected to be an invertible 524 // permutation map (which is asserted in the inverse calculation). 525 auto linalgOp = cast<LinalgOp>(op); 526 assert(linalgOp.hasBufferSemantics() && 527 "expected linalg op with buffer semantics"); 528 auto mapsRange = 529 linalgOp.indexing_maps().template getAsRange<AffineMapAttr>(); 530 auto maps = llvm::to_vector<8>( 531 llvm::map_range(mapsRange, [](AffineMapAttr a) { return a.getValue(); })); 532 SmallVector<Value, 8> sizes = getShape(builder, linalgOp); 533 AffineMap map = concatAffineMaps(maps); 534 auto loopRanges = emitLoopRanges(scope.getBuilderRef(), scope.getLocation(), 535 map, getShape(builder, linalgOp)); 536 SmallVector<Value, 4> allIvs; 537 GenerateLoopNest<LoopTy>::doit( 538 loopRanges, /*iterInitArgs*/ {}, linalgOp.iterator_types().getValue(), 539 [&](ValueRange ivs, ValueRange iterArgs) -> scf::ValueVector { 540 assert(iterArgs.empty() && "unexpected iterArgs"); 541 allIvs.append(ivs.begin(), ivs.end()); 542 llvm::TypeSwitch<Operation *>(op) 543 .Case<CopyOp, FillOp, ConvOp, PoolingMaxOp, PoolingMinOp, 544 PoolingSumOp, IndexedGenericOp, LinalgOp>([&](auto op) { 545 emitScalarImplementation<IndexedValueTy>(allIvs, op); 546 }) 547 .Default([&](Operation *op) { assert(false && "unexpected op"); }); 548 return scf::ValueVector{}; 549 }); 550 // Number of loop ops might be different from the number of ivs since some 551 // loops like affine.parallel and scf.parallel have multiple ivs. 552 llvm::SetVector<Operation *> loopSet; 553 for (Value iv : allIvs) { 554 if (!iv) 555 return {}; 556 // The induction variable is a block argument of the entry block of the 557 // loop operation. 558 BlockArgument ivVal = iv.dyn_cast<BlockArgument>(); 559 if (!ivVal) 560 return {}; 561 loopSet.insert(ivVal.getOwner()->getParentOp()); 562 } 563 LinalgLoops loops(loopSet.begin(), loopSet.end()); 564 return loops; 565 } 566 567 namespace { 568 template <typename LoopType> 569 class LinalgRewritePattern : public RewritePattern { 570 public: 571 LinalgRewritePattern() : RewritePattern(/*benefit=*/1, MatchAnyOpTypeTag()) {} 572 573 LogicalResult matchAndRewrite(Operation *op, 574 PatternRewriter &rewriter) const override { 575 if (!isa<LinalgOp>(op)) 576 return failure(); 577 if (!linalgOpToLoopsImpl<LoopType>(op, rewriter)) 578 return failure(); 579 rewriter.eraseOp(op); 580 return success(); 581 } 582 }; 583 584 struct FoldAffineOp; 585 } // namespace 586 587 template <typename LoopType> 588 static void lowerLinalgToLoopsImpl(FuncOp funcOp, MLIRContext *context) { 589 OwningRewritePatternList patterns; 590 patterns.insert<LinalgRewritePattern<LoopType>>(); 591 DimOp::getCanonicalizationPatterns(patterns, context); 592 AffineApplyOp::getCanonicalizationPatterns(patterns, context); 593 patterns.insert<FoldAffineOp>(context); 594 // Just apply the patterns greedily. 595 applyPatternsAndFoldGreedily(funcOp, patterns); 596 } 597 598 namespace { 599 /// Local folding pattern for AffineApplyOp that we can apply greedily. 600 /// This replaces AffineApplyOp by the proper value in cases where the 601 /// associated map is trivial. 602 /// A trivial map here is defined as a map with a single result and either: 603 /// 1. Zero operand + returns a single AffineConstantExpr 604 /// 2. One operand + returns a single AffineDimExpr 605 /// 3. One operand + returns a single AffineSymbolExpr 606 // 607 /// In the first case, the AffineApplyOp is replaced by a new constant. In the 608 /// other cases, it is replaced by its unique operand. 609 struct FoldAffineOp : public RewritePattern { 610 FoldAffineOp(MLIRContext *context) 611 : RewritePattern(AffineApplyOp::getOperationName(), 0, context) {} 612 613 LogicalResult matchAndRewrite(Operation *op, 614 PatternRewriter &rewriter) const override { 615 AffineApplyOp affineApplyOp = cast<AffineApplyOp>(op); 616 auto map = affineApplyOp.getAffineMap(); 617 if (map.getNumResults() != 1 || map.getNumInputs() > 1) 618 return failure(); 619 620 AffineExpr expr = map.getResult(0); 621 if (map.getNumInputs() == 0) { 622 if (auto val = expr.dyn_cast<AffineConstantExpr>()) { 623 rewriter.replaceOpWithNewOp<ConstantIndexOp>(op, val.getValue()); 624 return success(); 625 } 626 return failure(); 627 } 628 if (expr.dyn_cast<AffineDimExpr>() || expr.dyn_cast<AffineSymbolExpr>()) { 629 rewriter.replaceOp(op, op->getOperand(0)); 630 return success(); 631 } 632 return failure(); 633 } 634 }; 635 636 struct LowerToAffineLoops 637 : public LinalgLowerToAffineLoopsBase<LowerToAffineLoops> { 638 void runOnFunction() override { 639 lowerLinalgToLoopsImpl<AffineForOp>(getFunction(), &getContext()); 640 } 641 }; 642 643 struct LowerToLoops : public LinalgLowerToLoopsBase<LowerToLoops> { 644 void runOnFunction() override { 645 lowerLinalgToLoopsImpl<scf::ForOp>(getFunction(), &getContext()); 646 } 647 }; 648 649 struct LowerToParallelLoops 650 : public LinalgLowerToParallelLoopsBase<LowerToParallelLoops> { 651 void runOnFunction() override { 652 lowerLinalgToLoopsImpl<scf::ParallelOp>(getFunction(), &getContext()); 653 } 654 }; 655 } // namespace 656 657 std::unique_ptr<OperationPass<FuncOp>> mlir::createConvertLinalgToLoopsPass() { 658 return std::make_unique<LowerToLoops>(); 659 } 660 661 std::unique_ptr<OperationPass<FuncOp>> 662 mlir::createConvertLinalgToParallelLoopsPass() { 663 return std::make_unique<LowerToParallelLoops>(); 664 } 665 666 std::unique_ptr<OperationPass<FuncOp>> 667 mlir::createConvertLinalgToAffineLoopsPass() { 668 return std::make_unique<LowerToAffineLoops>(); 669 } 670 671 SmallVector<Range, 4> mlir::linalg::emitLoopRanges(OpBuilder &b, Location loc, 672 AffineMap map, 673 ValueRange viewSizes) { 674 unsigned numDims = map.getNumDims(), numRes = map.getNumResults(); 675 unsigned numSym = map.getNumSymbols(); 676 assert(viewSizes.size() == numRes + numSym && 677 "viewSizes must contain sizes of all views and values for symbols"); 678 SmallVector<Range, 4> res(numDims); 679 for (unsigned idx = 0; idx < numRes; ++idx) { 680 auto result = map.getResult(idx); 681 if (auto d = result.dyn_cast<AffineDimExpr>()) { 682 if (res[d.getPosition()].offset) 683 continue; 684 res[d.getPosition()] = 685 Range{std_constant_index(0), viewSizes[idx], std_constant_index(1)}; 686 } 687 688 // If the access pattern is of form (m, n)[s] -> (m + n - s floordiv 2), 689 // then the bounds are: 690 // (s floordiv 2) <= m <= (size(m) + s floordiv 2 - s + 1). 691 // where size(n) is applied to the symbol s. 692 // This is done statically now. 693 if (auto binOp = result.dyn_cast<AffineBinaryOpExpr>()) { 694 auto lhs = binOp.getLHS().dyn_cast<AffineBinaryOpExpr>(); 695 auto rhs = binOp.getRHS().dyn_cast<AffineBinaryOpExpr>(); 696 if (!lhs || !rhs || binOp.getKind() != AffineExprKind::Add || 697 lhs.getKind() != AffineExprKind::Add || 698 rhs.getKind() != mlir::AffineExprKind::Mul) 699 continue; 700 701 auto m = lhs.getLHS().dyn_cast<AffineDimExpr>(); 702 auto n = lhs.getRHS().dyn_cast<AffineDimExpr>(); 703 auto fDiv = rhs.getLHS().dyn_cast<AffineBinaryOpExpr>(); 704 auto minusOne = rhs.getRHS().dyn_cast<AffineConstantExpr>(); 705 if (!m || !n || !fDiv || !minusOne || 706 fDiv.getKind() != AffineExprKind::FloorDiv || 707 fDiv.getLHS().getKind() != AffineExprKind::SymbolId || 708 fDiv.getRHS().getKind() != AffineExprKind::Constant) 709 continue; 710 711 auto s = fDiv.getLHS().dyn_cast<AffineSymbolExpr>(); 712 if (minusOne.getValue() != -1) 713 continue; 714 715 int mPos = m.getPosition(); 716 AffineExpr one = getAffineConstantExpr(1, s.getContext()); 717 AffineExpr sizeOfM = getAffineSymbolExpr(numSym, s.getContext()); 718 // Construction of upper bound (size(m) + s floordiv 2 - s + 1). 719 AffineExpr upperOffsetExpr = sizeOfM + fDiv + one - s; 720 AffineMap fromMap = AffineMap::get(numDims, numSym + 1, fDiv); 721 AffineMap toMap = AffineMap::get(numDims, numSym + 1, upperOffsetExpr); 722 SmallVector<Value, 8> values(viewSizes.begin(), 723 viewSizes.begin() + numDims); 724 values.insert(values.end(), viewSizes.begin() + numRes, viewSizes.end()); 725 values.push_back(viewSizes[mPos]); 726 // Construction of the lower bound (s floordiv 2). 727 Value from = applyMapToValues(b, loc, fromMap, values).front(); 728 Value to = applyMapToValues(b, loc, toMap, values).front(); 729 res[mPos] = Range{from, to, std_constant_index(1)}; 730 } 731 } 732 return res; 733 } 734 735 /// Emits a loop nest with the proper body for `op`. 736 template <typename LoopTy> 737 Optional<LinalgLoops> mlir::linalg::linalgLowerOpToLoops(OpBuilder &builder, 738 Operation *op) { 739 return linalgOpToLoopsImpl<LoopTy>(op, builder); 740 } 741 742 template Optional<LinalgLoops> 743 mlir::linalg::linalgLowerOpToLoops<AffineForOp>(OpBuilder &builder, 744 Operation *op); 745 template Optional<LinalgLoops> 746 mlir::linalg::linalgLowerOpToLoops<scf::ForOp>(OpBuilder &builder, 747 Operation *op); 748 template Optional<LinalgLoops> 749 mlir::linalg::linalgLowerOpToLoops<scf::ParallelOp>(OpBuilder &builder, 750 Operation *op); 751 752 /// Emits a loop nest of `affine.for` with the proper body for `op`. 753 LogicalResult mlir::linalg::linalgOpToAffineLoops(OpBuilder &builder, 754 Operation *op) { 755 Optional<LinalgLoops> loops = linalgLowerOpToLoops<AffineForOp>(builder, op); 756 return loops ? success() : failure(); 757 } 758 759 /// Emits a loop nest of `scf.for` with the proper body for `op`. 760 LogicalResult mlir::linalg::linalgOpToLoops(OpBuilder &builder, Operation *op) { 761 Optional<LinalgLoops> loops = linalgLowerOpToLoops<scf::ForOp>(builder, op); 762 return loops ? success() : failure(); 763 } 764 765 /// Emits a loop nest of `scf.parallel` with the proper body for `op`. 766 LogicalResult mlir::linalg::linalgOpToParallelLoops(OpBuilder &builder, 767 Operation *op) { 768 Optional<LinalgLoops> loops = 769 linalgLowerOpToLoops<scf::ParallelOp>(builder, op); 770 return loops ? success() : failure(); 771 } 772