1 //===- Loops.cpp - conversion from Linalg named and generic ops to loops --===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "PassDetail.h" 10 #include "mlir/Dialect/Affine/EDSC/Intrinsics.h" 11 #include "mlir/Dialect/Linalg/EDSC/FoldedIntrinsics.h" 12 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 13 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h" 14 #include "mlir/Dialect/Linalg/Passes.h" 15 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 16 #include "mlir/Dialect/Linalg/Utils/Utils.h" 17 #include "mlir/Dialect/SCF/EDSC/Builders.h" 18 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h" 19 #include "mlir/IR/AffineExpr.h" 20 #include "mlir/IR/AffineMap.h" 21 #include "mlir/IR/BlockAndValueMapping.h" 22 #include "mlir/Support/LLVM.h" 23 #include "mlir/Transforms/DialectConversion.h" 24 #include "mlir/Transforms/FoldUtils.h" 25 26 using namespace mlir; 27 using namespace mlir::edsc; 28 using namespace mlir::edsc::intrinsics; 29 using namespace mlir::linalg; 30 31 using edsc::op::operator+; 32 33 static SmallVector<Value, 8> makeCanonicalAffineApplies(OpBuilder &b, 34 Location loc, 35 AffineMap map, 36 ArrayRef<Value> vals) { 37 if (map.isEmpty()) 38 return {}; 39 assert(map.getNumSymbols() == 0); 40 assert(map.getNumInputs() == vals.size()); 41 SmallVector<Value, 8> res; 42 res.reserve(map.getNumResults()); 43 auto dims = map.getNumDims(); 44 for (auto e : map.getResults()) { 45 auto exprMap = AffineMap::get(dims, 0, e); 46 SmallVector<Value, 4> operands(vals.begin(), vals.end()); 47 canonicalizeMapAndOperands(&exprMap, &operands); 48 res.push_back(affine_apply(exprMap, operands)); 49 } 50 return res; 51 } 52 53 static SmallVector<Value, 4> permuteIvs(ArrayRef<Value> ivs, 54 Optional<AffineMap> permutation) { 55 return permutation ? applyMapToValues(ScopedContext::getBuilderRef(), 56 ScopedContext::getLocation(), 57 permutation.getValue(), ivs) 58 : SmallVector<Value, 4>(ivs.begin(), ivs.end()); 59 } 60 61 // Creates a number of ranges equal to the number of results in `map`. 62 // The returned ranges correspond to the loop ranges, in the proper order, for 63 // which new loops will be created. 64 static SmallVector<SubViewOp::Range, 4> 65 emitLoopRanges(OpBuilder &b, Location loc, AffineMap map, 66 ArrayRef<Value> allViewSizes) { 67 // Apply `map` to get view sizes in loop order. 68 auto sizes = applyMapToValues(b, loc, map, allViewSizes); 69 // Create a new range with the applied tile sizes. 70 ScopedContext scope(b, loc); 71 SmallVector<SubViewOp::Range, 4> res; 72 for (unsigned idx = 0, e = map.getNumResults(); idx < e; ++idx) { 73 res.push_back(SubViewOp::Range{std_constant_index(0), sizes[idx], 74 std_constant_index(1)}); 75 } 76 return res; 77 } 78 79 template <typename IndexedValueType, typename OpType> 80 static void inlineRegionAndEmitStore(OpType op, ArrayRef<Value> indexedValues, 81 ArrayRef<SmallVector<Value, 8>> indexing, 82 ArrayRef<Value> outputBuffers) { 83 auto &b = ScopedContext::getBuilderRef(); 84 auto &block = op.region().front(); 85 BlockAndValueMapping map; 86 map.map(block.getArguments(), indexedValues); 87 for (auto &op : block.without_terminator()) { 88 assert(op.getNumRegions() == 0 && "expected a non-nested region"); 89 auto *newOp = b.clone(op, map); 90 map.map(op.getResults(), newOp->getResults()); 91 } 92 93 Operation &terminator = block.back(); 94 assert(isa<YieldOp>(terminator) && 95 "expected a yield op in the end of the region"); 96 for (unsigned i = 0, e = terminator.getNumOperands(); i < e; ++i) { 97 IndexedValueType O(outputBuffers[i]); 98 O(indexing[i]) = map.lookupOrDefault(terminator.getOperand(i)); 99 } 100 } 101 102 // Returns a pair that contains input indices and output indices of a 103 // SingleInputPoolingOp `op`. 104 struct InputAndOutputIndices { 105 SmallVector<Value, 8> inputs; 106 SmallVector<Value, 8> outputs; 107 }; 108 template <typename SingleInputPoolingOp> 109 static InputAndOutputIndices getInputAndOutputIndices(ArrayRef<Value> allIvs, 110 SingleInputPoolingOp op) { 111 auto &b = ScopedContext::getBuilderRef(); 112 auto loc = ScopedContext::getLocation(); 113 auto mapsRange = op.indexing_maps().template getAsRange<AffineMapAttr>(); 114 auto maps = llvm::to_vector<8>( 115 llvm::map_range(mapsRange, [](AffineMapAttr a) { return a.getValue(); })); 116 return InputAndOutputIndices{ 117 makeCanonicalAffineApplies(b, loc, maps[0], allIvs), 118 makeCanonicalAffineApplies(b, loc, maps[2], allIvs)}; 119 } 120 121 namespace { 122 123 /// Emits the MLIR for the scalar part of the generic op by: 124 /// 1. Emitting load ops for each input and output view in order. This is 125 /// achieved by applying the appropriate input or output map to the 126 /// enclosing induction variables. 127 /// 2. Emitting a call to `op.fun()` that takes as arguments the scalars 128 /// from point 1. above. 129 /// 3. Emitting store ops to store the results of 2. to the output 130 /// views. 131 /// 132 /// An example output may resemble: 133 /// 134 /// ``` 135 /// scf.for %i = %c0 to %0 step %c1 { 136 /// scf.for %j = %c0 to %1 step %c1 { 137 /// scf.for %k = %c0 to %4 step %c1 { 138 /// %11 = load %arg0[%i, %j] : 139 /// memref<?x?xf32, stride_specification> 140 /// %12 = load %arg1[%i, %j, %k] : 141 /// memref<?x?x?xf32, stride_specification> 142 /// %13 = load %arg2[%i, %k, %j] : 143 /// memref<?x?x?xf32, stride_specification> 144 /// %14:2 = call @foo(%11, %12, %13) : (f32, f32, f32) -> (f32, f32) 145 /// store %14#0, %arg1[%i, %j, %k] : 146 /// memref<?x?x?Xf32, stride_specification> 147 /// store %14#1, %arg2[%i, %k, %j] : 148 /// memref<?x?x?Xf32, stride_specification> 149 /// } 150 /// } 151 /// } 152 /// ``` 153 template <typename IndexedValueType, typename LinalgOpType> 154 class LinalgScopedEmitter { 155 public: 156 static void emitScalarImplementation(ArrayRef<Value> allIvs, 157 LinalgOpType linalgOp) { 158 assert(linalgOp.hasBufferSemantics() && 159 "expected linalg op with buffer semantics"); 160 auto &b = ScopedContext::getBuilderRef(); 161 auto loc = ScopedContext::getLocation(); 162 unsigned nInputs = linalgOp.getNumInputs(); 163 unsigned nOutputs = linalgOp.getNumOutputs(); 164 SmallVector<Value, 4> indexedValues; 165 indexedValues.reserve(nInputs + nOutputs); 166 167 // TODO(mravishankar): Avoid the loads if the corresponding argument of the 168 // region has no uses. 169 // 1.a. Emit load from input views. 170 for (unsigned i = 0; i < nInputs; ++i) { 171 auto indexing = makeCanonicalAffineApplies( 172 b, loc, linalgOp.getInputIndexingMap(i), allIvs); 173 // Passing through IndexedValueType emits the proper load operation. 174 indexedValues.push_back(IndexedValueType(linalgOp.getInput(i))(indexing)); 175 } 176 // 1.b. Emit load from output views. 177 for (unsigned i = 0; i < nOutputs; ++i) { 178 auto indexing = makeCanonicalAffineApplies( 179 b, loc, linalgOp.getOutputIndexingMap(i), allIvs); 180 // Passing through IndexedValueType emits the proper load operation. 181 indexedValues.push_back( 182 IndexedValueType(linalgOp.getOutputBuffer(i))(indexing)); 183 } 184 185 // TODO(ntv): When a region inliner exists, use it. 186 // 2. Inline region, currently only works for a single basic block. 187 // 3. Emit store. 188 SmallVector<SmallVector<Value, 8>, 8> indexing; 189 SmallVector<Value, 8> outputBuffers; 190 for (unsigned i = 0; i < nOutputs; ++i) { 191 indexing.push_back(makeCanonicalAffineApplies( 192 b, loc, linalgOp.getOutputIndexingMap(i), allIvs)); 193 outputBuffers.push_back(linalgOp.getOutputBuffer(i)); 194 } 195 inlineRegionAndEmitStore<IndexedValueType>(linalgOp, indexedValues, 196 indexing, outputBuffers); 197 } 198 }; 199 200 template <typename IndexedValueType> 201 class LinalgScopedEmitter<IndexedValueType, CopyOp> { 202 public: 203 static void emitScalarImplementation(ArrayRef<Value> allIvs, CopyOp copyOp) { 204 assert(copyOp.hasBufferSemantics() && 205 "expected linalg op with buffer semantics"); 206 auto nPar = copyOp.getNumParallelLoops(); 207 assert(nPar == allIvs.size()); 208 auto inputIvs = 209 permuteIvs(allIvs.take_front(nPar), copyOp.inputPermutation()); 210 auto outputIvs = 211 permuteIvs(allIvs.take_front(nPar), copyOp.outputPermutation()); 212 SmallVector<Value, 8> iivs(inputIvs.begin(), inputIvs.end()); 213 SmallVector<Value, 8> oivs(outputIvs.begin(), outputIvs.end()); 214 IndexedValueType O(copyOp.getOutputBuffer(0)), I(copyOp.getInput(0)); 215 // Emit the proper scalar assignment, whether we are dealing with a 0-D or 216 // an n-D loop nest; with or without permutations. 217 // clang-format off 218 nPar > 0 ? O(oivs) = I(iivs) : 219 O() = I(); 220 // clang-format on 221 } 222 }; 223 224 template <typename IndexedValueType> 225 class LinalgScopedEmitter<IndexedValueType, FillOp> { 226 public: 227 static void emitScalarImplementation(ArrayRef<Value> allIvs, FillOp fillOp) { 228 assert(fillOp.hasBufferSemantics() && 229 "expected linalg op with buffer semantics"); 230 auto nPar = fillOp.getNumParallelLoops(); 231 assert(nPar == allIvs.size()); 232 auto ivs = SmallVector<Value, 4>(allIvs.begin(), allIvs.begin() + nPar); 233 IndexedValueType O(fillOp.getOutputBuffer(0)); 234 // Emit the proper scalar assignment, whether we are dealing with a 0-D or 235 // an n-D loop nest; with or without permutations. 236 nPar > 0 ? O(ivs) = fillOp.value() : O() = fillOp.value(); 237 } 238 }; 239 240 template <typename IndexedValueType> 241 class LinalgScopedEmitter<IndexedValueType, DotOp> { 242 public: 243 static void emitScalarImplementation(ArrayRef<Value> allIvs, DotOp dotOp) { 244 assert(dotOp.hasBufferSemantics() && 245 "expected linalg op with buffer semantics"); 246 assert(allIvs.size() == 1); 247 Value r_i(allIvs[0]); 248 IndexedValueType A(dotOp.getInput(0)), B(dotOp.getInput(1)), 249 C(dotOp.getOutputBuffer(0)); 250 // Emit scalar form. 251 C() = C() + A(r_i) * B(r_i); 252 } 253 }; 254 255 template <typename IndexedValueType> 256 class LinalgScopedEmitter<IndexedValueType, MatvecOp> { 257 public: 258 static void emitScalarImplementation(ArrayRef<Value> allIvs, 259 MatvecOp matvecOp) { 260 assert(matvecOp.hasBufferSemantics() && 261 "expected linalg op with buffer semantics"); 262 assert(allIvs.size() == 2); 263 Value i(allIvs[0]), r_j(allIvs[1]); 264 IndexedValueType A(matvecOp.getInput(0)), B(matvecOp.getInput(1)), 265 C(matvecOp.getOutputBuffer(0)); 266 // Emit scalar form. 267 C(i) = C(i) + A(i, r_j) * B(r_j); 268 } 269 }; 270 271 template <typename IndexedValueType> 272 class LinalgScopedEmitter<IndexedValueType, MatmulOp> { 273 public: 274 static void emitScalarImplementation(ArrayRef<Value> allIvs, 275 MatmulOp matmulOp) { 276 assert(matmulOp.hasBufferSemantics() && 277 "expected linalg op with buffer semantics"); 278 assert(allIvs.size() == 3); 279 Value i(allIvs[0]), j(allIvs[1]), r_k(allIvs[2]); 280 IndexedValueType A(matmulOp.getInput(0)), B(matmulOp.getInput(1)), 281 C(matmulOp.getOutputBuffer(0)); 282 // Emit scalar form. 283 C(i, j) = C(i, j) + A(i, r_k) * B(r_k, j); 284 } 285 }; 286 287 template <typename IndexedValueType> 288 class LinalgScopedEmitter<IndexedValueType, ConvOp> { 289 public: 290 /// Returns the input value of convOp. If the indices in `imIdx` is out of 291 /// boundary, returns 0 instead. 292 static Value getConvOpInput(ConvOp convOp, StdIndexedValue im, 293 MutableArrayRef<Value> imIdx) { 294 // TODO(ntv): add a level of indirection to linalg.generic. 295 if (!convOp.padding()) 296 return im(imIdx); 297 298 auto *context = ScopedContext::getContext(); 299 Value zeroIndex = std_constant_index(0); 300 SmallVector<Value, 8> conds; 301 SmallVector<Value, 8> clampedImIdx; 302 for (auto iter : llvm::enumerate(imIdx)) { 303 int idx = iter.index(); 304 auto dim = iter.value(); 305 // Only need to iterate over the window dimensions. 306 if (idx == 0 || idx == static_cast<int>(imIdx.size()) - 1) { 307 clampedImIdx.push_back(dim); 308 continue; 309 } 310 311 using edsc::op::operator<; 312 using edsc::op::operator>=; 313 using edsc::op::operator||; 314 Value leftOutOfBound = dim < zeroIndex; 315 if (conds.empty()) 316 conds.push_back(leftOutOfBound); 317 else 318 conds.push_back(conds.back() || leftOutOfBound); 319 Value rightBound = std_dim(convOp.input(), idx); 320 conds.push_back(conds.back() || (dim >= rightBound)); 321 322 // When padding is involved, the indices will only be shifted to negative, 323 // so having a max op is enough. 324 auto maxMap = AffineMap::get(/*dimCount=*/1, 0, 325 {getAffineDimExpr(/*position=*/0, context), 326 getAffineConstantExpr(0, context)}, 327 context); 328 clampedImIdx.push_back( 329 affine_max(dim.getType(), maxMap, ValueRange{dim})); 330 } 331 332 auto &b = ScopedContext::getBuilderRef(); 333 Type type = convOp.input().getType().cast<MemRefType>().getElementType(); 334 Value zero = std_constant(type, b.getZeroAttr(type)); 335 Value readInput = im(clampedImIdx); 336 return conds.empty() ? readInput 337 : (Value)std_select(conds.back(), zero, readInput); 338 } 339 340 /// Returns true is `convOp` has a non-zero padding. 341 static bool hasPadding(ConvOp convOp) { 342 for (unsigned i = 0, e = convOp.getNumSpatialDimensions(); i < e; ++i) { 343 if (convOp.getLowPad(i) > 0 || convOp.getHighPad(i) > 0) 344 return true; 345 } 346 return false; 347 } 348 349 static void emitScalarImplementation(ArrayRef<Value> allIvs, ConvOp convOp) { 350 assert(convOp.hasBufferSemantics() && 351 "expected linalg op with buffer semantics"); 352 auto &b = ScopedContext::getBuilderRef(); 353 auto loc = ScopedContext::getLocation(); 354 auto mapsRange = convOp.indexing_maps().getAsRange<AffineMapAttr>(); 355 auto maps = llvm::to_vector<8>(llvm::map_range( 356 mapsRange, [](AffineMapAttr a) { return a.getValue(); })); 357 SmallVector<Value, 8> fIdx( 358 makeCanonicalAffineApplies(b, loc, maps[0], allIvs)); 359 SmallVector<Value, 8> imIdx( 360 makeCanonicalAffineApplies(b, loc, maps[1], allIvs)); 361 SmallVector<Value, 8> oIdx( 362 makeCanonicalAffineApplies(b, loc, maps[2], allIvs)); 363 364 IndexedValueType F(convOp.filter()), O(convOp.output()); 365 366 // Emit scalar form. Padded conv involves an affine.max in the memory access 367 // which is not allowed by affine.load. Override to use an StdIndexedValue 368 // when there is non-zero padding. 369 if (hasPadding(convOp)) { 370 StdIndexedValue I(convOp.input()); 371 Value paddedInput = getConvOpInput(convOp, I, imIdx); 372 O(oIdx) += F(fIdx) * paddedInput; 373 } else { 374 IndexedValueType I(convOp.input()); 375 O(oIdx) += F(fIdx) * I(imIdx); 376 } 377 } 378 }; 379 380 template <typename IndexedValueType> 381 class LinalgScopedEmitter<IndexedValueType, PoolingMaxOp> { 382 public: 383 static void emitScalarImplementation(ArrayRef<Value> allIvs, 384 PoolingMaxOp op) { 385 auto indices = getInputAndOutputIndices(allIvs, op); 386 // Emit scalar form. 387 Value lhs = std_load(op.output(), indices.outputs); 388 Value rhs = std_load(op.input(), indices.inputs); 389 using edsc::op::operator>; 390 Value maxValue = std_select(lhs > rhs, lhs, rhs); 391 std_store(maxValue, op.output(), indices.outputs); 392 } 393 }; 394 395 template <typename IndexedValueType> 396 class LinalgScopedEmitter<IndexedValueType, PoolingMinOp> { 397 public: 398 static void emitScalarImplementation(ArrayRef<Value> allIvs, 399 PoolingMinOp op) { 400 auto indices = getInputAndOutputIndices(allIvs, op); 401 // Emit scalar form. 402 Value lhs = std_load(op.output(), indices.outputs); 403 Value rhs = std_load(op.input(), indices.inputs); 404 using edsc::op::operator<; 405 Value minValue = std_select(lhs < rhs, lhs, rhs); 406 std_store(minValue, op.output(), indices.outputs); 407 } 408 }; 409 410 template <typename IndexedValueType> 411 class LinalgScopedEmitter<IndexedValueType, PoolingSumOp> { 412 public: 413 static void emitScalarImplementation(ArrayRef<Value> allIvs, 414 PoolingSumOp op) { 415 auto indices = getInputAndOutputIndices(allIvs, op); 416 IndexedValueType input(op.input()), output(op.output()); 417 418 // Emit scalar form. 419 output(indices.outputs) += input(indices.inputs); 420 } 421 }; 422 423 /// Emits the MLIR for the scalar part of the indexed generic op by: 424 /// 1. Emitting load ops for each input and output view in order. This is 425 /// achieved by applying the appropriate input or output map to the 426 /// enclosing induction variables. 427 /// 2. Emitting a call to `op.fun()` that takes as arguments the induction 428 /// variables and the scalars from point 1. above. 429 /// 3. Emitting store ops to store the results of 2. to the output views. 430 /// 431 /// An example output may resemble: 432 /// 433 /// ``` 434 /// scf.for %i = %c0 to %0 step %c1 { 435 /// scf.for %j = %c0 to %1 step %c1 { 436 /// scf.for %k = %c0 to %4 step %c1 { 437 /// %11 = load %arg0[%i, %j] : 438 /// memref<?x?xf32, stride_specification> 439 /// %12 = load %arg1[%i, %j, %k] : 440 /// memref<?x?x?xf32, stride_specification> 441 /// %13 = load %arg2[%i, %k, %j] : 442 /// memref<?x?x?xf32, stride_specification> 443 /// %14:2 = call @foo(%i, %j, %k, %11, %12, %13) : 444 /// (index, index, index, f32, f32, f32) -> (f32, f32) 445 /// store %14#0, %arg1[%i, %j, %k] : 446 /// memref<?x?x?Xf32, stride_specification> 447 /// store %14#1, %arg2[%i, %k, %j] : 448 /// memref<?x?x?Xf32, stride_specification> 449 /// } 450 /// } 451 /// } 452 /// ``` 453 template <typename IndexedValueType> 454 class LinalgScopedEmitter<IndexedValueType, IndexedGenericOp> { 455 public: 456 static void emitScalarImplementation(ArrayRef<Value> allIvs, 457 IndexedGenericOp indexedGenericOp) { 458 assert(indexedGenericOp.hasBufferSemantics() && 459 "expected linalg op with buffer semantics"); 460 auto &b = ScopedContext::getBuilderRef(); 461 auto loc = ScopedContext::getLocation(); 462 unsigned nInputs = indexedGenericOp.getNumInputs(); 463 unsigned nOutputs = indexedGenericOp.getNumOutputs(); 464 unsigned nLoops = allIvs.size(); 465 SmallVector<Value, 4> indexedValues; 466 indexedValues.reserve(nLoops + nInputs + nOutputs); 467 for (unsigned i = 0; i < nLoops; ++i) 468 indexedValues.push_back(allIvs[i]); 469 470 // TODO(mravishankar): Avoid the loads if the corresponding argument of the 471 // region has no uses. 472 // 1.a. Emit load from input views. 473 for (unsigned i = 0; i < nInputs; ++i) { 474 auto indexing = makeCanonicalAffineApplies( 475 b, loc, indexedGenericOp.getInputIndexingMap(i), allIvs); 476 // Pass input i through IndexedValueType emits the proper load operation. 477 indexedValues.push_back( 478 IndexedValueType(indexedGenericOp.getInput(i))(indexing)); 479 } 480 // 1.b. Emit load from output views. 481 for (unsigned i = 0; i < nOutputs; ++i) { 482 auto indexing = makeCanonicalAffineApplies( 483 b, loc, indexedGenericOp.getOutputIndexingMap(i), allIvs); 484 // Pass output i through IndexedValueType emits the proper load operation. 485 indexedValues.push_back( 486 IndexedValueType(indexedGenericOp.getOutputBuffer(i))(indexing)); 487 } 488 489 // TODO(ntv): When a region inliner exists, use it. 490 // 2. Inline region, currently only works for a single basic block. 491 // 3. Emit store. 492 SmallVector<SmallVector<Value, 8>, 8> indexing; 493 SmallVector<Value, 8> outputBuffers; 494 for (unsigned i = 0; i < nOutputs; ++i) { 495 indexing.push_back(makeCanonicalAffineApplies( 496 b, loc, indexedGenericOp.getOutputIndexingMap(i), allIvs)); 497 outputBuffers.push_back(indexedGenericOp.getOutputBuffer(i)); 498 } 499 inlineRegionAndEmitStore<IndexedValueType>(indexedGenericOp, indexedValues, 500 indexing, outputBuffers); 501 } 502 }; 503 504 template <typename LoopTy, typename ConcreteOpTy> 505 Optional<LinalgLoops> linalgOpToLoopsImpl(Operation *op, OpBuilder &builder) { 506 using IndexedValueTy = typename GenerateLoopNest<LoopTy>::IndexedValueTy; 507 508 ScopedContext scope(builder, op->getLoc()); 509 510 // The flattened loopToOperandRangesMaps is expected to be an invertible 511 // permutation map (which is asserted in the inverse calculation). 512 auto linalgOp = cast<ConcreteOpTy>(op); 513 assert(linalgOp.hasBufferSemantics() && 514 "expected linalg op with buffer semantics"); 515 auto nPar = linalgOp.getNumParallelLoops(); 516 auto nRed = linalgOp.getNumReductionLoops(); 517 auto nWin = linalgOp.getNumWindowLoops(); 518 auto nLoops = nPar + nRed + nWin; 519 auto mapsRange = 520 linalgOp.indexing_maps().template getAsRange<AffineMapAttr>(); 521 auto maps = llvm::to_vector<8>( 522 llvm::map_range(mapsRange, [](AffineMapAttr a) { return a.getValue(); })); 523 AffineMap invertedMap = inversePermutation(concatAffineMaps(maps)); 524 if (!invertedMap) 525 return {}; 526 if (invertedMap.isEmpty()) { 527 LinalgScopedEmitter<IndexedValueTy, ConcreteOpTy>::emitScalarImplementation( 528 {}, linalgOp); 529 return LinalgLoops(); 530 } 531 532 SmallVector<Value, 4> allIvs(nLoops); 533 auto loopRanges = 534 emitLoopRanges(scope.getBuilderRef(), scope.getLocation(), invertedMap, 535 getViewSizes(builder, linalgOp)); 536 assert(loopRanges.size() == allIvs.size()); 537 GenerateLoopNest<LoopTy>::doit( 538 allIvs, loopRanges, linalgOp.iterator_types().getValue(), [&] { 539 SmallVector<Value, 4> allIvValues(allIvs.begin(), allIvs.end()); 540 LinalgScopedEmitter<IndexedValueTy, 541 ConcreteOpTy>::emitScalarImplementation(allIvValues, 542 linalgOp); 543 }); 544 // Number of loop ops might be different from the number of ivs since some 545 // loops like affine.parallel and scf.parallel have multiple ivs. 546 llvm::SetVector<Operation *> loopSet; 547 for (Value iv : allIvs) { 548 if (!iv) 549 return {}; 550 // The induction variable is a block argument of the entry block of the 551 // loop operation. 552 BlockArgument ivVal = iv.dyn_cast<BlockArgument>(); 553 if (!ivVal) 554 return {}; 555 loopSet.insert(ivVal.getOwner()->getParentOp()); 556 } 557 LinalgLoops loops(loopSet.begin(), loopSet.end()); 558 return loops; 559 } 560 561 template <typename LoopType, typename ConcreteOp> 562 class LinalgRewritePattern : public RewritePattern { 563 public: 564 explicit LinalgRewritePattern(MLIRContext *context) 565 : RewritePattern(ConcreteOp::getOperationName(), 1, context) {} 566 567 LogicalResult matchAndRewrite(Operation *op, 568 PatternRewriter &rewriter) const override { 569 if (!linalgOpToLoopsImpl<LoopType, ConcreteOp>(op, rewriter)) 570 return failure(); 571 rewriter.eraseOp(op); 572 return success(); 573 } 574 }; 575 576 /// Helper classes for type list expansion. 577 template <typename LoopType, typename... LinalgOps> 578 class RewritePatternList; 579 580 template <typename LoopType> 581 class RewritePatternList<LoopType> { 582 public: 583 static void build(OwningRewritePatternList &patterns, MLIRContext *ctx) {} 584 }; 585 586 template <typename LoopType, typename ConcreteOp, typename... LinalgOps> 587 class RewritePatternList<LoopType, ConcreteOp, LinalgOps...> { 588 public: 589 static void build(OwningRewritePatternList &patterns, MLIRContext *ctx) { 590 patterns.insert<LinalgRewritePattern<LoopType, ConcreteOp>>(ctx); 591 RewritePatternList<LoopType, LinalgOps...>::build(patterns, ctx); 592 } 593 }; 594 595 /// Populate the given list with patterns that convert from Linalg to loops. 596 template <typename LoopType> 597 void FillRewritePatterns(OwningRewritePatternList &patterns, MLIRContext *ctx) { 598 RewritePatternList<LoopType, 599 #define GET_OP_LIST 600 #include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc" 601 >::build(patterns, ctx); 602 } 603 604 /// Local folding pattern for AffineApplyOp that we can apply greedily. 605 /// This replaces AffineApplyOp by the proper value in cases where the 606 /// associated map is trivial. 607 /// A trivial map here is defined as a map with a single result and either: 608 /// 1. Zero operand + returns a single AffineConstantExpr 609 /// 2. One operand + returns a single AffineDimExpr 610 /// 3. One operand + returns a single AffineSymbolExpr 611 // 612 /// In the first case, the AffineApplyOp is replaced by a new constant. In the 613 /// other cases, it is replaced by its unique operand. 614 struct FoldAffineOp : public RewritePattern { 615 FoldAffineOp(MLIRContext *context) 616 : RewritePattern(AffineApplyOp::getOperationName(), 0, context) {} 617 618 LogicalResult matchAndRewrite(Operation *op, 619 PatternRewriter &rewriter) const override { 620 AffineApplyOp affineApplyOp = cast<AffineApplyOp>(op); 621 auto map = affineApplyOp.getAffineMap(); 622 if (map.getNumResults() != 1 || map.getNumInputs() > 1) 623 return failure(); 624 625 AffineExpr expr = map.getResult(0); 626 if (map.getNumInputs() == 0) { 627 if (auto val = expr.dyn_cast<AffineConstantExpr>()) { 628 rewriter.replaceOpWithNewOp<ConstantIndexOp>(op, val.getValue()); 629 return success(); 630 } 631 return failure(); 632 } 633 if (expr.dyn_cast<AffineDimExpr>() || expr.dyn_cast<AffineSymbolExpr>()) { 634 rewriter.replaceOp(op, op->getOperand(0)); 635 return success(); 636 } 637 return failure(); 638 } 639 }; 640 } // namespace 641 642 template <typename LoopType> 643 static void lowerLinalgToLoopsImpl(Operation *op, MLIRContext *context) { 644 OwningRewritePatternList patterns; 645 // Canonicalization and folding patterns applied greedily allow cleaning up 646 // the emitted IR on the fly. 647 // TODO(ntv) fold view and subview ops? 648 FillRewritePatterns<LoopType>(patterns, context); 649 DimOp::getCanonicalizationPatterns(patterns, context); 650 AffineApplyOp::getCanonicalizationPatterns(patterns, context); 651 patterns.insert<FoldAffineOp>(context); 652 // Just apply the patterns greedily. 653 applyPatternsAndFoldGreedily(op, patterns); 654 } 655 656 namespace { 657 struct LowerToAffineLoops 658 : public LinalgLowerToAffineLoopsBase<LowerToAffineLoops> { 659 void runOnFunction() override { 660 lowerLinalgToLoopsImpl<AffineForOp>(getFunction(), &getContext()); 661 } 662 }; 663 struct LowerToLoops : public LinalgLowerToLoopsBase<LowerToLoops> { 664 void runOnFunction() override { 665 lowerLinalgToLoopsImpl<scf::ForOp>(getFunction(), &getContext()); 666 } 667 }; 668 struct LowerToParallelLoops 669 : public LinalgLowerToParallelLoopsBase<LowerToParallelLoops> { 670 void runOnFunction() override { 671 lowerLinalgToLoopsImpl<scf::ParallelOp>(getFunction(), &getContext()); 672 } 673 }; 674 } // namespace 675 676 std::unique_ptr<OperationPass<FuncOp>> mlir::createConvertLinalgToLoopsPass() { 677 return std::make_unique<LowerToLoops>(); 678 } 679 680 std::unique_ptr<OperationPass<FuncOp>> 681 mlir::createConvertLinalgToParallelLoopsPass() { 682 return std::make_unique<LowerToParallelLoops>(); 683 } 684 685 std::unique_ptr<OperationPass<FuncOp>> 686 mlir::createConvertLinalgToAffineLoopsPass() { 687 return std::make_unique<LowerToAffineLoops>(); 688 } 689 690 /// Emits a loop nest with the proper body for `op`. 691 template <typename LoopTy, typename ConcreteOp> 692 Optional<LinalgLoops> mlir::linalg::linalgLowerOpToLoops(OpBuilder &builder, 693 Operation *op) { 694 return linalgOpToLoopsImpl<LoopTy, ConcreteOp>(op, builder); 695 } 696 697 /// Emits a loop nest of `scf.for` with the proper body for `op`. 698 template <typename ConcreteOp> 699 LogicalResult mlir::linalg::linalgOpToLoops(OpBuilder &builder, Operation *op) { 700 Optional<LinalgLoops> loops = 701 linalgLowerOpToLoops<scf::ForOp, ConcreteOp>(builder, op); 702 return loops ? success() : failure(); 703 } 704 705 /// Emits a loop nest of `affine.for` with the proper body for `op`. 706 template <typename ConcreteOp> 707 LogicalResult mlir::linalg::linalgOpToAffineLoops(OpBuilder &builder, 708 Operation *op) { 709 Optional<LinalgLoops> loops = 710 linalgLowerOpToLoops<AffineForOp, ConcreteOp>(builder, op); 711 return loops ? success() : failure(); 712 } 713 714 /// Emits a loop nest of `scf.parallel` with the proper body for `op`. 715 template <typename ConcreteOp> 716 LogicalResult mlir::linalg::linalgOpToParallelLoops(OpBuilder &builder, 717 Operation *op) { 718 Optional<LinalgLoops> loops = 719 linalgLowerOpToLoops<scf::ParallelOp, ConcreteOp>(builder, op); 720 return loops ? success() : failure(); 721 } 722 723 // TODO Need to make these instantiations more future-proof to avoid the need to 724 // update as soon as we add new ops. 725 #define INSTANTIATE_LINALG_OP_TO_LOOPS(OP_TYPE) \ 726 template LogicalResult mlir::linalg::linalgOpToLoops<OP_TYPE>( \ 727 OpBuilder & builder, Operation * op); \ 728 template LogicalResult mlir::linalg::linalgOpToAffineLoops<OP_TYPE>( \ 729 OpBuilder & builder, Operation * op); \ 730 template LogicalResult mlir::linalg::linalgOpToParallelLoops<OP_TYPE>( \ 731 OpBuilder & builder, Operation * op); \ 732 template Optional<LinalgLoops> \ 733 mlir::linalg::linalgLowerOpToLoops<scf::ParallelOp, OP_TYPE>( \ 734 OpBuilder & builder, Operation * op); 735 736 INSTANTIATE_LINALG_OP_TO_LOOPS(CopyOp) 737 INSTANTIATE_LINALG_OP_TO_LOOPS(FillOp) 738 INSTANTIATE_LINALG_OP_TO_LOOPS(DotOp) 739 INSTANTIATE_LINALG_OP_TO_LOOPS(MatvecOp) 740 INSTANTIATE_LINALG_OP_TO_LOOPS(MatmulOp) 741 INSTANTIATE_LINALG_OP_TO_LOOPS(ConvOp) 742 INSTANTIATE_LINALG_OP_TO_LOOPS(PoolingMaxOp) 743 INSTANTIATE_LINALG_OP_TO_LOOPS(PoolingMinOp) 744 INSTANTIATE_LINALG_OP_TO_LOOPS(PoolingSumOp) 745 INSTANTIATE_LINALG_OP_TO_LOOPS(GenericOp) 746 INSTANTIATE_LINALG_OP_TO_LOOPS(IndexedGenericOp) 747