1 //===- Loops.cpp - conversion from Linalg named and generic ops to loops --===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "PassDetail.h" 10 #include "mlir/Dialect/Affine/EDSC/Intrinsics.h" 11 #include "mlir/Dialect/Linalg/EDSC/FoldedIntrinsics.h" 12 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 13 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h" 14 #include "mlir/Dialect/Linalg/Passes.h" 15 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 16 #include "mlir/Dialect/Linalg/Utils/Utils.h" 17 #include "mlir/Dialect/SCF/EDSC/Builders.h" 18 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h" 19 #include "mlir/IR/AffineExpr.h" 20 #include "mlir/IR/AffineMap.h" 21 #include "mlir/IR/BlockAndValueMapping.h" 22 #include "mlir/Support/LLVM.h" 23 #include "mlir/Transforms/DialectConversion.h" 24 #include "mlir/Transforms/FoldUtils.h" 25 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 26 27 #include "llvm/ADT/TypeSwitch.h" 28 29 using namespace mlir; 30 using namespace mlir::edsc; 31 using namespace mlir::edsc::intrinsics; 32 using namespace mlir::linalg; 33 34 using edsc::op::operator+; 35 36 static SmallVector<Value, 8> makeCanonicalAffineApplies(OpBuilder &b, 37 Location loc, 38 AffineMap map, 39 ArrayRef<Value> vals) { 40 if (map.isEmpty()) 41 return {}; 42 43 assert(map.getNumInputs() == vals.size()); 44 SmallVector<Value, 8> res; 45 res.reserve(map.getNumResults()); 46 auto dims = map.getNumDims(); 47 for (auto e : map.getResults()) { 48 auto exprMap = AffineMap::get(dims, map.getNumSymbols(), e); 49 SmallVector<Value, 4> operands(vals.begin(), vals.end()); 50 canonicalizeMapAndOperands(&exprMap, &operands); 51 res.push_back(affine_apply(exprMap, operands)); 52 } 53 return res; 54 } 55 56 static SmallVector<Value, 4> permuteIvs(ArrayRef<Value> ivs, 57 Optional<AffineMap> permutation) { 58 return permutation ? applyMapToValues(ScopedContext::getBuilderRef(), 59 ScopedContext::getLocation(), 60 permutation.getValue(), ivs) 61 : SmallVector<Value, 4>(ivs.begin(), ivs.end()); 62 } 63 64 template <typename IndexedValueType, typename OpType> 65 static void inlineRegionAndEmitStore(OpType op, ArrayRef<Value> indexedValues, 66 ArrayRef<SmallVector<Value, 8>> indexing, 67 ArrayRef<Value> outputBuffers) { 68 assert(op->getNumRegions() == 1 && "Expected single region op"); 69 auto &b = ScopedContext::getBuilderRef(); 70 auto &block = op->getRegion(0).front(); 71 BlockAndValueMapping map; 72 map.map(block.getArguments(), indexedValues); 73 for (auto &op : block.without_terminator()) { 74 auto *newOp = b.clone(op, map); 75 map.map(op.getResults(), newOp->getResults()); 76 } 77 78 Operation &terminator = block.back(); 79 assert(isa<linalg::YieldOp>(terminator) && 80 "expected a yield op in the end of the region"); 81 for (unsigned i = 0, e = terminator.getNumOperands(); i < e; ++i) { 82 IndexedValueType O(outputBuffers[i]); 83 O(indexing[i]) = map.lookupOrDefault(terminator.getOperand(i)); 84 } 85 } 86 87 // Returns a pair that contains input indices and output indices of a 88 // SingleInputPoolingOp `op`. 89 struct InputAndOutputIndices { 90 SmallVector<Value, 8> inputs; 91 SmallVector<Value, 8> outputs; 92 }; 93 template <typename SingleInputPoolingOp> 94 static InputAndOutputIndices getInputAndOutputIndices(ArrayRef<Value> allIvs, 95 SingleInputPoolingOp op) { 96 auto &b = ScopedContext::getBuilderRef(); 97 auto loc = ScopedContext::getLocation(); 98 auto mapsRange = op.indexing_maps().template getAsRange<AffineMapAttr>(); 99 auto maps = llvm::to_vector<8>( 100 llvm::map_range(mapsRange, [](AffineMapAttr a) { return a.getValue(); })); 101 return InputAndOutputIndices{ 102 makeCanonicalAffineApplies(b, loc, maps[0], allIvs), 103 makeCanonicalAffineApplies(b, loc, maps[2], allIvs)}; 104 } 105 106 /// Emits the MLIR for the scalar part of the generic op by: 107 /// 1. Emitting load ops for each input and output view in order. This is 108 /// achieved by applying the appropriate input or output map to the 109 /// enclosing induction variables. 110 /// 2. Emitting a call to `op.fun()` that takes as arguments the scalars 111 /// from point 1. above. 112 /// 3. Emitting store ops to store the results of 2. to the output 113 /// views. 114 /// 115 /// An example output may resemble: 116 /// 117 /// ``` 118 /// scf.for %i = %c0 to %0 step %c1 { 119 /// scf.for %j = %c0 to %1 step %c1 { 120 /// scf.for %k = %c0 to %4 step %c1 { 121 /// %11 = load %arg0[%i, %j] : 122 /// memref<?x?xf32, stride_specification> 123 /// %12 = load %arg1[%i, %j, %k] : 124 /// memref<?x?x?xf32, stride_specification> 125 /// %13 = load %arg2[%i, %k, %j] : 126 /// memref<?x?x?xf32, stride_specification> 127 /// %14:2 = call @foo(%11, %12, %13) : (f32, f32, f32) -> (f32, f32) 128 /// store %14#0, %arg1[%i, %j, %k] : 129 /// memref<?x?x?Xf32, stride_specification> 130 /// store %14#1, %arg2[%i, %k, %j] : 131 /// memref<?x?x?Xf32, stride_specification> 132 /// } 133 /// } 134 /// } 135 /// ``` 136 template <typename IndexedValueType> 137 static void emitScalarImplementation(ArrayRef<Value> allIvs, 138 LinalgOp linalgOp) { 139 assert(linalgOp.hasBufferSemantics() && 140 "expected linalg op with buffer semantics"); 141 auto &b = ScopedContext::getBuilderRef(); 142 auto loc = ScopedContext::getLocation(); 143 unsigned nInputs = linalgOp.getNumInputs(); 144 unsigned nOutputs = linalgOp.getNumOutputs(); 145 SmallVector<Value, 4> indexedValues; 146 indexedValues.reserve(nInputs + nOutputs); 147 148 auto allIvsPlusDims = SmallVector<Value, 4>(allIvs.begin(), allIvs.end()); 149 150 // TODO: Avoid the loads if the corresponding argument of the 151 // region has no uses. 152 // 1.a. Emit load from input views. 153 for (unsigned i = 0; i < nInputs; ++i) { 154 auto indexing = makeCanonicalAffineApplies( 155 b, loc, linalgOp.getInputIndexingMap(i), allIvsPlusDims); 156 // Passing through IndexedValueType emits the proper load operation. 157 indexedValues.push_back(IndexedValueType(linalgOp.getInput(i))(indexing)); 158 } 159 // 1.b. Emit load from output views. 160 for (unsigned i = 0; i < nOutputs; ++i) { 161 auto indexing = makeCanonicalAffineApplies( 162 b, loc, linalgOp.getOutputIndexingMap(i), allIvsPlusDims); 163 // Passing through IndexedValueType emits the proper load operation. 164 indexedValues.push_back( 165 IndexedValueType(linalgOp.getOutputBuffer(i))(indexing)); 166 } 167 168 // TODO: When a region inliner exists, use it. 169 // 2. Inline region, currently only works for a single basic block. 170 // 3. Emit store. 171 SmallVector<SmallVector<Value, 8>, 8> indexing; 172 SmallVector<Value, 8> outputBuffers; 173 for (unsigned i = 0; i < nOutputs; ++i) { 174 indexing.push_back(makeCanonicalAffineApplies( 175 b, loc, linalgOp.getOutputIndexingMap(i), allIvsPlusDims)); 176 outputBuffers.push_back(linalgOp.getOutputBuffer(i)); 177 } 178 inlineRegionAndEmitStore<IndexedValueType>(linalgOp, indexedValues, indexing, 179 outputBuffers); 180 } 181 182 template <typename IndexedValueType> 183 static void emitScalarImplementation(ArrayRef<Value> allIvs, CopyOp copyOp) { 184 assert(copyOp.hasBufferSemantics() && 185 "expected linalg op with buffer semantics"); 186 auto nPar = copyOp.getNumParallelLoops(); 187 assert(nPar == allIvs.size()); 188 auto inputIvs = 189 permuteIvs(allIvs.take_front(nPar), copyOp.inputPermutation()); 190 auto outputIvs = 191 permuteIvs(allIvs.take_front(nPar), copyOp.outputPermutation()); 192 SmallVector<Value, 8> iivs(inputIvs.begin(), inputIvs.end()); 193 SmallVector<Value, 8> oivs(outputIvs.begin(), outputIvs.end()); 194 IndexedValueType O(copyOp.getOutputBuffer(0)), I(copyOp.getInput(0)); 195 // Emit the proper scalar assignment, whether we are dealing with a 0-D or 196 // an n-D loop nest; with or without permutations. 197 // clang-format off 198 nPar > 0 ? O(oivs) = I(iivs) : 199 O() = I(); 200 // clang-format on 201 } 202 203 template <typename IndexedValueType> 204 static void emitScalarImplementation(ArrayRef<Value> allIvs, FillOp fillOp) { 205 assert(fillOp.hasBufferSemantics() && 206 "expected linalg op with buffer semantics"); 207 auto nPar = fillOp.getNumParallelLoops(); 208 assert(nPar == allIvs.size()); 209 auto ivs = SmallVector<Value, 4>(allIvs.begin(), allIvs.begin() + nPar); 210 IndexedValueType O(fillOp.getOutputBuffer(0)); 211 // Emit the proper scalar assignment, whether we are dealing with a 0-D or 212 // an n-D loop nest; with or without permutations. 213 nPar > 0 ? O(ivs) = fillOp.value() : O() = fillOp.value(); 214 } 215 216 // Create a padded view into the given `input` tensor using the 'indices' 217 // to access the tensor. `skipPadding` lists the dimensions for which no padding 218 // is needed e.g. the non-spatial dimensions for convolutions. 219 template <typename IndexedValueType> 220 Value getPaddedInput(Value input, ArrayRef<Value> indices, 221 ArrayRef<int> skipPadding, Value padValue) { 222 // TODO: add a level of indirection to linalg.generic. 223 224 IndexedValueType indexedInput(input); 225 226 auto *context = ScopedContext::getContext(); 227 Value zeroIndex = std_constant_index(0); 228 SmallVector<Value, 8> conds; 229 SmallVector<Value, 8> clampedImIdx; 230 for (auto iter : llvm::enumerate(indices)) { 231 int idx = iter.index(); 232 auto dim = iter.value(); 233 if (is_contained(skipPadding, idx)) { 234 clampedImIdx.push_back(dim); 235 continue; 236 } 237 238 using edsc::op::sge; 239 using edsc::op::slt; 240 using edsc::op::operator||; 241 Value leftOutOfBound = slt(dim, zeroIndex); 242 if (conds.empty()) 243 conds.push_back(leftOutOfBound); 244 else 245 conds.push_back(conds.back() || leftOutOfBound); 246 Value rightBound = std_dim(input, idx); 247 conds.push_back(conds.back() || (sge(dim, rightBound))); 248 249 // When padding is involved, the indices will only be shifted to negative, 250 // so having a max op is enough. 251 auto maxMap = AffineMap::get(/*dimCount=*/1, 0, 252 {getAffineDimExpr(/*position=*/0, context), 253 getAffineConstantExpr(0, context)}, 254 context); 255 clampedImIdx.push_back(affine_max(dim.getType(), maxMap, ValueRange{dim})); 256 } 257 258 Value readInput = indexedInput(clampedImIdx); 259 return conds.empty() ? readInput 260 : (Value)std_select(conds.back(), padValue, readInput); 261 } 262 263 namespace { 264 265 /// The padding value for a given Op depends on the semantics of the Op. 266 /// The identity value for ConvOp and PoolingSumOp is 0, for PoolingMaxOp is 267 /// -inf or minInt and for PoolingMinOp is inf or maxInt. 268 template <typename OpType> 269 Attribute getPadValueAttr(Type type) { 270 llvm_unreachable("Unexpected op type for getPadValueAttr"); 271 return {}; 272 } 273 274 template <> 275 Attribute getPadValueAttr<PoolingMaxOp>(Type type) { 276 auto &b = ScopedContext::getBuilderRef(); 277 if (auto floatType = type.dyn_cast<FloatType>()) { 278 return b.getFloatAttr( 279 floatType, 280 APFloat::getInf(floatType.getFloatSemantics(), /*Negative*/ true)); 281 } 282 if (auto intType = type.dyn_cast<IntegerType>()) { 283 unsigned width = intType.getWidth(); 284 // The select instruction used to lower the PoolingMin uses a signed 285 // comparison, use a signed constant irrespective of the signedness of the 286 // integer type. 287 return b.getIntegerAttr(intType, APInt::getSignedMinValue(width)); 288 } 289 llvm_unreachable("Unsupported data type for PoolingMaxOp"); 290 return {}; 291 } 292 293 template <> 294 Attribute getPadValueAttr<PoolingMinOp>(Type type) { 295 auto &b = ScopedContext::getBuilderRef(); 296 if (auto floatType = type.dyn_cast<FloatType>()) { 297 return b.getFloatAttr(floatType, 298 APFloat::getInf(floatType.getFloatSemantics())); 299 } 300 if (auto intType = type.dyn_cast<IntegerType>()) { 301 unsigned width = intType.getWidth(); 302 // The select instruction used to lower the PoolingMin uses a signed 303 // comparison, use a signed constant irrespective of the signedness of the 304 // integer type. 305 return b.getIntegerAttr(intType, APInt::getSignedMaxValue(width)); 306 } 307 llvm_unreachable("Unsupported data type for PoolingMinOp"); 308 return {}; 309 } 310 311 template <> 312 Attribute getPadValueAttr<PoolingSumOp>(Type type) { 313 auto &b = ScopedContext::getBuilderRef(); 314 return b.getZeroAttr(type); 315 } 316 317 template <> 318 Attribute getPadValueAttr<ConvOp>(Type type) { 319 auto &b = ScopedContext::getBuilderRef(); 320 return b.getZeroAttr(type); 321 } 322 323 } // namespace 324 325 /// Returns true is `convOp` has a non-zero padding. 326 static bool hasPadding(ConvOp convOp) { 327 for (unsigned i = 0, e = convOp.getNumSpatialDimensions(); i < e; ++i) { 328 if (convOp.getLowPad(i) > 0 || convOp.getHighPad(i) > 0) 329 return true; 330 } 331 return false; 332 } 333 334 template <typename IndexedValueType> 335 static void emitScalarImplementation(ArrayRef<Value> allIvs, ConvOp convOp) { 336 assert(convOp.hasBufferSemantics() && 337 "expected linalg op with buffer semantics"); 338 auto &b = ScopedContext::getBuilderRef(); 339 auto loc = ScopedContext::getLocation(); 340 auto mapsRange = convOp.indexing_maps().getAsRange<AffineMapAttr>(); 341 auto maps = llvm::to_vector<8>( 342 llvm::map_range(mapsRange, [](AffineMapAttr a) { return a.getValue(); })); 343 SmallVector<Value, 8> fIdx( 344 makeCanonicalAffineApplies(b, loc, maps[0], allIvs)); 345 SmallVector<Value, 8> imIdx( 346 makeCanonicalAffineApplies(b, loc, maps[1], allIvs)); 347 SmallVector<Value, 8> oIdx( 348 makeCanonicalAffineApplies(b, loc, maps[2], allIvs)); 349 350 IndexedValueType F(convOp.filter()), O(convOp.output()); 351 352 // Emit scalar form. Padded conv involves an affine.max in the memory access 353 // which is not allowed by affine.load. Override to use an StdIndexedValue 354 // when there is non-zero padding. 355 if (hasPadding(convOp)) { 356 Type type = convOp.input().getType().cast<MemRefType>().getElementType(); 357 Value padValue = std_constant(type, getPadValueAttr<ConvOp>(type)); 358 Value paddedInput = getPaddedInput<StdIndexedValue>( 359 convOp.input(), imIdx, 360 /* Only need to pad the window dimensions */ 361 {0, static_cast<int>(imIdx.size()) - 1}, padValue); 362 O(oIdx) += F(fIdx) * paddedInput; 363 } else { 364 IndexedValueType I(convOp.input()); 365 O(oIdx) += F(fIdx) * I(imIdx); 366 } 367 } 368 369 template <typename PoolingOp> 370 static bool hasPadding(PoolingOp poolingOp) { 371 for (unsigned i = 0, e = poolingOp.getNumWindowLoops(); i < e; ++i) { 372 if (poolingOp.getLowPad(i) > 0 || poolingOp.getHighPad(i) > 0) 373 return true; 374 } 375 return false; 376 } 377 378 template <typename IndexedValueType, typename PoolingOp> 379 static Value getPoolingInput(PoolingOp op, ArrayRef<Value> inputIndices) { 380 if (hasPadding(op)) { 381 Type type = 382 op.input().getType().template cast<MemRefType>().getElementType(); 383 Value padValue = std_constant(type, getPadValueAttr<PoolingOp>(type)); 384 return getPaddedInput<StdIndexedValue>(op.input(), inputIndices, 385 /*Pad every dimension*/ {}, 386 padValue); 387 } 388 IndexedValueType input(op.input()); 389 return input(inputIndices); 390 } 391 392 template <typename IndexedValueType, typename OpType> 393 void emitPoolingMinMaxScalarImplementation(ArrayRef<Value> allIvs, OpType op) { 394 InputAndOutputIndices indices = getInputAndOutputIndices(allIvs, op); 395 // Emit scalar form. 396 IndexedValueType output(op.output()); 397 Value lhs = output(indices.outputs); 398 Value rhs = getPoolingInput<IndexedValueType>(op, indices.inputs); 399 using edsc::op::sgt; 400 using edsc::op::slt; 401 Value value = std::is_same<OpType, PoolingMinOp>() 402 ? std_select(slt(lhs, rhs), lhs, rhs) 403 : std_select(sgt(lhs, rhs), lhs, rhs); 404 output(indices.outputs) = value; 405 } 406 407 template <typename IndexedValueType> 408 static void emitScalarImplementation(ArrayRef<Value> allIvs, PoolingMaxOp op) { 409 emitPoolingMinMaxScalarImplementation<IndexedValueType, PoolingMaxOp>(allIvs, 410 op); 411 } 412 413 template <typename IndexedValueType> 414 static void emitScalarImplementation(ArrayRef<Value> allIvs, PoolingMinOp op) { 415 emitPoolingMinMaxScalarImplementation<IndexedValueType, PoolingMinOp>(allIvs, 416 op); 417 } 418 419 template <typename IndexedValueType> 420 static void emitScalarImplementation(ArrayRef<Value> allIvs, PoolingSumOp op) { 421 auto indices = getInputAndOutputIndices(allIvs, op); 422 IndexedValueType output(op.output()); 423 424 // Emit scalar form. 425 output(indices.outputs) += 426 getPoolingInput<IndexedValueType>(op, indices.inputs); 427 } 428 429 /// Emits the MLIR for the scalar part of the indexed generic op by: 430 /// 1. Emitting load ops for each input and output view in order. This is 431 /// achieved by applying the appropriate input or output map to the 432 /// enclosing induction variables. 433 /// 2. Emitting a call to `op.fun()` that takes as arguments the induction 434 /// variables and the scalars from point 1. above. 435 /// 3. Emitting store ops to store the results of 2. to the output views. 436 /// 437 /// An example output may resemble: 438 /// 439 /// ``` 440 /// scf.for %i = %c0 to %0 step %c1 { 441 /// scf.for %j = %c0 to %1 step %c1 { 442 /// scf.for %k = %c0 to %4 step %c1 { 443 /// %11 = load %arg0[%i, %j] : 444 /// memref<?x?xf32, stride_specification> 445 /// %12 = load %arg1[%i, %j, %k] : 446 /// memref<?x?x?xf32, stride_specification> 447 /// %13 = load %arg2[%i, %k, %j] : 448 /// memref<?x?x?xf32, stride_specification> 449 /// %14:2 = call @foo(%i, %j, %k, %11, %12, %13) : 450 /// (index, index, index, f32, f32, f32) -> (f32, f32) 451 /// store %14#0, %arg1[%i, %j, %k] : 452 /// memref<?x?x?Xf32, stride_specification> 453 /// store %14#1, %arg2[%i, %k, %j] : 454 /// memref<?x?x?Xf32, stride_specification> 455 /// } 456 /// } 457 /// } 458 /// ``` 459 template <typename IndexedValueType> 460 static void emitScalarImplementation(ArrayRef<Value> allIvs, 461 IndexedGenericOp indexedGenericOp) { 462 assert(indexedGenericOp.hasBufferSemantics() && 463 "expected linalg op with buffer semantics"); 464 auto &b = ScopedContext::getBuilderRef(); 465 auto loc = ScopedContext::getLocation(); 466 unsigned nInputs = indexedGenericOp.getNumInputs(); 467 unsigned nOutputs = indexedGenericOp.getNumOutputs(); 468 unsigned nLoops = allIvs.size(); 469 SmallVector<Value, 4> indexedValues; 470 indexedValues.reserve(nLoops + nInputs + nOutputs); 471 for (unsigned i = 0; i < nLoops; ++i) 472 indexedValues.push_back(allIvs[i]); 473 474 // TODO: Avoid the loads if the corresponding argument of the 475 // region has no uses. 476 // 1.a. Emit load from input views. 477 for (unsigned i = 0; i < nInputs; ++i) { 478 auto indexing = makeCanonicalAffineApplies( 479 b, loc, indexedGenericOp.getInputIndexingMap(i), allIvs); 480 // Pass input i through IndexedValueType emits the proper load operation. 481 indexedValues.push_back( 482 IndexedValueType(indexedGenericOp.getInput(i))(indexing)); 483 } 484 // 1.b. Emit load from output views. 485 for (unsigned i = 0; i < nOutputs; ++i) { 486 auto indexing = makeCanonicalAffineApplies( 487 b, loc, indexedGenericOp.getOutputIndexingMap(i), allIvs); 488 // Pass output i through IndexedValueType emits the proper load operation. 489 indexedValues.push_back( 490 IndexedValueType(indexedGenericOp.getOutputBuffer(i))(indexing)); 491 } 492 493 // TODO: When a region inliner exists, use it. 494 // 2. Inline region, currently only works for a single basic block. 495 // 3. Emit store. 496 SmallVector<SmallVector<Value, 8>, 8> indexing; 497 SmallVector<Value, 8> outputBuffers; 498 for (unsigned i = 0; i < nOutputs; ++i) { 499 indexing.push_back(makeCanonicalAffineApplies( 500 b, loc, indexedGenericOp.getOutputIndexingMap(i), allIvs)); 501 outputBuffers.push_back(indexedGenericOp.getOutputBuffer(i)); 502 } 503 inlineRegionAndEmitStore<IndexedValueType>(indexedGenericOp, indexedValues, 504 indexing, outputBuffers); 505 } 506 507 template <typename LoopTy> 508 static Optional<LinalgLoops> linalgOpToLoopsImpl(Operation *op, 509 OpBuilder &builder) { 510 using IndexedValueTy = typename GenerateLoopNest<LoopTy>::IndexedValueTy; 511 512 ScopedContext scope(builder, op->getLoc()); 513 514 // The flattened loopToOperandRangesMaps is expected to be an invertible 515 // permutation map (which is asserted in the inverse calculation). 516 auto linalgOp = cast<LinalgOp>(op); 517 assert(linalgOp.hasBufferSemantics() && 518 "expected linalg op with buffer semantics"); 519 auto loopRanges = linalgOp.createLoopRanges(builder, op->getLoc()); 520 SmallVector<Value, 4> allIvs; 521 GenerateLoopNest<LoopTy>::doit( 522 loopRanges, /*iterInitArgs*/ {}, linalgOp.iterator_types().getValue(), 523 [&](ValueRange ivs, ValueRange iterArgs) -> scf::ValueVector { 524 assert(iterArgs.empty() && "unexpected iterArgs"); 525 allIvs.append(ivs.begin(), ivs.end()); 526 llvm::TypeSwitch<Operation *>(op) 527 .Case<CopyOp, FillOp, ConvOp, PoolingMaxOp, PoolingMinOp, 528 PoolingSumOp, IndexedGenericOp, LinalgOp>([&](auto op) { 529 emitScalarImplementation<IndexedValueTy>(allIvs, op); 530 }) 531 .Default([&](Operation *op) { assert(false && "unexpected op"); }); 532 return scf::ValueVector{}; 533 }); 534 // Number of loop ops might be different from the number of ivs since some 535 // loops like affine.parallel and scf.parallel have multiple ivs. 536 llvm::SetVector<Operation *> loopSet; 537 for (Value iv : allIvs) { 538 if (!iv) 539 return {}; 540 // The induction variable is a block argument of the entry block of the 541 // loop operation. 542 BlockArgument ivVal = iv.dyn_cast<BlockArgument>(); 543 if (!ivVal) 544 return {}; 545 loopSet.insert(ivVal.getOwner()->getParentOp()); 546 } 547 LinalgLoops loops(loopSet.begin(), loopSet.end()); 548 return loops; 549 } 550 551 namespace { 552 template <typename LoopType> 553 class LinalgRewritePattern : public RewritePattern { 554 public: 555 LinalgRewritePattern() : RewritePattern(/*benefit=*/1, MatchAnyOpTypeTag()) {} 556 557 LogicalResult matchAndRewrite(Operation *op, 558 PatternRewriter &rewriter) const override { 559 if (!isa<LinalgOp>(op)) 560 return failure(); 561 if (!linalgOpToLoopsImpl<LoopType>(op, rewriter)) 562 return failure(); 563 rewriter.eraseOp(op); 564 return success(); 565 } 566 }; 567 568 struct FoldAffineOp; 569 } // namespace 570 571 template <typename LoopType> 572 static void lowerLinalgToLoopsImpl(FuncOp funcOp, MLIRContext *context) { 573 OwningRewritePatternList patterns; 574 patterns.insert<LinalgRewritePattern<LoopType>>(); 575 DimOp::getCanonicalizationPatterns(patterns, context); 576 AffineApplyOp::getCanonicalizationPatterns(patterns, context); 577 patterns.insert<FoldAffineOp>(context); 578 // Just apply the patterns greedily. 579 applyPatternsAndFoldGreedily(funcOp, std::move(patterns)); 580 } 581 582 namespace { 583 /// Local folding pattern for AffineApplyOp that we can apply greedily. 584 /// This replaces AffineApplyOp by the proper value in cases where the 585 /// associated map is trivial. 586 /// A trivial map here is defined as a map with a single result and either: 587 /// 1. Zero operand + returns a single AffineConstantExpr 588 /// 2. One operand + returns a single AffineDimExpr 589 /// 3. One operand + returns a single AffineSymbolExpr 590 // 591 /// In the first case, the AffineApplyOp is replaced by a new constant. In the 592 /// other cases, it is replaced by its unique operand. 593 struct FoldAffineOp : public RewritePattern { 594 FoldAffineOp(MLIRContext *context) 595 : RewritePattern(AffineApplyOp::getOperationName(), 0, context) {} 596 597 LogicalResult matchAndRewrite(Operation *op, 598 PatternRewriter &rewriter) const override { 599 AffineApplyOp affineApplyOp = cast<AffineApplyOp>(op); 600 auto map = affineApplyOp.getAffineMap(); 601 if (map.getNumResults() != 1 || map.getNumInputs() > 1) 602 return failure(); 603 604 AffineExpr expr = map.getResult(0); 605 if (map.getNumInputs() == 0) { 606 if (auto val = expr.dyn_cast<AffineConstantExpr>()) { 607 rewriter.replaceOpWithNewOp<ConstantIndexOp>(op, val.getValue()); 608 return success(); 609 } 610 return failure(); 611 } 612 if (expr.dyn_cast<AffineDimExpr>() || expr.dyn_cast<AffineSymbolExpr>()) { 613 rewriter.replaceOp(op, op->getOperand(0)); 614 return success(); 615 } 616 return failure(); 617 } 618 }; 619 620 struct LowerToAffineLoops 621 : public LinalgLowerToAffineLoopsBase<LowerToAffineLoops> { 622 void runOnFunction() override { 623 lowerLinalgToLoopsImpl<AffineForOp>(getFunction(), &getContext()); 624 } 625 }; 626 627 struct LowerToLoops : public LinalgLowerToLoopsBase<LowerToLoops> { 628 void runOnFunction() override { 629 lowerLinalgToLoopsImpl<scf::ForOp>(getFunction(), &getContext()); 630 } 631 }; 632 633 struct LowerToParallelLoops 634 : public LinalgLowerToParallelLoopsBase<LowerToParallelLoops> { 635 void runOnFunction() override { 636 lowerLinalgToLoopsImpl<scf::ParallelOp>(getFunction(), &getContext()); 637 } 638 }; 639 } // namespace 640 641 std::unique_ptr<OperationPass<FuncOp>> mlir::createConvertLinalgToLoopsPass() { 642 return std::make_unique<LowerToLoops>(); 643 } 644 645 std::unique_ptr<OperationPass<FuncOp>> 646 mlir::createConvertLinalgToParallelLoopsPass() { 647 return std::make_unique<LowerToParallelLoops>(); 648 } 649 650 std::unique_ptr<OperationPass<FuncOp>> 651 mlir::createConvertLinalgToAffineLoopsPass() { 652 return std::make_unique<LowerToAffineLoops>(); 653 } 654 655 /// Emits a loop nest with the proper body for `op`. 656 template <typename LoopTy> 657 Optional<LinalgLoops> mlir::linalg::linalgLowerOpToLoops(OpBuilder &builder, 658 Operation *op) { 659 return linalgOpToLoopsImpl<LoopTy>(op, builder); 660 } 661 662 template Optional<LinalgLoops> 663 mlir::linalg::linalgLowerOpToLoops<AffineForOp>(OpBuilder &builder, 664 Operation *op); 665 template Optional<LinalgLoops> 666 mlir::linalg::linalgLowerOpToLoops<scf::ForOp>(OpBuilder &builder, 667 Operation *op); 668 template Optional<LinalgLoops> 669 mlir::linalg::linalgLowerOpToLoops<scf::ParallelOp>(OpBuilder &builder, 670 Operation *op); 671 672 /// Emits a loop nest of `affine.for` with the proper body for `op`. 673 LogicalResult mlir::linalg::linalgOpToAffineLoops(OpBuilder &builder, 674 Operation *op) { 675 Optional<LinalgLoops> loops = linalgLowerOpToLoops<AffineForOp>(builder, op); 676 return loops ? success() : failure(); 677 } 678 679 /// Emits a loop nest of `scf.for` with the proper body for `op`. 680 LogicalResult mlir::linalg::linalgOpToLoops(OpBuilder &builder, Operation *op) { 681 Optional<LinalgLoops> loops = linalgLowerOpToLoops<scf::ForOp>(builder, op); 682 return loops ? success() : failure(); 683 } 684 685 /// Emits a loop nest of `scf.parallel` with the proper body for `op`. 686 LogicalResult mlir::linalg::linalgOpToParallelLoops(OpBuilder &builder, 687 Operation *op) { 688 Optional<LinalgLoops> loops = 689 linalgLowerOpToLoops<scf::ParallelOp>(builder, op); 690 return loops ? success() : failure(); 691 } 692