1 //===- HoistPadding.cpp - Hoisting for tensor::PadOp ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements functions concerned with hoisting padding operations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Dialect/Linalg/Transforms/HoistPadding.h" 14 #include "mlir/Analysis/SliceAnalysis.h" 15 #include "mlir/Dialect/Func/IR/FuncOps.h" 16 #include "mlir/Dialect/Linalg/IR/Linalg.h" 17 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 18 #include "mlir/Dialect/SCF/SCF.h" 19 #include "mlir/Dialect/SCF/Utils/Utils.h" 20 #include "mlir/Dialect/Tensor/IR/Tensor.h" 21 #include "mlir/Dialect/Utils/IndexingUtils.h" 22 #include "mlir/Dialect/Vector/IR/VectorOps.h" 23 #include "mlir/Dialect/Vector/Utils/VectorUtils.h" 24 #include "mlir/IR/AsmState.h" 25 #include "mlir/IR/BuiltinOps.h" 26 #include "mlir/IR/Dominance.h" 27 #include "mlir/IR/Matchers.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/Support/Debug.h" 30 31 using llvm::dbgs; 32 33 #define DEBUG_TYPE "hoist-padding" 34 35 #define DBGS() (dbgs() << '[' << DEBUG_TYPE << "] ") 36 37 using namespace mlir; 38 using namespace mlir::linalg; 39 40 /// Analysis class to support tensor::PadOp hoisting across multiple enclosing 41 /// loops. The failure conditions are: 42 /// 1. Pad op has a use that is not an input of a LinalgOp. 43 /// 2. Pad op does not have a constant padding value. 44 /// 3. There is no immediately enclosing scf::ForOp. 45 /// 4. The backward slice from the pad op to the scf::ForOp to hoist above 46 /// contains an unknown op with non index type operands, a region, or a 47 /// memory effect. 48 /// 5. The backward slice from the pad op to the scf::ForOp to hoist above is 49 /// empty. 50 /// 6. The source tensor of pad op is not defined by an extract slice op. 51 /// 7. The source tensor of the extract slice op is not defined outside of 52 /// the outermost enclosing scf::ForOp. 53 /// 8. There is no enclosing scf::ForOp that indexes the padded data. 54 /// Other cases succeed and will trigger hoisting of the pad op. 55 struct HoistingAnalysis { 56 HoistingAnalysis(tensor::PadOp padOp, int numLoops); 57 58 bool isValid() { return valid; } 59 60 /// Footprint of the packedTensor, computed from the packingLoops. 61 SmallVector<Value> getPackedTensorSizes(ImplicitLocOpBuilder &b); 62 63 /// The outermost loop, determined by `nLevels` above which `padOp` will 64 /// be hoisted. 65 scf::ForOp outermostEnclosingForOp; 66 67 /// Backward slice rooted at `padOp` and nested under 68 /// `outermostEnclosingForOp`. 69 SetVector<Operation *> backwardSlice; 70 71 /// The scf::ForOp immediately enclosing `padOp` such that: 72 /// 1. they are nested under `outermostEnclosingForOp` (inclusive) 73 /// 2. whose induction variable is used, directly or indirectly, in the 74 /// computation of `padOp`. 75 /// The span of these loops determines the footprint of the packed tensor. 76 SmallVector<scf::ForOp> packingLoops; 77 78 private: 79 /// Drop any non-index dependencies of `padOp` and `sliceOp` from 80 /// `backwardSlice`. The method follows the use-def chains of the index 81 /// operands consumed by `padOp` and `sliceOp` and drops the operations 82 /// not part of this index computation. Afterwards, the filtered 83 /// `backwardSlice` contains only the loops whose induction variable is used, 84 /// directly or indirectly, to index the padded tensor. The method returns 85 /// failure if the filtered backward slice contains an unexpected operation. 86 /// 87 /// Example: 88 /// ``` 89 /// %source = linalg.fill(%cst, %arg0) 90 /// scf.for %i 91 /// %unrelated = linalg.fill(%cst, %arg1) // not used to index %source! 92 /// scf.for %j (%arg2 = %unrelated) 93 /// scf.for %k // not used to index %source! 94 /// %ubi = affine.min #map(%i) 95 /// %ubj = affine.min #map(%j) 96 /// %slice = tensor.extract_slice %source [%i, %j] [%ubi, %ubj] 97 /// %padded_slice = tensor.pad %slice 98 /// ``` 99 /// dropNonIndexDependencies(%padded_slice, %slice) 100 /// removes [scf.for %k, linalg.fill(%cst, %arg1)] from backwardSlice. 101 LogicalResult dropNonIndexDependencies(tensor::PadOp padOp, 102 tensor::ExtractSliceOp sliceOp); 103 104 /// Encodes whether the analysis is valid and hoisting can proceed. 105 bool valid; 106 }; 107 108 /// Return true if all uses of `padOp` are an input tensor of some 109 /// LinalgOp. 110 static bool isOnlyUsedAsInputOfLinalgOp(tensor::PadOp padOp) { 111 for (OpOperand &use : padOp.result().getUses()) { 112 auto linalgUser = dyn_cast<linalg::LinalgOp>(use.getOwner()); 113 if (!linalgUser || !linalgUser.isInputTensor(&use)) { 114 LLVM_DEBUG(DBGS() << "Found a use of " << *(padOp) 115 << "\nthat is not an input tensor of a LinalgOp, " 116 << "cannot hoist\n" 117 << *(use.getOwner()) << "\n"); 118 return false; 119 } 120 } 121 return true; 122 } 123 124 /// Return at most nLevels of immediately enclosing scf::ForOp loops. 125 /// Stops at the first parent that is not an scf::ForOp. 126 /// Multi-loops such as scf.parallel or linalg.tiled_loop are not modeled atm. 127 /// Control-flow and other containing ops with regions are not modeled atm. 128 static void 129 getAtMostNEnclosingLoops(tensor::PadOp padOp, int nLevels, 130 SmallVector<scf::ForOp> &reverseEnclosingLoops) { 131 AsmState state(padOp->getParentOfType<func::FuncOp>()); 132 (void)state; 133 scf::ForOp outermostEnclosingForOp = nullptr; 134 Operation *nextEnclosingOp = padOp->getParentOp(); 135 while (nLevels-- > 0 && 136 (outermostEnclosingForOp = dyn_cast<scf::ForOp>(nextEnclosingOp))) { 137 LLVM_DEBUG( 138 DBGS() << "loops: "; 139 outermostEnclosingForOp.getInductionVar().printAsOperand(dbgs(), state); 140 dbgs() << "\n"); 141 reverseEnclosingLoops.push_back(outermostEnclosingForOp); 142 nextEnclosingOp = outermostEnclosingForOp->getParentOp(); 143 } 144 } 145 146 /// Returns the transposed `rankedTensorType` if `transposeVector` is non-empty. 147 /// Fail if `transposeVector` is no permutation matching the tensor rank. 148 static FailureOr<RankedTensorType> 149 computeTransposedType(RankedTensorType rankedTensorType, 150 ArrayRef<int64_t> transposeVector) { 151 if (transposeVector.empty()) 152 return rankedTensorType; 153 if (!isPermutation(transposeVector) || 154 transposeVector.size() != static_cast<size_t>(rankedTensorType.getRank())) 155 return failure(); 156 157 SmallVector<int64_t> transposedShape(rankedTensorType.getShape().begin(), 158 rankedTensorType.getShape().end()); 159 applyPermutationToVector(transposedShape, transposeVector); 160 161 using RTTBuilder = RankedTensorType::Builder; 162 RankedTensorType transposedTensorType = 163 RTTBuilder(rankedTensorType).setShape(transposedShape); 164 return transposedTensorType; 165 } 166 167 HoistingAnalysis::HoistingAnalysis(tensor::PadOp padOp, int numLoops) { 168 valid = false; 169 170 // Bail on any use that isn't an input of a LinalgOp. 171 // Hoisting of inplace updates happens after vectorization. 172 if (!isOnlyUsedAsInputOfLinalgOp(padOp)) 173 return; 174 175 // Get at most `numLoops` of immediately enclosing loops. 176 SmallVector<scf::ForOp> reverseEnclosingLoops; 177 getAtMostNEnclosingLoops(padOp, numLoops, reverseEnclosingLoops); 178 if (reverseEnclosingLoops.empty()) { 179 LLVM_DEBUG(DBGS() << "No immediately enclosing loop -> skip\n"); 180 return; 181 } 182 183 outermostEnclosingForOp = reverseEnclosingLoops.back(); 184 185 // Get the `sliceOp` that defines the source tensor of `padOp` and 186 // check its source is defined outside of the outermost loop. This check 187 // ensures the padded data is available for packing before entering the 188 // outermost enclosing loop. 189 // 190 // Example: 191 // ``` 192 // %source = linalg.fill(%cst, %arg0) 193 // // %source is available for packing here! 194 // scf.for %i 195 // scf.for %j 196 // scf.for %k 197 // %slice = tensor.extract_slice %source [%i, %j] 198 // %padded_slice = tensor.pad %slice 199 // ``` 200 auto sliceOp = padOp.source().getDefiningOp<tensor::ExtractSliceOp>(); 201 if (!sliceOp) { 202 LLVM_DEBUG(DBGS() << "Cannot find the extract slice op -> skip\n"); 203 return; 204 } 205 if (!outermostEnclosingForOp.isDefinedOutsideOfLoop(sliceOp.source())) { 206 LLVM_DEBUG(DBGS() << "Source not defined outside of loops -> skip\n"); 207 return; 208 } 209 210 // Check the region of `padOp` depends on a constant only. Adding 211 // hoisting support for arbitrary padding regions would require cloning all 212 // dependencies captured by the padding region. 213 Value paddingValue = padOp.getConstantPaddingValue(); 214 if (!paddingValue || 215 !isa_and_nonnull<arith::ConstantOp>(paddingValue.getDefiningOp())) { 216 LLVM_DEBUG(DBGS() << "Cannot find constant padding value -> skip\n"); 217 return; 218 } 219 220 // Get all the ops in the backwards slice starting from `padOp` and that 221 // are dominated by the outermost enclosing loop. 222 DominanceInfo domInfo(outermostEnclosingForOp); 223 getBackwardSlice(padOp.getOperation(), &backwardSlice, [&](Operation *op) { 224 return domInfo.dominates(outermostEnclosingForOp, op); 225 }); 226 if (backwardSlice.empty()) 227 return; 228 // Add `padOp` itself to the backward slice. 229 backwardSlice.insert(padOp.getOperation()); 230 231 // Remove all ops in the backward slice that are not used to index the padded 232 // tensor. In particular, keep `padOp`, `sliceOp`, and the loop and 233 // affine operations used for the index computation. 234 if (failed(dropNonIndexDependencies(padOp, sliceOp))) 235 return; 236 237 // Add only the loops part of the filtered `backwardSlice` to the packing 238 // loops. All other loops are not used to index the padded data and 239 // consequently access the same data in every loop iteration. Adding them to 240 // the packing loops would increase the cache footprint of the packed data 241 // by storing the same data multiple times. 242 for (scf::ForOp forOp : llvm::reverse(reverseEnclosingLoops)) 243 if (backwardSlice.contains(forOp)) 244 packingLoops.push_back(forOp); 245 if (packingLoops.empty()) { 246 LLVM_DEBUG(DBGS() << "Cannot find a packing loop -> skip\n"); 247 return; 248 } 249 250 // The analysis is valid and hoisting can occur. 251 valid = true; 252 } 253 254 LogicalResult 255 HoistingAnalysis::dropNonIndexDependencies(tensor::PadOp padOp, 256 tensor::ExtractSliceOp sliceOp) { 257 // Set of all values used for index computation. 258 SetVector<Value> indexEdges; 259 260 // Add all index operands of `operation` to `indexEdges`. An index operand is 261 // an operand of type index. 262 auto addIndexOperandsToIndexEdges = [&](Operation *operation) { 263 for (Value operand : operation->getOperands()) 264 if (operand.getType().isIndex()) 265 indexEdges.insert(operand); 266 }; 267 268 // Check if any operation result is contained in `indexEdges`. 269 auto hasIndexResult = [&](Operation *operation) { 270 return llvm::any_of(operation->getResults(), [&](Value result) { 271 return indexEdges.contains(result); 272 }); 273 }; 274 275 // Starting from `padOp` and `sliceOp` walk the use-def edges of index 276 // type in `backwardSlice`. Add the index operands of an operation to 277 // `indexEdges` and remove all operations from `backwardSlice` that are not 278 // part of the index computation. 279 // 280 // Example: 281 // ``` 282 // %source = linalg.fill(%cst, %arg0) 283 // scf.for %i 284 // %unrelated = linalg.fill(%cst, %arg1) // not used to index %source! 285 // scf.for %j (%arg2 = %unrelated) 286 // scf.for %k // not used to index %source! 287 // %ubi = affine.min #map(%i) 288 // %ubj = affine.min #map(%j) 289 // %slice = tensor.extract_slice %source [%i, %j] [%ubi, %ubj] 290 // %padded_slice = tensor.pad %slice 291 // ``` 292 // After iterating `backwardSlice` we obtain: 293 // indexEdges = [%i, %j, %ubi, %ubj] 294 // backwardSlice = backwardSlice / [linalg.fill(%cst, %arg1), scf.for %k] 295 SetVector<Operation *> operationsToRemove; 296 for (Operation *op : llvm::reverse(backwardSlice)) { 297 // Add the index operands of `padOp` and `sliceOp` to start the 298 // exploration of the index computation. 299 if (op == padOp || op == sliceOp) { 300 addIndexOperandsToIndexEdges(op); 301 continue; 302 } 303 // Add the index operands of the loop if its induction variable is 304 // used for index computation. 305 if (auto forOp = dyn_cast<scf::ForOp>(op)) { 306 if (!hasIndexResult(op) && indexEdges.contains(forOp.getInductionVar())) { 307 addIndexOperandsToIndexEdges(op); 308 continue; 309 } 310 } 311 // Add the index operands of all other operations if at least one result is 312 // used for index computation. 313 if (hasIndexResult(op)) { 314 addIndexOperandsToIndexEdges(op); 315 // Check the operands of the remaining operations all have index type. 316 if (llvm::any_of(op->getOperandTypes(), 317 [](Type type) { return !type.isIndex(); })) { 318 LLVM_DEBUG(DBGS() << "Unsupported op with non index type operands: " 319 << op << " -> skip\n"); 320 return failure(); 321 } 322 // Check the remaining operations do not have regions or memory effects. 323 auto effectInterface = dyn_cast<MemoryEffectOpInterface>(op); 324 bool hasMemoryEffect = effectInterface && !effectInterface.hasNoEffect(); 325 if (hasMemoryEffect || op->getNumRegions() != 0) { 326 LLVM_DEBUG(DBGS() << "Unsupported op with region or memory effect: " 327 << op << " -> skip\n"); 328 return failure(); 329 } 330 continue; 331 } 332 // Remove all other operations not used by the index computation. An 333 // exception are constant operations that may be used by `padOp`. 334 if (!isa<arith::ConstantOp>(op)) 335 operationsToRemove.insert(op); 336 } 337 backwardSlice.set_subtract(operationsToRemove); 338 return success(); 339 } 340 341 SmallVector<Value> 342 HoistingAnalysis::getPackedTensorSizes(ImplicitLocOpBuilder &b) { 343 SmallVector<Value> dynamicTensorSizes; 344 345 // Upper bound the packing loop lengths to size the packed tensor. Taking 346 // upper bounds can make the sizes of the packed tensor independent of the 347 // enclosing loops. This independence is a prerequisite for reusing the same 348 // buffer for all enclosing loop iterations and hoisting its allocation out of 349 // the enclosing loops. 350 for (auto forOp : packingLoops) { 351 // Compute an upper bound `ubVal` for the upper bound of `forOp`. 352 AffineMap boundMap; 353 SmallVector<Value> boundOperands; 354 getUpperBoundForIndex(forOp.getUpperBound(), boundMap, boundOperands); 355 Value ubVal = b.createOrFold<AffineMinOp>(boundMap, boundOperands); 356 // Compute the maximal packing loop length as (ub - lb).ceilDiv(step) and 357 // store the result to `dynamicTensorSizes`. 358 // TODO: instead of using the lower bound of `forOp` directly, implement a 359 // lower bound computation similar to the upper bound computation. 360 AffineExpr lb, ub, step; 361 bindDims(b.getContext(), lb, ub); 362 bindSymbols(b.getContext(), step); 363 Value res = b.createOrFold<AffineApplyOp>( 364 (ub - lb).ceilDiv(step), ValueRange{forOp.getLowerBound(), ubVal, 365 cast<scf::ForOp>(forOp).getStep()}); 366 dynamicTensorSizes.push_back(res); 367 } 368 369 return dynamicTensorSizes; 370 } 371 372 static bool isDefinedOutsideOrConstant(scf::ForOp outer, Value v) { 373 return outer.isDefinedOutsideOfLoop(v) || matchPattern(v, m_Constant()); 374 } 375 376 /// Return the current iteration number in the loop (iv - lb).ceilDiv(step). 377 /// The returned Value is guaranteed not to depend on any loop comprised in 378 /// [`outer`, `forOp`]. 379 /// Return null if such a loop-independent quantity cannot be computed. 380 static Value buildLoopIterationCount(OpBuilder &b, scf::ForOp outer, 381 scf::ForOp forOp) { 382 MLIRContext *ctx = forOp->getContext(); 383 AffineExpr iv, lb, step; 384 bindDims(ctx, iv, lb); 385 bindSymbols(ctx, step); 386 if (!isDefinedOutsideOrConstant(outer, forOp.getLowerBound()) || 387 !isDefinedOutsideOrConstant(outer, forOp.getStep())) 388 return Value(); 389 Value ivVal = forOp.getInductionVar(), lbVal = forOp.getLowerBound(), 390 stepVal = forOp.getStep(); 391 auto loc = forOp->getLoc(); 392 return b.createOrFold<AffineApplyOp>(loc, (iv - lb).ceilDiv(step), 393 ValueRange{ivVal, lbVal, stepVal}); 394 } 395 396 FailureOr<Value> mlir::linalg::hoistPaddingOnTensors( 397 tensor::PadOp opToHoist, int numLoops, ArrayRef<int64_t> transposeVector, 398 tensor::PadOp &hoistedOp, SmallVectorImpl<GenericOp> &transposeOps) { 399 LLVM_DEBUG(DBGS() << "Try to hoist " << *(opToHoist) << " by " << numLoops 400 << " loops\n"); 401 HoistingAnalysis analysis(opToHoist, numLoops); 402 if (!analysis.isValid()) { 403 LLVM_DEBUG(DBGS() << "Analysis failed -> Skip\n"); 404 return failure(); 405 } 406 407 scf::ForOp outer = analysis.outermostEnclosingForOp; 408 ImplicitLocOpBuilder b(outer->getLoc(), outer); 409 410 SmallVector<Value> dynamicTensorSizes = analysis.getPackedTensorSizes(b); 411 412 // Update actual number of loops, which may be smaller. 413 int nPackedLoops = analysis.packingLoops.size(); 414 415 Location loc = opToHoist->getLoc(); 416 RankedTensorType paddedTensorType = opToHoist.getResultType(); 417 int paddedRank = paddedTensorType.getRank(); 418 419 // Compute the type of the transposed padded tensor. 420 FailureOr<RankedTensorType> transposedTensorType = 421 computeTransposedType(paddedTensorType, transposeVector); 422 if (failed(transposedTensorType)) 423 return failure(); 424 425 // Create the packed tensor<?x?x..?xtransposedShape> into which we amortize 426 // padding. 427 SmallVector<int64_t> packedShape(nPackedLoops, ShapedType::kDynamicSize); 428 // TODO: go grab dims when necessary, for now tensor::PadOp returns a static 429 // tensor. 430 llvm::append_range(packedShape, transposedTensorType->getShape()); 431 auto packedTensorType = RankedTensorType::get( 432 packedShape, transposedTensorType->getElementType()); 433 Value packedTensor = b.create<linalg::InitTensorOp>( 434 loc, dynamicTensorSizes, packedTensorType.getShape(), 435 packedTensorType.getElementType()); 436 437 // Clone the operations involved in the backward slice, iteratively stepping 438 // into the loops that we encounter. 439 // The implementation proceeds in a stack-like fashion: 440 // 1. Iteratively clone and step into the loops, pushing the `packedTensor` 441 // deeper in the stack. 442 // 2. Create a GenericOp if `transposeVector` is non-empty. 443 // 3. Create a InsertSliceOp at the top of the stack. 444 // 4. Iteratively pop and yield the result of the InsertSliceOp across 445 // the cloned loops. 446 SmallVector<Value> clonedLoopIvs, leadingPackedTensorIndexings; 447 clonedLoopIvs.reserve(nPackedLoops); 448 leadingPackedTensorIndexings.reserve(nPackedLoops); 449 BlockAndValueMapping bvm; 450 // Stack step 1. iteratively clone loops and push `packedTensor`. 451 for (Operation *op : analysis.backwardSlice) { 452 // Specifically sit out in the extract_slice(packedTensor) case: this is the 453 // piece we seek to replace. 454 if (auto sliceOp = dyn_cast<tensor::ExtractSliceOp>(op)) 455 if (bvm.lookupOrDefault(sliceOp.source()) == packedTensor) 456 continue; 457 // Clone all operations except it is a loop. 458 auto forOp = dyn_cast<scf::ForOp>(op); 459 if (!forOp) { 460 b.clone(*op, bvm); 461 continue; 462 } 463 // Create a packing loop that takes `packedTensor` as iteration argument. 464 auto clonedForOp = b.create<scf::ForOp>( 465 loc, bvm.lookupOrDefault(forOp.getLowerBound()), 466 bvm.lookupOrDefault(forOp.getUpperBound()), 467 bvm.lookupOrDefault(forOp.getStep()), packedTensor); 468 // Map the induction var, region args and results to the `clonedForOp`. 469 bvm.map(forOp.getInductionVar(), clonedForOp.getInductionVar()); 470 bvm.map(forOp.getRegionIterArgs(), clonedForOp.getRegionIterArgs()); 471 bvm.map(forOp.getResults(), clonedForOp.getResults()); 472 assert(clonedForOp->getNumRegions() == 1); 473 clonedLoopIvs.push_back(clonedForOp.getInductionVar()); 474 475 b.setInsertionPointToStart(&clonedForOp->getRegion(0).front()); 476 Value loopIndependentIterationCount = 477 buildLoopIterationCount(b, outer, clonedForOp); 478 // Assert the loop-independent iteration count can be computed. 479 if (!loopIndependentIterationCount) 480 llvm_unreachable("loop independence prerequisite not met"); 481 leadingPackedTensorIndexings.push_back(loopIndependentIterationCount); 482 packedTensor = clonedForOp.getRegionIterArgs().front(); 483 } 484 485 // offsets = [clonedLoopIvs, 0 .. 0]. 486 SmallVector<OpFoldResult> offsets(leadingPackedTensorIndexings.begin(), 487 leadingPackedTensorIndexings.end()); 488 offsets.append(paddedRank, b.getIndexAttr(0)); 489 // sizes = [1 .. 1, transposedShape]. 490 SmallVector<OpFoldResult> sizes(nPackedLoops, b.getIndexAttr(1)); 491 for (int64_t sz : transposedTensorType->getShape()) { 492 // TODO: go grab dims when necessary, for now tensor::PadOp returns a static 493 assert(!ShapedType::isDynamic(sz) && "padded tensor needs static sizes"); 494 sizes.push_back(b.getIndexAttr(sz)); 495 } 496 // strides = [1 .. 1]. 497 SmallVector<OpFoldResult> strides(nPackedLoops + paddedRank, 498 b.getIndexAttr(1)); 499 500 // Stack step 2. create GenericOp if `transposeVector` is non-empty. 501 Value paddedTensor = bvm.lookup(opToHoist.result()); 502 if (!transposeVector.empty()) { 503 Value outputTensor = b.create<tensor::ExtractSliceOp>( 504 loc, *transposedTensorType, packedTensor, offsets, sizes, strides); 505 transposeOps.push_back( 506 makeTransposeOp(b, loc, paddedTensor, outputTensor, transposeVector)); 507 paddedTensor = transposeOps.back()->getResult(0); 508 } 509 510 // Stack step 3. create InsertSliceOp at the top of the stack. 511 Value inserted = b.create<tensor::InsertSliceOp>( 512 loc, paddedTensor, packedTensor, offsets, sizes, strides); 513 514 // Stack step 4. iteratively pop the stack and propagate the yield. 515 Value valueToYield = inserted; 516 for (Value iv : llvm::reverse(clonedLoopIvs)) { 517 auto forOp = scf::getForInductionVarOwner(iv); 518 b.setInsertionPointToEnd(&forOp.getRegion().front()); 519 b.create<scf::YieldOp>(loc, valueToYield); 520 valueToYield = forOp.getResult(0); 521 } 522 523 // Now the packed tensor is ready, replace the original padding op by a 524 // 1x..x1 slice [originalLoopIvs, 0 .. 0][1 .. 1, paddedShape][1 .. 1]. 525 b.setInsertionPoint(opToHoist); 526 SmallVector<Value> loopIterationCounts = llvm::to_vector<4>( 527 llvm::map_range(analysis.packingLoops, [&](Operation *loop) { 528 return buildLoopIterationCount(b, outer, cast<scf::ForOp>(loop)); 529 })); 530 // Assert all loop iteration counts can be computed. 531 if (llvm::any_of(loopIterationCounts, [](Value v) { return !v; })) 532 llvm_unreachable("loop independence prerequisite not met"); 533 // offsets = [originalLoopIvs, 0 .. 0]. 534 offsets.assign(loopIterationCounts.begin(), loopIterationCounts.end()); 535 offsets.append(paddedRank, b.getIndexAttr(0)); 536 // sizes = [1 .. 1, transposedShape] (definedabove). 537 // strides = [1 .. 1] (defined above) 538 packedTensor = 539 scf::getForInductionVarOwner(clonedLoopIvs.front())->getResult(0); 540 Value newResult = b.create<tensor::ExtractSliceOp>( 541 loc, *transposedTensorType, packedTensor, offsets, sizes, strides); 542 543 // Transpose the packed tensor back to the original storage order. 544 if (!transposeVector.empty()) { 545 Value initTensor = 546 b.create<InitTensorOp>(loc, ValueRange{}, paddedTensorType.getShape(), 547 paddedTensorType.getElementType()); 548 transposeOps.push_back( 549 makeTransposeOp(b, loc, newResult, initTensor, transposeVector)); 550 newResult = transposeOps.back()->getResult(0); 551 } 552 553 // Make the newly cloned `opToHoist` available to the caller. 554 hoistedOp = 555 cast<tensor::PadOp>(bvm.lookup(opToHoist.result()).getDefiningOp()); 556 return newResult; 557 } 558