1 //===- ElementwiseOpFusion.cpp - Implementation of linalg Fusion ---------===/// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the linalg dialect Fusion on tensors operations pass. 10 // 11 //===----------------------------------------------------------------------===// 12 #include <utility> 13 14 #include "PassDetail.h" 15 #include "mlir/Dialect/Affine/IR/AffineOps.h" 16 #include "mlir/Dialect/Linalg/IR/Linalg.h" 17 #include "mlir/Dialect/Linalg/Passes.h" 18 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 19 #include "mlir/Dialect/Linalg/Utils/Utils.h" 20 #include "mlir/IR/AffineExpr.h" 21 #include "mlir/IR/AffineMap.h" 22 #include "mlir/IR/Matchers.h" 23 #include "mlir/IR/PatternMatch.h" 24 #include "mlir/Support/LLVM.h" 25 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 26 27 using namespace mlir; 28 using namespace mlir::linalg; 29 30 /// Append to `fusedOpIndexingMapAttrs` the indexing maps for the operands of 31 /// the `producer` to use in the fused operation given the indexing map of the 32 /// result of the producer in the consumer. 33 static AffineMap getIndexingMapOfProducerOperandsInCoordinatesOfFusedOp( 34 OpOperand *producerOpOperand, AffineMap producerResultIndexMap, 35 AffineMap fusedConsumerArgIndexMap) { 36 // The indexing map in the consumer op (fusedConsumerArgIndexMap) is a map 37 // from consumer loop -> consumer arg tensor index/producer result tensor 38 // index. The fused loop is same as the consumer loop. For each producer arg 39 // the indexing map to be computed is a map from consumer loop -> producer 40 // arg tensor index. 41 // producerResultIndexMap is a map from producer loop -> tensor index. 42 // Compute the inverse to get map from tensor index -> producer loop. 43 // The inverse is a map from producer result tensor index -> producer loop. 44 AffineMap invProducerResultIndexMap = 45 inversePermutation(producerResultIndexMap); 46 assert(invProducerResultIndexMap && 47 "expected producer result indexig map to be invertible"); 48 49 LinalgOp producer = cast<LinalgOp>(producerOpOperand->getOwner()); 50 // argMap is a map from producer loop -> producer arg tensor index. 51 AffineMap argMap = producer.getTiedIndexingMap(producerOpOperand); 52 53 // Compose argMap with invProducerResultIndexMap to get a map from 54 // producer result tensor index -> producer arg tensor index. 55 AffineMap t1 = argMap.compose(invProducerResultIndexMap); 56 57 // Compose t1 with fusedConsumerArgIndexMap gives an indexing map from 58 // consumer loop/ fused loop -> producer arg tensor index. 59 return t1.compose(fusedConsumerArgIndexMap); 60 } 61 62 /// Conditions for elementwise fusion of generic operations. 63 static bool areElementwiseOpsFusable(GenericOp producer, GenericOp consumer, 64 OpOperand *consumerOpOperand) { 65 // Producer and consumer must have tensor semantics. 66 if (!producer.hasTensorSemantics() || !consumer.hasTensorSemantics()) 67 return false; 68 69 // Verify that 70 // - the producer has all "parallel" iterator type. 71 if (producer.getNumParallelLoops() != producer.getNumLoops()) 72 return false; 73 74 // Only allow fusing the producer of an input operand for now. 75 // TODO: allow fusing the producer of an output operand. 76 if (!consumer.isInputTensor(consumerOpOperand)) 77 return false; 78 79 // Get the consumer index map. The number of results of the consumer index 80 // map must match the number of loops of the producer. 81 AffineMap consumerIndexMap = consumer.getTiedIndexingMap(consumerOpOperand); 82 if (consumerIndexMap.getNumResults() != producer.getNumLoops()) 83 return false; 84 85 // Currently support only operations with single result. 86 if (producer.getNumOutputs() != 1) 87 return false; 88 89 // Finally the index_map for the result must be invertible. For now just 90 // verify it is a permutation. 91 AffineMap producerResultIndexMap = 92 producer.getTiedIndexingMap(producer.getOutputOperand(0)); 93 if (!producerResultIndexMap.isPermutation()) 94 return false; 95 96 // Ensure that the fusion does not remove size information required to 97 // get the loop bounds. For non-reduction generics, this is trivially the 98 // case due to the output operand. For reductions, we need to check that after 99 // the fusion, each loop dimension has at least one input that defines it. 100 if ((consumer.getNumReductionLoops())) { 101 llvm::BitVector coveredDims(consumer.getNumLoops(), false); 102 103 auto addToCoveredDims = [&](AffineMap map) { 104 for (auto result : map.getResults()) 105 if (auto dimExpr = result.dyn_cast<AffineDimExpr>()) 106 coveredDims[dimExpr.getPosition()] = true; 107 }; 108 109 for (auto pair : 110 llvm::zip(consumer->getOperands(), consumer.getIndexingMaps())) { 111 Value operand = std::get<0>(pair); 112 if (operand == consumerOpOperand->get()) 113 continue; 114 AffineMap operandMap = std::get<1>(pair); 115 addToCoveredDims(operandMap); 116 } 117 118 for (OpOperand *operand : producer.getInputOperands()) { 119 AffineMap newIndexingMap = 120 getIndexingMapOfProducerOperandsInCoordinatesOfFusedOp( 121 operand, producerResultIndexMap, consumerIndexMap); 122 addToCoveredDims(newIndexingMap); 123 } 124 if (!coveredDims.all()) 125 return false; 126 } 127 128 return true; 129 } 130 131 /// Generate the region of the fused tensor operation. The region of the fused 132 /// op must be empty. 133 static void 134 generateFusedElementwiseOpRegion(PatternRewriter &rewriter, GenericOp fusedOp, 135 AffineMap consumerToProducerLoopsMap, 136 OpOperand *consumerOpOperand, 137 unsigned nloops) { 138 auto producer = cast<GenericOp>(consumerOpOperand->get().getDefiningOp()); 139 auto consumer = cast<GenericOp>(consumerOpOperand->getOwner()); 140 // Build the region of the fused op. 141 Block &producerBlock = producer->getRegion(0).front(); 142 Block &consumerBlock = consumer->getRegion(0).front(); 143 Block *fusedBlock = new Block(); 144 fusedOp.region().push_back(fusedBlock); 145 BlockAndValueMapping mapper; 146 OpBuilder::InsertionGuard guard(rewriter); 147 rewriter.setInsertionPointToStart(fusedBlock); 148 149 // 2. Add an index operation for every fused loop dimension and use the 150 // `consumerToProducerLoopsMap` to map the producer indices. 151 if (producer.hasIndexSemantics()) { 152 // Add an index operation for every fused loop dimension. 153 unsigned numFusedOpLoops = 154 std::max(producer.getNumLoops(), consumer.getNumLoops()); 155 SmallVector<Value> fusedIndices; 156 fusedIndices.reserve(numFusedOpLoops); 157 llvm::transform(llvm::seq<uint64_t>(0, numFusedOpLoops), 158 std::back_inserter(fusedIndices), [&](uint64_t dim) { 159 return rewriter.create<IndexOp>(producer.getLoc(), dim); 160 }); 161 for (IndexOp indexOp : 162 llvm::make_early_inc_range(producerBlock.getOps<IndexOp>())) { 163 Value newIndex = rewriter.create<mlir::AffineApplyOp>( 164 producer.getLoc(), 165 consumerToProducerLoopsMap.getSubMap(indexOp.dim()), fusedIndices); 166 mapper.map(indexOp.getResult(), newIndex); 167 } 168 } 169 // TODO: allow fusing the producer of an output operand. 170 assert(consumer.isInputTensor(consumerOpOperand) && 171 "expected producer of input operand"); 172 // 3. Consumer input operands up to consumerIdx (exclusive). 173 for (BlockArgument bbArg : consumerBlock.getArguments().take_front( 174 consumerOpOperand->getOperandNumber())) // input assumption. 175 mapper.map(bbArg, fusedBlock->addArgument(bbArg.getType())); 176 177 // Replacing consumerIdx requires getting the cloned, yielded, value from 178 // the (cloned) producer block. This happens in step 9. 179 180 // 4. Splice in producer's input operands. 181 for (BlockArgument bbArg : 182 producerBlock.getArguments().take_front(producer.getNumInputs())) 183 mapper.map(bbArg, fusedBlock->addArgument(bbArg.getType())); 184 185 // 4.b. Producer output operand/map that is fused needs to be mapped to the 186 // producer bbArg if it is an "initTensor" (i.e. its value is actually read). 187 assert(producer->getNumResults() == 1 && "expected single result producer"); 188 if (producer.isInitTensor(producer.getOutputOperand(0))) { 189 BlockArgument bbArg = producerBlock.getArguments() 190 .drop_front(producer.getNumInputs()) 191 // TODO: bbArg index of 192 .front(); 193 mapper.map(bbArg, fusedBlock->addArgument(bbArg.getType())); 194 } 195 // 5. Remaining consumer's input operands (drop past index `consumerIdx`). 196 for (BlockArgument bbArg : 197 consumerBlock.getArguments() 198 .take_front(consumer.getNumInputs()) 199 .drop_front(consumerOpOperand->getOperandNumber() + 1)) 200 mapper.map(bbArg, fusedBlock->addArgument(bbArg.getType())); 201 // 6. All of consumer's output operands. 202 for (BlockArgument bbArg : 203 consumerBlock.getArguments().take_back(consumer.getNumOutputs())) 204 mapper.map(bbArg, fusedBlock->addArgument(bbArg.getType())); 205 // 7. All of producer's output operands except the one fused. 206 // TODO: allow fusion of multi-result producers. 207 assert(producer->getNumResults() == 1 && "expected single result producer"); 208 209 // 8. Clone all producer operations except for the yield and index operations 210 // to the fused operation. 211 for (auto &op : producerBlock.without_terminator()) { 212 if (!isa<IndexOp>(op)) 213 rewriter.clone(op, mapper); 214 } 215 // 9. Now we can map the consumerBlock's `consumerIdx` block argument. Just 216 // forward the yield operand. 217 auto yieldOp = cast<linalg::YieldOp>(producerBlock.getTerminator()); 218 // TODO: allow fusion of multi-result producers. 219 assert(producer->getNumResults() == 1 && "expected single result producer"); 220 unsigned producerResultNumber = 0; 221 Value replacement = 222 mapper.lookupOrDefault(yieldOp.getOperand(producerResultNumber)); 223 // Sanity checks, if replacement is not already in the mapper then it must be 224 // produced outside. 225 if (replacement == yieldOp.getOperand(producerResultNumber)) { 226 if (auto bb = replacement.dyn_cast<BlockArgument>()) 227 assert(bb.getOwner() != &producerBlock && 228 "yielded block argument must have been mapped"); 229 else 230 assert(!producer->isAncestor(replacement.getDefiningOp()) && 231 "yielded value must have been mapped"); 232 } 233 mapper.map(consumerBlock.getArgument(consumerOpOperand->getOperandNumber()), 234 replacement); 235 // 10. Clone operations from the consumer to the fused op. 236 for (auto &op : consumerBlock.getOperations()) 237 rewriter.clone(op, mapper); 238 239 // Sanity checks. 240 assert(fusedBlock->getNumArguments() == fusedOp.getNumOperands() && 241 "Ill-formed GenericOp region"); 242 } 243 244 static Optional<SmallVector<Value>> 245 fuseElementwiseOpsImpl(GenericOp producer, OpOperand *consumerOpOperand, 246 const ControlElementwiseOpsFusionFn &controlFn, 247 PatternRewriter &rewriter) { 248 auto consumer = cast<GenericOp>(consumerOpOperand->getOwner()); 249 if (!areElementwiseOpsFusable(producer, consumer, consumerOpOperand) || 250 !controlFn(producer->getResult(0), *consumerOpOperand)) 251 return llvm::None; 252 253 // TODO: allow fusing the producer of an output operand. 254 assert(consumer.isInputTensor(consumerOpOperand) && 255 "expected producer of input operand"); 256 257 // Compute the fused operands list and indexing maps. 258 SmallVector<Value> fusedOperands; 259 SmallVector<AffineMap> fusedIndexMaps; 260 fusedOperands.reserve(producer->getNumOperands() + 261 consumer->getNumOperands()); 262 fusedIndexMaps.reserve(producer->getNumOperands() + 263 consumer->getNumOperands()); 264 // In the following, numbering matches that of `generateFusedTensorOpRegion`. 265 // 3. Consumer input operands/maps up to consumerIdx (exclusive). 266 SmallVector<OpOperand *> consumerInputs = consumer.getInputOperands(); 267 SmallVector<OpOperand *>::iterator it = 268 llvm::find(consumerInputs, consumerOpOperand); 269 assert(it != consumerInputs.end() && "expected to find the consumer operand"); 270 for (OpOperand *opOperand : llvm::make_range(consumerInputs.begin(), it)) { 271 fusedOperands.push_back(opOperand->get()); 272 fusedIndexMaps.push_back(consumer.getTiedIndexingMap(opOperand)); 273 } 274 // 4. Splice in producer's input operands/maps. 275 assert(producer->getNumResults() == 1 && "expected single result producer"); 276 AffineMap producerResultIndexMap = 277 producer.getTiedIndexingMap(producer.getOutputOperand(0)); 278 for (OpOperand *opOperand : producer.getInputOperands()) { 279 fusedOperands.push_back(opOperand->get()); 280 // Compute indexing maps for the producer args in the fused operation. 281 AffineMap map = getIndexingMapOfProducerOperandsInCoordinatesOfFusedOp( 282 opOperand, producerResultIndexMap, 283 consumer.getTiedIndexingMap(consumerOpOperand)); 284 fusedIndexMaps.push_back(map); 285 } 286 // 4.b. Producer output operand/map that is fused needs to be passed if it is 287 // an "initTensor" (i.e. its value is actually read). 288 assert(producer->getNumResults() == 1 && "expected single result producer"); 289 if (producer.isInitTensor(producer.getOutputOperand(0))) { 290 fusedOperands.push_back(producer.getOutputOperand(0)->get()); 291 // Compute indexing maps for the producer args in the fused operation. 292 AffineMap map = getIndexingMapOfProducerOperandsInCoordinatesOfFusedOp( 293 producer.getOutputOperand(0), producerResultIndexMap, 294 consumer.getTiedIndexingMap(consumerOpOperand)); 295 fusedIndexMaps.push_back(map); 296 } 297 // 5. Remaining consumer's input operands/maps (drop past index 298 // `consumerIdx`). 299 for (OpOperand *opOperand : 300 llvm::make_range(std::next(it), consumerInputs.end())) { 301 fusedOperands.push_back(opOperand->get()); 302 fusedIndexMaps.push_back(consumer.getTiedIndexingMap(opOperand)); 303 } 304 // 6. All of consumer's output operands (skip operands: added by the builder). 305 for (OpOperand *opOperand : consumer.getOutputOperands()) 306 fusedIndexMaps.push_back(consumer.getTiedIndexingMap(opOperand)); 307 // 7. All of producer's output operands/maps except the one fused. 308 // TODO: allow fusion of multi-result producers. 309 assert(producer->getNumResults() == 1 && "expected single result producer"); 310 311 // Generate the fused op. 312 SmallVector<Value> consumerOutputs = consumer.getOutputOperands(); 313 auto fusedOp = rewriter.create<GenericOp>( 314 consumer.getLoc(), consumer->getResultTypes(), 315 /*inputs=*/fusedOperands, 316 // TODO: handle outputs. 317 consumerOutputs, rewriter.getAffineMapArrayAttr(fusedIndexMaps), 318 consumer.iterator_types(), 319 /*doc=*/nullptr, 320 /*library_call=*/nullptr); 321 322 // Construct an AffineMap from consumer loops to producer loops. 323 // consumer loop -> tensor index 324 AffineMap consumerResultIndexMap = 325 consumer.getTiedIndexingMap(consumerOpOperand); 326 // tensor index -> producer loop 327 AffineMap invProducerResultIndexMap = 328 inversePermutation(producerResultIndexMap); 329 assert(invProducerResultIndexMap && 330 "expected producer result indexig map to be invertible"); 331 // consumer loop -> producer loop 332 AffineMap consumerToProducerLoopsMap = 333 invProducerResultIndexMap.compose(consumerResultIndexMap); 334 335 generateFusedElementwiseOpRegion(rewriter, fusedOp, 336 consumerToProducerLoopsMap, 337 consumerOpOperand, consumer.getNumLoops()); 338 return SmallVector<Value>(fusedOp->getResults()); 339 } 340 341 /// Linearize the expressions in `sourceMap` based on the `reassociationMaps` 342 /// provided, given the shape of the source tensor that corresponds to the 343 /// `sourceMap`. Note that this implicitly assumes that the tensors dimensions 344 /// are "row-major" ordered logically. 345 /// 346 /// For example: 347 /// 348 /// %0 = op ... : tensor<?x?x4x5xf32> 349 /// with output index_map `affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>` 350 /// 351 /// and reshape: 352 /// %1 = tensor.collapse_shape %0 [[0], [0, 1, 2]] : 353 /// tensor<?x?x4x5xf32> into tensor<?x?xf32> 354 /// 355 /// would be rewritten into: 356 /// %0 = op ... : tensor<?x?x4x5xf32> 357 /// with output index_map 358 /// `affine_map<(d0, d1, d2, d3) -> (d0, d1 * 20 + d2 * 5 + d3)>` 359 template <typename TensorReshapeOp> 360 static AffineMap linearizeCollapsedDims(AffineMap sourceMap, 361 TensorReshapeOp reshapeOp) { 362 constexpr bool isExpanding = 363 std::is_same<TensorReshapeOp, tensor::ExpandShapeOp>::value; 364 ArrayRef<int64_t> sourceShape = 365 (isExpanding ? reshapeOp.getResultType().getShape() 366 : reshapeOp.getSrcType().getShape()); 367 SmallVector<AffineExpr> resultExprs; 368 ArrayRef<AffineExpr> sourceExprs = sourceMap.getResults(); 369 MLIRContext *context = sourceMap.getContext(); 370 371 // Compute the result exprs based on the reassociation maps. 372 for (auto &indices : reshapeOp.getReassociationIndices()) { 373 // Assume that they are in-order and contiguous (already checked in 374 // verifier). 375 assert(!indices.empty()); 376 SmallVector<int64_t> sizes; 377 SmallVector<AffineExpr> dimExprs; 378 for (auto en : llvm::zip(sourceShape.slice(indices[0], indices.size()), 379 sourceExprs.slice(indices[0], indices.size()))) { 380 if (std::get<0>(en) == 1) 381 continue; 382 sizes.push_back(std::get<0>(en)); 383 dimExprs.push_back(std::get<1>(en)); 384 } 385 AffineExpr linearizedExpr = 386 makeCanonicalStridedLayoutExpr(sizes, dimExprs, context); 387 resultExprs.push_back(linearizedExpr); 388 } 389 // The new affine map cannot drop unused dimension but some new symbols may 390 // have been added. Create a map with at least as many dimensions/symbols as 391 // the original affine map. 392 int64_t maxDim = -1; 393 int64_t maxSym = -1; 394 getMaxDimAndSymbol<SmallVector<AffineExpr>>({resultExprs}, maxDim, maxSym); 395 unsigned numDims = std::max(unsigned(maxDim + 1), sourceMap.getNumDims()); 396 unsigned numSyms = std::max(unsigned(maxSym + 1), sourceMap.getNumSymbols()); 397 return AffineMap::get(numDims, numSyms, resultExprs, context); 398 } 399 400 // tensor::ExpandShapeOp is fusable with its consumer (i.e. reshape as a 401 // producer). Fusing when operand has higher rank will require use of mods and 402 // divs in the indexing maps of the fused op which would make it non-invertible. 403 static bool isTensorReshapeOpFoldableByLinearization( 404 tensor::ExpandShapeOp expandOp, AffineMap useIndexMap, bool asProducer) { 405 if (!asProducer) 406 return false; 407 return useIndexMap.isPermutation(); 408 } 409 410 // tensor::CollapseShapeOp is fusable with its producer (i.e. reshape as a 411 // consumer). 412 static bool 413 isTensorReshapeOpFoldableByLinearization(tensor::CollapseShapeOp collapseOp, 414 AffineMap useIndexMap, 415 bool asProducer) { 416 if (asProducer) 417 return false; 418 return useIndexMap.isPermutation(); 419 } 420 421 /// Check if the reshape operation is only expansion into/collapsing of 422 /// unit-dimension. 423 template <typename TensorReshapeOp> 424 static bool isUnitDimExpansionOnly(TensorReshapeOp reshapeOp) { 425 constexpr bool isExpanding = 426 std::is_same<TensorReshapeOp, tensor::ExpandShapeOp>::value; 427 ArrayRef<int64_t> expandedShape = 428 (isExpanding ? reshapeOp.getResultType().getShape() 429 : reshapeOp.getSrcType().getShape()); 430 for (auto &indices : reshapeOp.getReassociationIndices()) { 431 unsigned numUnitDims = 0; 432 for (int64_t position : indices) 433 if (expandedShape[position] == 1) 434 numUnitDims++; 435 if (numUnitDims != indices.size() - 1) 436 return false; 437 } 438 return true; 439 } 440 441 /// Conditions for folding a generic operation with a reshape op by expanding 442 /// the iteration space dimensionality for tensor operations. These are 443 /// preconditions assumed by `foldReshapeByDimExpansion` which implements the 444 /// following fusion pattern. 445 /// 446 /// Consider 447 /// 448 /// %c = linalg.generic ins(%a, %b : memref<?x?x?xf32>, memref<?x?xf32>) 449 /// indexing_maps = [affine_map<(d0, d1, d2) -> (d1, d0, d2)>, 450 /// affine_map<(d0, d1, d2) -> (d1, d2)>, 451 /// affine_map<(d0, d1, d2) -> (d0, d2, d1)>] 452 /// %d = tensor.expand_shape %c [[0, 1], [2], [3, 4, 5]] 453 /// : tensor<?x?x?xf32> into tensor<?x?x?x?x?x?xf32> 454 /// 455 /// The reshape can be folded into the `genericOp` if its loop dimensionality 456 /// is increased to match the result (operand) of the tensor_expand_shape. 457 /// The indexing_map of the fused tensor in the `genericOp` and the 458 /// reassociation map helps compute the indexing maps of the modified op. 459 /// For the above example, based on the reassociation map it 460 /// can be concluded that 461 /// 462 /// - The loop used to access the first dimension of the fused tensor is split 463 /// into two. 464 /// - The loop used to access the second dimension of the fused tensor is kept 465 /// as is. 466 /// - The loop used to access the third dimension of the fused tensor is split 467 /// into three. 468 /// 469 /// i.e. (e0, e1, e2, e3, e4) is the domain of the indexing map of the modified 470 /// op, then 471 /// 472 /// d0 -> e0, e1 473 /// d1 -> e2, e3, e4 474 /// d2 -> e5 475 /// 476 /// substituting this, the generic op can be rewritten as 477 /// 478 /// %d = linalg.generic ins(%0, %1 : ) 479 /// indexing_maps = 480 /// [affine_map<(e0, e1, e2, e3, e4, e5) -> (e2, e3, e4, e0, e1, e5)>, 481 /// affine_map<(e0, e1, e2, e3, e4, e5) -> (e2, e3, e4, e5)>, 482 /// affine_map<(e0, e1, e2, e3, e4, e5) -> (e0, e1, e5, e2, e3, e4)>] 483 /// 484 /// Since operands to the linalg generic are now 5D, reshapes can be introduced 485 /// to make it consistent 486 /// 487 /// %0 = tensor.expand_shape %a [[0, 1, 2], [3, 4], [5]] 488 /// : tensor<?x?x?xf32> into tensor<?x?x?x?x?x?xf32> 489 /// %1 = tensor.expand_shape %b [[0, 1, 2], [3]] 490 /// : tensor<?x?x?xf32> into tensor<?x?x?x?xf32> 491 /// 492 /// The added reshapes are again expanding patterns, so they will get fused 493 /// with its producers if possible. 494 static bool isFusableWithReshapeByDimExpansion(GenericOp genericOp, 495 OpOperand *fusableOpOperand) { 496 // Is fusable only if: 497 // - All the indexing maps for operands and results are projected 498 // permutations. 499 // - The fused tensor is not a scalar. 500 // - All the loops are parallel loops. 501 return genericOp.hasTensorSemantics() && 502 llvm::all_of(genericOp.indexing_maps().getValue(), 503 [](Attribute attr) { 504 return attr.cast<AffineMapAttr>() 505 .getValue() 506 .isProjectedPermutation(); 507 }) && 508 genericOp.getTiedIndexingMap(fusableOpOperand).getNumResults() > 0 && 509 llvm::all_of(genericOp.iterator_types(), [](Attribute attr) { 510 return attr.cast<StringAttr>().getValue() == 511 getParallelIteratorTypeName(); 512 }); 513 } 514 515 namespace { 516 /// Information needed to expand a generic operation to fold the reshape with 517 /// it. 518 class ExpansionInfo { 519 public: 520 // Computes the mapping from original dimensions of the op to the dimensions 521 // of the expanded op given the `indexingMap` of the fused operand/result of 522 // the generic op, the `reassocationMaps` of the reshape op and the shape of 523 // the expanded op. 524 LogicalResult compute(LinalgOp linalgOp, OpOperand *fusableOpOperand, 525 ArrayRef<AffineMap> reassociationMaps, 526 ArrayRef<int64_t> expandedShape, 527 ArrayRef<int64_t> collapsedShape, 528 PatternRewriter &rewriter); 529 unsigned getOrigOpNumDims() const { return reassociation.size(); } 530 unsigned getExpandedOpNumDims() const { return expandedOpNumDims; } 531 ReassociationIndicesRef getExpandedDims(unsigned i) const { 532 return reassociation[i]; 533 } 534 ArrayRef<int64_t> getExpandedShapeOfDim(unsigned i) const { 535 return expandedShapeMap[i]; 536 } 537 ArrayRef<int64_t> getOriginalShape() const { return originalLoopExtent; } 538 539 private: 540 /// Reassociation from the dimensions in the original operation to the 541 /// dimension of the expanded operation. 542 SmallVector<ReassociationIndices> reassociation; 543 /// Mapping from extent of loops in the original operation, to the extent of 544 /// loops in the expanded operation. 545 SmallVector<SmallVector<int64_t>> expandedShapeMap; 546 /// Extent of the loop in the original operation. 547 SmallVector<int64_t> originalLoopExtent; 548 unsigned expandedOpNumDims; 549 }; 550 } // namespace 551 552 LogicalResult ExpansionInfo::compute(LinalgOp linalgOp, 553 OpOperand *fusableOpOperand, 554 ArrayRef<AffineMap> reassociationMaps, 555 ArrayRef<int64_t> expandedShape, 556 ArrayRef<int64_t> collapsedShape, 557 PatternRewriter &rewriter) { 558 if (reassociationMaps.empty()) 559 return failure(); 560 AffineMap fusedIndexMap = linalgOp.getTiedIndexingMap(fusableOpOperand); 561 562 Optional<SmallVector<int64_t, 4>> originalLoopRange = 563 linalgOp.getStaticLoopRanges(); 564 if (!originalLoopRange) 565 return rewriter.notifyMatchFailure(linalgOp, "unable to find loop range"); 566 originalLoopExtent.assign(originalLoopRange->begin(), 567 originalLoopRange->end()); 568 569 reassociation.clear(); 570 expandedShapeMap.clear(); 571 // Compute the number of dimension in the expanded op that correspond to each 572 // dimension of the original op. 573 SmallVector<unsigned> numExpandedDims(fusedIndexMap.getNumDims(), 1); 574 expandedShapeMap.resize(fusedIndexMap.getNumDims()); 575 for (const auto &resultExpr : llvm::enumerate(fusedIndexMap.getResults())) { 576 unsigned pos = resultExpr.value().cast<AffineDimExpr>().getPosition(); 577 AffineMap foldedDims = reassociationMaps[resultExpr.index()]; 578 numExpandedDims[pos] = foldedDims.getNumResults(); 579 ArrayRef<int64_t> shape = 580 expandedShape.slice(foldedDims.getDimPosition(0), numExpandedDims[pos]); 581 expandedShapeMap[pos].assign(shape.begin(), shape.end()); 582 } 583 // The remaining dimensions remain the same. 584 for (unsigned i : llvm::seq<unsigned>(0, fusedIndexMap.getNumDims())) 585 if (expandedShapeMap[i].empty()) 586 expandedShapeMap[i] = {originalLoopExtent[i]}; 587 588 // Compute reassociation map from the original op to the expanded op. 589 unsigned sum = 0; 590 reassociation.reserve(fusedIndexMap.getNumDims()); 591 for (const auto &numFoldedDim : llvm::enumerate(numExpandedDims)) { 592 auto seq = llvm::seq<int64_t>(sum, sum + numFoldedDim.value()); 593 reassociation.emplace_back(seq.begin(), seq.end()); 594 sum += numFoldedDim.value(); 595 } 596 expandedOpNumDims = sum; 597 return success(); 598 } 599 600 /// Epanding the body of a linalg operation requires adaptations of the accessed 601 /// loop indices. Specifically, access of indices in the original operation need 602 /// to be replaced with linearizations of indices in the expanded op. That 603 /// requires the shape of the expanded dimensions to be static (at least all but 604 /// the most significant). For now check that these are all statically sized. 605 /// Note that this could be extended to handle dynamic case, but the 606 /// implementation below uses `affine.apply` which seems to have issues when the 607 /// shapes are not static. 608 LogicalResult isGenericOpExpandable(GenericOp genericOp, 609 const ExpansionInfo &expansionInfo, 610 PatternRewriter &rewriter) { 611 // Current reshape only supports expansion of a dynamic dim when only one of 612 // the expanded dims are dynamic. 613 for (const auto &originalShape : 614 llvm::enumerate(expansionInfo.getOriginalShape())) 615 if (ShapedType::isDynamic(originalShape.value())) { 616 // All but one of the expanded dims must be static. 617 bool foundDynamicExpandedDim = false; 618 for (auto expandedShape : 619 expansionInfo.getExpandedShapeOfDim(originalShape.index())) { 620 if (ShapedType::isDynamic(expandedShape)) { 621 if (foundDynamicExpandedDim) { 622 return rewriter.notifyMatchFailure( 623 genericOp, 624 "cannot expanded dynamic dims into multiple dynamic dims"); 625 } 626 foundDynamicExpandedDim = true; 627 } 628 } 629 if (!foundDynamicExpandedDim) { 630 return rewriter.notifyMatchFailure( 631 genericOp, "dynamic dim expansion needs at least one dynamic dim " 632 "in result shape"); 633 } 634 } 635 636 if (!genericOp.hasIndexSemantics()) 637 return success(); 638 for (unsigned i : llvm::seq<unsigned>(0, expansionInfo.getOrigOpNumDims())) { 639 ArrayRef<int64_t> expandedShape = expansionInfo.getExpandedShapeOfDim(i); 640 if (expandedShape.size() == 1) 641 continue; 642 for (int64_t shape : expandedShape.drop_front()) { 643 if (ShapedType::isDynamic(shape)) { 644 return rewriter.notifyMatchFailure( 645 genericOp, "cannot expand due to index semantics and dynamic dims"); 646 } 647 } 648 } 649 return success(); 650 } 651 652 /// Return the indexing map to use in the expanded op for a given the 653 /// `indexingMap` of the original operation. 654 static AffineMap 655 getIndexingMapInExpandedOp(OpBuilder &builder, AffineMap indexingMap, 656 const ExpansionInfo &expansionInfo) { 657 SmallVector<AffineExpr> newExprs; 658 for (AffineExpr expr : indexingMap.getResults()) { 659 unsigned pos = expr.cast<AffineDimExpr>().getPosition(); 660 SmallVector<AffineExpr, 4> expandedExprs = llvm::to_vector<4>( 661 llvm::map_range(expansionInfo.getExpandedDims(pos), [&](int64_t v) { 662 return builder.getAffineDimExpr(static_cast<unsigned>(v)); 663 })); 664 newExprs.append(expandedExprs.begin(), expandedExprs.end()); 665 } 666 return AffineMap::get(expansionInfo.getExpandedOpNumDims(), 667 indexingMap.getNumSymbols(), newExprs, 668 builder.getContext()); 669 } 670 671 /// Return the type of the operand/result to use in the expanded op given the 672 /// type in the original op. 673 static RankedTensorType getExpandedType(RankedTensorType originalType, 674 AffineMap indexingMap, 675 const ExpansionInfo &expansionInfo) { 676 SmallVector<int64_t> expandedShape; 677 for (AffineExpr expr : indexingMap.getResults()) { 678 unsigned dim = expr.cast<AffineDimExpr>().getPosition(); 679 auto dimExpansion = expansionInfo.getExpandedShapeOfDim(dim); 680 expandedShape.append(dimExpansion.begin(), dimExpansion.end()); 681 } 682 return RankedTensorType::get(expandedShape, originalType.getElementType()); 683 } 684 685 /// Returns the reassociation maps to use in the `tensor.expand_shape` 686 /// operation to convert the operands of the original operation to operands of 687 /// the expanded operation. The same method is used to compute the 688 /// `tensor.collapse_shape` used to collapse the result of the expanded 689 /// op to get the value that can replace all uses of the results of the original 690 /// op. 691 static SmallVector<ReassociationIndices> 692 getReassociationForExpansion(AffineMap indexingMap, 693 const ExpansionInfo &expansionInfo) { 694 SmallVector<ReassociationIndices> reassociation; 695 unsigned numReshapeDims = 0; 696 for (AffineExpr expr : indexingMap.getResults()) { 697 unsigned dim = expr.cast<AffineDimExpr>().getPosition(); 698 auto numExpandedDims = expansionInfo.getExpandedDims(dim).size(); 699 SmallVector<int64_t, 2> indices = llvm::to_vector<2>( 700 llvm::seq<int64_t>(numReshapeDims, numReshapeDims + numExpandedDims)); 701 reassociation.emplace_back(std::move(indices)); 702 numReshapeDims += numExpandedDims; 703 } 704 return reassociation; 705 } 706 707 /// Update the body of an expanded linalg operation having index semantics. The 708 /// indices of the original operation need to be recovered by linearizing the 709 /// indices of the correspoding dimensions of the expanded operation. For now it 710 /// is assumed that the shapes of the expanded operation needed for 711 /// linearization are static. 712 static void updateExpandedGenericOpRegion(PatternRewriter &rewriter, 713 Location loc, Region &fusedRegion, 714 const ExpansionInfo &expansionInfo) { 715 // Replace the original indices by the linearization of the expanded indices. 716 for (IndexOp indexOp : 717 llvm::make_early_inc_range(fusedRegion.front().getOps<IndexOp>())) { 718 ArrayRef<int64_t> expandedDims = 719 expansionInfo.getExpandedDims(indexOp.dim()); 720 assert(!expandedDims.empty() && "expected valid expansion info"); 721 722 // Skip index operations that are not affected by the expansion. 723 if (expandedDims.size() == 1 && 724 expandedDims.front() == (int64_t)indexOp.dim()) 725 continue; 726 727 // Linearize the expanded indices of the original index dimension. 728 OpBuilder::InsertionGuard guard(rewriter); 729 rewriter.setInsertionPointAfter(indexOp); 730 ArrayRef<int64_t> expandedDimsShape = 731 expansionInfo.getExpandedShapeOfDim(indexOp.dim()).drop_front(); 732 SmallVector<Value> expandedIndices; 733 expandedIndices.reserve(expandedDims.size() - 1); 734 llvm::transform( 735 expandedDims.drop_front(), std::back_inserter(expandedIndices), 736 [&](int64_t dim) { return rewriter.create<IndexOp>(loc, dim); }); 737 Value newIndex = rewriter.create<IndexOp>(loc, expandedDims.front()); 738 for (auto it : llvm::zip(expandedDimsShape, expandedIndices)) { 739 assert(!ShapedType::isDynamic(std::get<0>(it))); 740 AffineExpr idx, acc; 741 bindDims(rewriter.getContext(), idx, acc); 742 newIndex = rewriter.create<AffineApplyOp>( 743 indexOp.getLoc(), idx + acc * std::get<0>(it), 744 ValueRange{std::get<1>(it), newIndex}); 745 } 746 rewriter.replaceOp(indexOp, newIndex); 747 } 748 } 749 750 /// Implements the fusion of a tensor_collapse_shape or a tensor_expand_shape op 751 /// and a generic op as explained in `isFusableWithReshapeByExpansion`. Assumes 752 /// that those conditions have been satisfied. 753 static Optional<SmallVector<Value>> 754 fuseWithReshapeByExpansion(GenericOp genericOp, Operation *reshapeOp, 755 OpOperand *fusableOpOperand, 756 PatternRewriter &rewriter) { 757 assert(isFusableWithReshapeByDimExpansion(genericOp, fusableOpOperand) && 758 "preconditions for fuse operation failed"); 759 // Check if reshape is expanding or collapsing. 760 auto expandingReshapeOp = dyn_cast<tensor::ExpandShapeOp>(*reshapeOp); 761 auto collapsingReshapeOp = dyn_cast<tensor::CollapseShapeOp>(*reshapeOp); 762 bool isExpanding = (expandingReshapeOp != nullptr); 763 RankedTensorType expandedType = isExpanding 764 ? expandingReshapeOp.getResultType() 765 : collapsingReshapeOp.getSrcType(); 766 RankedTensorType collapsedType = isExpanding 767 ? expandingReshapeOp.getSrcType() 768 : collapsingReshapeOp.getResultType(); 769 770 ExpansionInfo expansionInfo; 771 if (failed(expansionInfo.compute( 772 genericOp, fusableOpOperand, 773 isExpanding ? expandingReshapeOp.getReassociationMaps() 774 : collapsingReshapeOp.getReassociationMaps(), 775 expandedType.getShape(), collapsedType.getShape(), rewriter))) 776 return llvm::None; 777 778 if (failed(isGenericOpExpandable(genericOp, expansionInfo, rewriter))) 779 return llvm::None; 780 781 SmallVector<AffineMap, 4> expandedOpIndexingMaps = llvm::to_vector<4>( 782 llvm::map_range(genericOp.getIndexingMaps(), [&](AffineMap m) { 783 return getIndexingMapInExpandedOp(rewriter, m, expansionInfo); 784 })); 785 786 SmallVector<Value> expandedOpOperands; 787 expandedOpOperands.reserve(genericOp.getNumInputs()); 788 for (OpOperand *opOperand : genericOp.getInputOperands()) { 789 if (opOperand == fusableOpOperand) { 790 expandedOpOperands.push_back(isExpanding ? expandingReshapeOp.src() 791 : collapsingReshapeOp.src()); 792 continue; 793 } 794 if (genericOp.isInputTensor(opOperand)) { 795 AffineMap indexingMap = genericOp.getTiedIndexingMap(opOperand); 796 RankedTensorType expandedOperandType = 797 getExpandedType(opOperand->get().getType().cast<RankedTensorType>(), 798 indexingMap, expansionInfo); 799 if (expandedOperandType != opOperand->get().getType()) { 800 // Reshape the operand to get the right type. 801 SmallVector<ReassociationIndices> reassociation = 802 getReassociationForExpansion(indexingMap, expansionInfo); 803 expandedOpOperands.push_back(rewriter.create<tensor::ExpandShapeOp>( 804 genericOp.getLoc(), expandedOperandType, opOperand->get(), 805 reassociation)); 806 continue; 807 } 808 } 809 expandedOpOperands.push_back(opOperand->get()); 810 } 811 812 Location loc = genericOp.getLoc(); 813 SmallVector<Value> outputs; 814 for (OpOperand *opOperand : genericOp.getOutputOperands()) { 815 AffineMap indexingMap = genericOp.getTiedIndexingMap(opOperand); 816 RankedTensorType expandedOutputType = 817 getExpandedType(opOperand->get().getType().cast<RankedTensorType>(), 818 indexingMap, expansionInfo); 819 if (expandedOutputType != opOperand->get().getType()) { 820 SmallVector<ReassociationIndices> reassociation = 821 getReassociationForExpansion(indexingMap, expansionInfo); 822 outputs.push_back(rewriter.create<tensor::ExpandShapeOp>( 823 genericOp.getLoc(), expandedOutputType, opOperand->get(), 824 reassociation)); 825 } 826 } 827 828 // The iterator types of the expanded op are all parallel. 829 SmallVector<StringRef> iteratorTypes(expansionInfo.getExpandedOpNumDims(), 830 getParallelIteratorTypeName()); 831 832 TypeRange resultTypes = ValueRange(outputs).getTypes(); 833 auto fusedOp = 834 rewriter.create<GenericOp>(genericOp.getLoc(), resultTypes, 835 /*inputs=*/expandedOpOperands, outputs, 836 expandedOpIndexingMaps, iteratorTypes); 837 Region &fusedRegion = fusedOp->getRegion(0); 838 Region &originalRegion = genericOp->getRegion(0); 839 rewriter.cloneRegionBefore(originalRegion, fusedRegion, fusedRegion.begin()); 840 841 // Update the index accesses after the expansion. 842 updateExpandedGenericOpRegion(rewriter, loc, fusedRegion, expansionInfo); 843 844 // Reshape the result values to their original shape if this is a collapsing 845 // reshape folded into its consumer. 846 SmallVector<Value> resultVals; 847 for (OpResult opResult : genericOp->getOpResults()) { 848 int64_t resultNumber = opResult.getResultNumber(); 849 if (!isExpanding && resultTypes[resultNumber] != opResult.getType()) { 850 SmallVector<ReassociationIndices> reassociation = 851 getReassociationForExpansion( 852 genericOp.getTiedIndexingMap( 853 genericOp.getOutputOperand(resultNumber)), 854 expansionInfo); 855 resultVals.push_back(rewriter.create<tensor::CollapseShapeOp>( 856 genericOp.getLoc(), opResult.getType(), 857 fusedOp->getResult(resultNumber), reassociation)); 858 } else { 859 resultVals.push_back(fusedOp->getResult(resultNumber)); 860 } 861 } 862 // Assuming a single result. 863 return resultVals; 864 } 865 866 namespace { 867 868 /// Pattern to fold tensor_expand_shape op with its consumer by using the source 869 /// of the reshape op as the operand in the consumer (instead of the result of 870 /// the tensor_collapse_shape). The corresponding index map in the consumer 871 /// needs to be modified to linearize the folded dimension. 872 /// 873 /// For example, 874 /// 875 /// #map0 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> 876 /// %0 = tensor.expand_shape %arg0 [[0], [1, 2], [3]] 877 /// tensor<?x?x?xf32> into tensor<?x?x4x?xf32> 878 /// %1 = linalg.generic { indexing_maps = [#map0, #map0, #map0], ... } 879 /// ins(%0, %arg1 : tensor<?x?x4x?xf32>, tensor<?x?x4x?xf32>) ... 880 /// -> tensor<?x?x4x?xf32> 881 /// 882 /// can be folded into 883 /// 884 /// #map0 = affine_map<(d0, d1, d2, d3) -> (d0, d1 * 4 + d2, d3)> 885 /// #map1 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> 886 /// %0 = linalg.generic { indexing_maps = [#map0, #map1, #map1] ... } 887 /// ins(%arg0, %arg1 : tensor<?x?x?xf32>, tensor<?x?x4x?xf32>) ... 888 /// -> tensor<?x?x4x?xf32> 889 template <bool foldUnitDimReshapesOnly, typename TensorReshapeOp> 890 struct FoldProducerReshapeOpByLinearization 891 : public OpRewritePattern<GenericOp> { 892 using OpRewritePattern<GenericOp>::OpRewritePattern; 893 894 LogicalResult matchAndRewrite(GenericOp genericOp, 895 PatternRewriter &rewriter) const override { 896 if (!genericOp.hasTensorSemantics()) 897 return failure(); 898 SmallVector<OpOperand *> inputOperands = genericOp.getInputOperands(); 899 for (const auto &en : llvm::enumerate(inputOperands)) { 900 auto reshapeOp = en.value()->get().getDefiningOp<TensorReshapeOp>(); 901 if (!reshapeOp) 902 continue; 903 904 if (!isTensorReshapeOpFoldableByLinearization( 905 reshapeOp, genericOp.getTiedIndexingMap(en.value()), 906 /*asProducer =*/true) || 907 (foldUnitDimReshapesOnly && !isUnitDimExpansionOnly(reshapeOp))) 908 continue; 909 910 // Compute the fused operands list, 911 SmallVector<Value> fusedOperands = genericOp.getInputOperands(); 912 fusedOperands[en.index()] = reshapeOp.src(); 913 SmallVector<Value> outputOperands = genericOp.getOutputOperands(); 914 llvm::append_range(fusedOperands, outputOperands); 915 916 // Compute indexing_maps for the fused operation. The indexing_maps for 917 // the operands of the consumers that arent fused are the same. 918 SmallVector<AffineMap> fusedIndexMaps = genericOp.getIndexingMaps(); 919 920 // Accepted consumer maps are either identity or permutation. 921 auto invMap = inversePermutation(fusedIndexMaps[en.index()]); 922 923 // Compute the indexing map to use for the result of the producer. 924 AffineMap modifiedMap = linearizeCollapsedDims(invMap, reshapeOp); 925 // The modified map cannot have symbols. 926 if (modifiedMap.getNumSymbols()) 927 return failure(); 928 for (AffineExpr expr : modifiedMap.getResults()) { 929 if (!expr.isPureAffine()) 930 return failure(); 931 } 932 fusedIndexMaps[en.index()] = modifiedMap; 933 934 // Further check that the resulting index maps can be fused and 935 // inverted. Without this the resultant op is not legal. 936 if (!inversePermutation(concatAffineMaps(fusedIndexMaps))) { 937 return rewriter.notifyMatchFailure( 938 genericOp, "fused op loop bound computation failed"); 939 } 940 941 rewriter.startRootUpdate(genericOp); 942 genericOp->setOperands(fusedOperands); 943 genericOp.indexing_mapsAttr( 944 rewriter.getAffineMapArrayAttr(fusedIndexMaps)); 945 rewriter.finalizeRootUpdate(genericOp); 946 return success(); 947 } 948 return failure(); 949 } 950 }; 951 952 static SmallVector<ReassociationIndices> 953 getReassociationIndices(ArrayRef<AffineMap> maps) { 954 SmallVector<ReassociationIndices> reassociation; 955 for (AffineMap map : maps) { 956 ReassociationIndices indices; 957 for (unsigned i = 0, e = map.getNumResults(); i < e; i++) { 958 unsigned pos = map.getResult(i).cast<AffineDimExpr>().getPosition(); 959 indices.push_back(pos); 960 } 961 reassociation.push_back(indices); 962 } 963 return reassociation; 964 } 965 966 /// Pattern to move rank reducing reshape after an elementwise linalg generic 967 /// op. This is useful to expose more fusion opportunities between named ops and 968 /// generic ops. This can only be done if there is no broadcast or permuation 969 /// within the dimensions we need to merge. 970 /// 971 /// For example, 972 /// 973 /// %0 = tensor.expand_shape %A [[0, 1], [2]] 974 /// : tensor<12544x16xf32> into tensor<112x112x16xf32> 975 /// %2 = linalg.generic {indexing_maps = [ 976 /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, 977 /// affine_map<(d0, d1, d2) -> (d2)>, 978 /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>], iterator_types = 979 /// ["parallel", "parallel", "parallel"]} { 980 /// } -> tensor<112x112x16xf32> 981 /// 982 /// into 983 /// 984 /// %2 = linalg.generic {indexing_maps = [ 985 /// affine_map<(d0, d1) -> (d0, d1)>, 986 /// affine_map<(d0, d1) -> (d1)>, 987 /// affine_map<(d0, d1) -> (d0, d1)>], 988 /// iterator_types = ["parallel", "parallel"]} ins(%arg0, %arg1 989 /// : tensor<12544x16xf32>, tensor<16xf32>) outs(%1 : tensor<12544x16xf32>) { 990 /// } -> tensor<12544x16xf32> 991 /// %3 = tensor.expand_shape %2 [[0, 1], [2]] 992 /// : tensor<12544x16xf32> into tensor<112x112x16xf32> 993 struct PushExpandingReshape : public OpRewritePattern<GenericOp> { 994 using OpRewritePattern<GenericOp>::OpRewritePattern; 995 996 LogicalResult matchAndRewrite(GenericOp genericOp, 997 PatternRewriter &rewriter) const override { 998 // Only apply to elementwise linalg on tensor. 999 if (!genericOp.hasTensorSemantics() || 1000 genericOp.getNumParallelLoops() != genericOp.getNumLoops()) 1001 return failure(); 1002 // Only support identity output maps. It could be extended to permuations if 1003 // needed. 1004 if (llvm::any_of(genericOp.getOutputOperands(), [&](OpOperand *opOperand) { 1005 return !genericOp.getTiedIndexingMap(opOperand).isIdentity(); 1006 })) 1007 return failure(); 1008 int64_t destRank = genericOp.getNumParallelLoops(); 1009 SmallVector<Value> newOperands = genericOp.getInputOperands(); 1010 tensor::ExpandShapeOp reshapeFound; 1011 // 1. Look for tensor_expand_shape operands and figure out save the 1012 // dimensions merged. 1013 SmallVector<OpOperand *> inputOperands = genericOp.getInputOperands(); 1014 for (const auto &en : llvm::enumerate(inputOperands)) { 1015 auto reshapeOp = 1016 en.value()->get().template getDefiningOp<tensor::ExpandShapeOp>(); 1017 if (!reshapeOp) 1018 continue; 1019 // TODO: We could support non-identity map as long as the merged 1020 // dimensions are still contiguous. 1021 if (!genericOp.getTiedIndexingMap(en.value()).isIdentity()) 1022 continue; 1023 if (reshapeFound) { 1024 // Only support a second reshape op if it has the same reassociate maps. 1025 if (reshapeFound.getReassociationMaps() == 1026 reshapeOp.getReassociationMaps()) 1027 newOperands[en.index()] = reshapeOp.src(); 1028 continue; 1029 } 1030 reshapeFound = reshapeOp; 1031 newOperands[en.index()] = reshapeOp.src(); 1032 } 1033 if (!reshapeFound) 1034 return failure(); 1035 1036 // Calculate the reassociation indices and rassociated reverse map. 1037 SmallVector<ReassociationIndices> reassociation = 1038 getReassociationIndices(reshapeFound.getReassociationMaps()); 1039 SmallVector<unsigned> remap(destRank); 1040 for (auto &indices : llvm::enumerate(reassociation)) { 1041 for (int64_t index : indices.value()) { 1042 remap[index] = indices.index(); 1043 } 1044 } 1045 // 2. Verify that we can merge the dimensions in the linalg and that we 1046 // don't need to create new reshapes operands. Inserting new reshape 1047 // operands would defeat the purpose of the transformation. 1048 for (const auto &en : llvm::enumerate(inputOperands)) { 1049 if (en.value()->get() == newOperands[en.index()]) { 1050 AffineMap map = genericOp.getTiedIndexingMap(en.value()); 1051 for (unsigned i : llvm::seq(unsigned(0), map.getNumResults())) { 1052 if (reassociation[remap[map.getDimPosition(i)]].size() > 1) 1053 return failure(); 1054 } 1055 } 1056 } 1057 1058 // 3. Calculate the affine map remapping and the reassociation to apply to 1059 // output tensors. 1060 SmallVector<AffineMap> newMaps; 1061 unsigned newRank = reassociation.size(); 1062 for (auto map : genericOp.getIndexingMaps()) { 1063 SmallVector<AffineExpr> newExprs; 1064 for (auto expr : map.getResults()) { 1065 unsigned position = expr.template cast<AffineDimExpr>().getPosition(); 1066 // Skip dimension merged except for the last of the group. 1067 if (reassociation[remap[position]].back() == position) { 1068 newExprs.push_back( 1069 getAffineDimExpr(remap[position], genericOp.getContext())); 1070 } 1071 } 1072 newMaps.push_back( 1073 AffineMap::get(newRank, 0, newExprs, genericOp.getContext())); 1074 } 1075 1076 // 4. Reshape the output tensors. 1077 SmallVector<Value> newOutputs; 1078 SmallVector<Type> newOutputTypes; 1079 for (auto output : genericOp.outputs()) { 1080 auto newOutputType = RankedTensorType::get( 1081 reshapeFound.getSrcType().getShape(), 1082 output.getType().template cast<RankedTensorType>().getElementType()); 1083 Value newOutput = rewriter.create<tensor::CollapseShapeOp>( 1084 genericOp->getLoc(), newOutputType, output, reassociation); 1085 newOutputTypes.push_back(newOutputType); 1086 newOutputs.push_back(newOutput); 1087 } 1088 // 5. Create a new generic op with lowerer rank. 1089 SmallVector<StringRef> iteratorTypes(newRank, 1090 getParallelIteratorTypeName()); 1091 auto newOp = rewriter.create<GenericOp>(genericOp->getLoc(), newOutputTypes, 1092 newOperands, newOutputs, newMaps, 1093 iteratorTypes); 1094 rewriter.inlineRegionBefore(genericOp.region(), newOp.region(), 1095 newOp.region().begin()); 1096 // 6. Reshape the so that the type matches the uses. 1097 SmallVector<Value> newResults; 1098 for (const auto &result : llvm::enumerate(newOp->getResults())) { 1099 newResults.push_back(rewriter.create<tensor::ExpandShapeOp>( 1100 genericOp->getLoc(), genericOp.getOutputTensorTypes()[result.index()], 1101 result.value(), reassociation)); 1102 } 1103 rewriter.replaceOp(genericOp, newResults); 1104 return success(); 1105 } 1106 }; 1107 1108 /// Pattern to fuse a tensor_collapse_shape op with its consumer generic op, 1109 /// when the reshape op is collapsing dimensions. The dimensionality of the loop 1110 /// in the consumer is expanded. 1111 class FoldWithProducerReshapeOpByExpansion 1112 : public OpRewritePattern<GenericOp> { 1113 public: 1114 FoldWithProducerReshapeOpByExpansion( 1115 MLIRContext *context, ControlElementwiseOpsFusionFn foldReshapes, 1116 PatternBenefit benefit = 1) 1117 : OpRewritePattern<GenericOp>(context, benefit), 1118 controlFoldingReshapes(std::move(foldReshapes)) {} 1119 1120 LogicalResult matchAndRewrite(GenericOp genericOp, 1121 PatternRewriter &rewriter) const override { 1122 for (OpOperand *opOperand : genericOp.getInputTensorOperands()) { 1123 tensor::CollapseShapeOp reshapeOp = 1124 opOperand->get().getDefiningOp<tensor::CollapseShapeOp>(); 1125 if (!reshapeOp) 1126 continue; 1127 // Fold only if 1128 // - The tensor reshape op is folding. 1129 // - All constraints of fusing with reshape by expansion are met. 1130 if (!isFusableWithReshapeByDimExpansion(genericOp, opOperand) || 1131 (!controlFoldingReshapes(reshapeOp->getResult(0), *opOperand))) 1132 continue; 1133 1134 Optional<SmallVector<Value>> replacementValues = 1135 fuseWithReshapeByExpansion(genericOp, reshapeOp, opOperand, rewriter); 1136 if (!replacementValues) 1137 return failure(); 1138 rewriter.replaceOp(genericOp, replacementValues.getValue()); 1139 return success(); 1140 } 1141 return failure(); 1142 } 1143 1144 private: 1145 ControlElementwiseOpsFusionFn controlFoldingReshapes; 1146 }; 1147 1148 /// Pattern to fold tensor_collapse_shape or tensor_expand_shape op with its 1149 /// producer. The corresponding index map in the consumer needs to be modified 1150 /// to linearize the folded dimension. 1151 template <bool foldUnitDimReshapesOnly, typename TensorReshapeOp> 1152 struct FoldConsumerReshapeOpByLinearization 1153 : public OpRewritePattern<TensorReshapeOp> { 1154 using OpRewritePattern<TensorReshapeOp>::OpRewritePattern; 1155 1156 LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp, 1157 PatternRewriter &rewriter) const override { 1158 GenericOp producer = reshapeOp.src().template getDefiningOp<GenericOp>(); 1159 if (!producer || !producer.hasTensorSemantics() || 1160 producer.getNumOutputs() != 1 || 1161 !isTensorReshapeOpFoldableByLinearization( 1162 reshapeOp, 1163 producer.getTiedIndexingMap(producer.getOutputOperand(0)), 1164 /*asProducer =*/false) || 1165 (foldUnitDimReshapesOnly && !isUnitDimExpansionOnly(reshapeOp))) 1166 return failure(); 1167 // The indexing_maps for the operands of the fused operation are same as 1168 // those for the operands of the producer. 1169 SmallVector<AffineMap> fusedIndexMaps = producer.getIndexingMaps(); 1170 1171 auto invMap = inversePermutation( 1172 producer.getTiedIndexingMap(producer.getOutputOperand(0))); 1173 1174 // Compute the indexing map to use for the operand of the producer. 1175 AffineMap modifiedMap = linearizeCollapsedDims(invMap, reshapeOp); 1176 for (AffineExpr expr : modifiedMap.getResults()) { 1177 if (!expr.isPureAffine()) { 1178 return rewriter.notifyMatchFailure( 1179 producer, "fused op indexing map is not affine"); 1180 } 1181 } 1182 fusedIndexMaps.back() = modifiedMap; 1183 1184 // Further check that the resulting index maps can be fused and 1185 // inverted. Without this the resultant op is not legal. 1186 if (!inversePermutation(concatAffineMaps(fusedIndexMaps))) { 1187 return rewriter.notifyMatchFailure( 1188 producer, "fused op loop bound computation failed"); 1189 } 1190 1191 Location loc = producer.getLoc(); 1192 SmallVector<Value> inputOperands = producer.getInputOperands(); 1193 Value output = rewriter.create<TensorReshapeOp>( 1194 loc, producer.getOutputOperand(0)->get(), 1195 reshapeOp.getReassociationExprs()); 1196 auto fusedOp = rewriter.create<GenericOp>( 1197 loc, reshapeOp.getResultType(), 1198 /*inputs=*/inputOperands, 1199 // TODO: handle outputs. 1200 /*outputs=*/output, rewriter.getAffineMapArrayAttr(fusedIndexMaps), 1201 producer.iterator_types(), 1202 /*doc=*/nullptr, 1203 /*library_call=*/nullptr); 1204 auto &fusedRegion = fusedOp->getRegion(0); 1205 rewriter.cloneRegionBefore(producer->getRegion(0), fusedRegion, 1206 fusedRegion.begin()); 1207 rewriter.replaceOp(reshapeOp, fusedOp->getResults()); 1208 return success(); 1209 } 1210 }; 1211 1212 /// Pattern to fold a tensor_expand_shape op with its producer generic op 1213 /// by expanding the dimensionality of the loop in the producer op. 1214 struct FoldReshapeWithGenericOpByExpansion 1215 : public OpRewritePattern<tensor::ExpandShapeOp> { 1216 1217 FoldReshapeWithGenericOpByExpansion( 1218 MLIRContext *context, ControlElementwiseOpsFusionFn foldReshapes, 1219 PatternBenefit benefit = 1) 1220 : OpRewritePattern<tensor::ExpandShapeOp>(context, benefit), 1221 controlFoldingReshapes(std::move(foldReshapes)) {} 1222 1223 LogicalResult matchAndRewrite(tensor::ExpandShapeOp reshapeOp, 1224 PatternRewriter &rewriter) const override { 1225 // Fold only if all constraints of fusing with reshape by expansion are met. 1226 GenericOp producer = reshapeOp.src().getDefiningOp<GenericOp>(); 1227 if (!producer || producer.getNumOutputs() != 1 || 1228 !isFusableWithReshapeByDimExpansion(producer, 1229 producer.getOutputOperand(0)) || 1230 !controlFoldingReshapes(producer->getResult(0), 1231 reshapeOp->getOpOperand(0))) 1232 return failure(); 1233 Optional<SmallVector<Value>> replacementValues = fuseWithReshapeByExpansion( 1234 producer, reshapeOp, producer.getOutputOperand(0), rewriter); 1235 if (!replacementValues) 1236 return failure(); 1237 rewriter.replaceOp(reshapeOp, replacementValues.getValue()); 1238 return success(); 1239 } 1240 1241 private: 1242 ControlElementwiseOpsFusionFn controlFoldingReshapes; 1243 }; 1244 1245 /// Pattern to fold a generic op with a splat constant/scalar constant. Does not 1246 /// handle cases where the constant is not single-valued. 1247 class FoldScalarOrSplatConstant : public OpRewritePattern<GenericOp> { 1248 public: 1249 FoldScalarOrSplatConstant(MLIRContext *context, 1250 ControlElementwiseOpsFusionFn &fun, 1251 PatternBenefit benefit = 1) 1252 : OpRewritePattern<GenericOp>(context, benefit), controlFn(fun) {} 1253 1254 LogicalResult matchAndRewrite(GenericOp genericOp, 1255 PatternRewriter &rewriter) const override { 1256 if (!genericOp.hasTensorSemantics()) 1257 return failure(); 1258 for (OpOperand *opOperand : genericOp.getInputOperands()) { 1259 Operation *def = opOperand->get().getDefiningOp(); 1260 Attribute constantAttr; 1261 auto isScalarOrSplatConstantOp = [&constantAttr](Operation *def) -> bool { 1262 { 1263 DenseElementsAttr splatAttr; 1264 if (matchPattern(def, m_Constant<DenseElementsAttr>(&splatAttr)) && 1265 splatAttr.isSplat() && 1266 splatAttr.getType().getElementType().isIntOrFloat()) { 1267 constantAttr = splatAttr.getSplatValue<Attribute>(); 1268 return true; 1269 } 1270 } 1271 { 1272 IntegerAttr intAttr; 1273 if (matchPattern(def, m_Constant<IntegerAttr>(&intAttr))) { 1274 constantAttr = intAttr; 1275 return true; 1276 } 1277 } 1278 { 1279 FloatAttr floatAttr; 1280 if (matchPattern(def, m_Constant<FloatAttr>(&floatAttr))) { 1281 constantAttr = floatAttr; 1282 return true; 1283 } 1284 } 1285 return false; 1286 }; 1287 1288 auto resultValue = opOperand->get().dyn_cast<OpResult>(); 1289 if (!def || !resultValue || !isScalarOrSplatConstantOp(def) || 1290 !controlFn(resultValue, *opOperand)) 1291 continue; 1292 1293 // The operands and the indexing_maps of the fused operation the same as 1294 // the operands and indexing_maps of the generic operations with the 1295 // values at the constant index dropped. 1296 SmallVector<AffineMap> fusedIndexMaps; 1297 SmallVector<Value> fusedOperands; 1298 SmallVector<Location> fusedLocs{genericOp.getLoc()}; 1299 fusedIndexMaps.reserve(genericOp.getNumInputsAndOutputs()); 1300 fusedOperands.reserve(genericOp.getNumInputs()); 1301 fusedLocs.reserve(fusedLocs.size() + genericOp.getNumInputs()); 1302 for (OpOperand *inputOperand : genericOp.getInputOperands()) { 1303 if (inputOperand == opOperand) 1304 continue; 1305 Value inputValue = inputOperand->get(); 1306 fusedIndexMaps.push_back(genericOp.getTiedIndexingMap(inputOperand)); 1307 fusedOperands.push_back(inputValue); 1308 fusedLocs.push_back(inputValue.getLoc()); 1309 } 1310 for (OpOperand *outputOperand : genericOp.getOutputOperands()) 1311 fusedIndexMaps.push_back(genericOp.getTiedIndexingMap(outputOperand)); 1312 1313 // Check if the operation shapes to loops map is computable. 1314 if (!inversePermutation(concatAffineMaps(fusedIndexMaps))) { 1315 return rewriter.notifyMatchFailure( 1316 genericOp, "fused op loop bound computation failed"); 1317 } 1318 1319 // Create a constant scalar value from the splat constant. 1320 Value scalarConstant = rewriter.create<arith::ConstantOp>( 1321 def->getLoc(), constantAttr, constantAttr.getType()); 1322 1323 SmallVector<Value> outputOperands = genericOp.getOutputOperands(); 1324 auto fusedOp = rewriter.create<GenericOp>( 1325 rewriter.getFusedLoc(fusedLocs), genericOp->getResultTypes(), 1326 /*inputs=*/fusedOperands, 1327 /*outputs=*/outputOperands, 1328 rewriter.getAffineMapArrayAttr(fusedIndexMaps), 1329 genericOp.iterator_types(), 1330 /*doc=*/nullptr, 1331 /*library_call=*/nullptr); 1332 1333 // Map the block argument corresponding to the replaced argument with the 1334 // scalar constant. 1335 Region ®ion = genericOp->getRegion(0); 1336 Block &entryBlock = *region.begin(); 1337 BlockAndValueMapping mapping; 1338 mapping.map(entryBlock.getArgument(opOperand->getOperandNumber()), 1339 scalarConstant); 1340 Region &fusedRegion = fusedOp->getRegion(0); 1341 rewriter.cloneRegionBefore(region, fusedRegion, fusedRegion.begin(), 1342 mapping); 1343 rewriter.replaceOp(genericOp, fusedOp->getResults()); 1344 return success(); 1345 } 1346 return failure(); 1347 } 1348 1349 private: 1350 ControlElementwiseOpsFusionFn controlFn; 1351 }; 1352 1353 /// Base class for constant folding linalg.generic ops with N inputs, 1 output, 1354 /// and permutation indexing maps. 1355 /// 1356 /// `ConcreteType` should provide methods with signatures 1357 /// 1358 /// ```c++ 1359 /// bool matchIndexingMaps(GenericOp genericOp) const; 1360 /// RegionComputationFn getRegionComputeFn(GenericOp) const; 1361 /// ``` 1362 /// 1363 /// The latter inspects the region and returns the computation inside as a 1364 /// functor. The functor will be invoked with constant elements for all inputs 1365 /// and should return the corresponding computea constant element for output. 1366 template <typename ConcreteType> 1367 class FoldConstantBase : public OpRewritePattern<GenericOp> { 1368 public: 1369 struct APIntOrFloat { 1370 Optional<APInt> apInt; 1371 Optional<APFloat> apFloat; 1372 }; 1373 struct APIntOrFloatArray { 1374 SmallVector<APInt> apInts; 1375 SmallVector<APFloat> apFloats; 1376 }; 1377 using RegionComputationFn = 1378 std::function<APIntOrFloat(const APIntOrFloatArray &)>; 1379 1380 FoldConstantBase(MLIRContext *context, 1381 const ControlElementwiseOpsFusionFn &controlFn, 1382 PatternBenefit benefit = 1) 1383 : OpRewritePattern<GenericOp>(context, benefit), controlFn(controlFn) {} 1384 1385 LogicalResult matchAndRewrite(GenericOp genericOp, 1386 PatternRewriter &rewriter) const override { 1387 if (genericOp.hasBufferSemantics()) 1388 return failure(); 1389 1390 // Only support ops generating one output for now. 1391 if (genericOp.getNumOutputs() != 1) 1392 return failure(); 1393 1394 auto outputType = genericOp.getResultTypes().front().dyn_cast<ShapedType>(); 1395 // Require the output types to be static give we are generating constants. 1396 if (!outputType || !outputType.hasStaticShape()) 1397 return failure(); 1398 1399 if (!llvm::all_of(genericOp.getInputOperands(), [](OpOperand *operand) { 1400 return operand->get().getType().isa<ShapedType>(); 1401 })) 1402 return failure(); 1403 1404 // Make sure all element types are the same. 1405 auto getOperandElementType = [](OpOperand *operand) { 1406 return operand->get().getType().cast<ShapedType>().getElementType(); 1407 }; 1408 if (!llvm::is_splat(llvm::map_range(genericOp.getInputAndOutputOperands(), 1409 getOperandElementType))) 1410 return failure(); 1411 1412 // We can only handle the case where we have int/float elements. 1413 auto elementType = outputType.getElementType(); 1414 if (!elementType.isIntOrFloat()) 1415 return failure(); 1416 1417 // Require all indexing maps to be permutations for now. This is common and 1418 // it simplifies input/output access greatly: we can do the data shuffling 1419 // entirely in the compiler, without needing to turn all indices into 1420 // Values, and then do affine apply on them, and then match back the 1421 // constant again. 1422 if (!llvm::all_of(genericOp.getIndexingMaps(), 1423 [](AffineMap map) { return map.isPermutation(); })) 1424 return failure(); 1425 1426 for (OpOperand *operand : genericOp.getOutputOperands()) { 1427 if (genericOp.payloadUsesValueFromOperand(operand)) 1428 return failure(); 1429 } 1430 1431 // Further check the indexing maps are okay for the ConcreteType. 1432 if (!static_cast<const ConcreteType *>(this)->matchIndexingMaps(genericOp)) 1433 return failure(); 1434 1435 // Defer to the concrete type to check the region and discover the 1436 // computation inside. 1437 RegionComputationFn computeFn = 1438 static_cast<const ConcreteType *>(this)->getRegionComputeFn(genericOp); 1439 if (!computeFn) 1440 return failure(); 1441 1442 // All inputs should be constants. 1443 int numInputs = genericOp.getNumInputs(); 1444 SmallVector<DenseIntOrFPElementsAttr> inputValues(numInputs); 1445 for (const auto &operand : llvm::enumerate(genericOp.getInputOperands())) { 1446 if (!matchPattern(operand.value()->get(), 1447 m_Constant(&inputValues[operand.index()]))) 1448 return failure(); 1449 } 1450 1451 // Identified this as a potential candidate for folding. Now check the 1452 // policy to see whether we are allowed to proceed. 1453 for (int i = 0; i < numInputs; ++i) { 1454 OpOperand *consumer = genericOp.getInputOperand(i); 1455 OpResult producer = consumer->get().cast<OpResult>(); 1456 if (!controlFn(producer, *consumer)) 1457 return failure(); 1458 } 1459 1460 auto linalgOp = cast<LinalgOp>(genericOp.getOperation()); 1461 SmallVector<int64_t, 4> loopBounds = linalgOp.computeStaticLoopSizes(); 1462 int64_t numElements = outputType.getNumElements(); 1463 1464 // Use APInt/APFloat instead of Attribute here for constructing the output. 1465 // This helps to avoid blowing up compiler memory usage: Attributes would 1466 // unify the following cases but they have lifetime as the MLIRContext. 1467 SmallVector<APInt> intOutputValues; 1468 SmallVector<APFloat> fpOutputValues; 1469 if (elementType.template isa<FloatType>()) 1470 fpOutputValues.resize(numElements, APFloat(0.f)); 1471 else 1472 intOutputValues.resize(numElements); 1473 1474 // Return the constant dim positions from the given permutation map. 1475 auto getDimPositions = [](AffineMap map) { 1476 SmallVector<unsigned> dims; 1477 dims.reserve(map.getNumResults()); 1478 for (AffineExpr result : map.getResults()) { 1479 dims.push_back(result.cast<AffineDimExpr>().getPosition()); 1480 } 1481 return dims; 1482 }; 1483 1484 SmallVector<SmallVector<unsigned>> inputDims; 1485 for (int i = 0; i < numInputs; ++i) 1486 inputDims.push_back(getDimPositions(genericOp.getIndexingMaps()[i])); 1487 auto outputDims = getDimPositions(genericOp.getIndexingMaps().back()); 1488 auto outputShape = outputType.getShape(); 1489 1490 // Allocate small vectors for index delinearization. Initial values do not 1491 // matter here as they will be overwritten later. 1492 SmallVector<uint64_t> indices(loopBounds.size(), 0); 1493 SmallVector<uint64_t> dstIndices(loopBounds.size(), 0); 1494 SmallVector<SmallVector<uint64_t>> srcIndices( 1495 numInputs, SmallVector<uint64_t>(loopBounds.size(), 0)); 1496 SmallVector<uint64_t> srcLinearIndices(numInputs, 0); 1497 uint64_t dstLinearIndex = 0; 1498 1499 // Allocate spaces for compute function inputs. Initial values do not matter 1500 // here as they will be overwritten later. 1501 APIntOrFloatArray computeFnInputs; 1502 1503 auto inputShapes = llvm::to_vector<4>( 1504 llvm::map_range(genericOp.getInputOperands(), [](OpOperand *operand) { 1505 return operand->get().getType().cast<ShapedType>().getShape(); 1506 })); 1507 1508 // Given a `linearIndex`, remap it to a linear index to access linalg op 1509 // inputs/ouputs. This mutates `indices`, `srcIndices`, `dstIndices`, 1510 // `srcLinearIndices`, `dstLinearIndex` in place. 1511 auto computeRemappedLinearIndex = [&](int linearIndex) { 1512 int totalCount = linearIndex; 1513 for (int dim = loopBounds.size() - 1; dim >= 0; --dim) { 1514 indices[dim] = totalCount % loopBounds[dim]; 1515 totalCount /= loopBounds[dim]; 1516 } 1517 1518 for (int dim = loopBounds.size() - 1; dim >= 0; --dim) { 1519 for (int i = 0; i < numInputs; ++i) 1520 srcIndices[i][dim] = indices[inputDims[i][dim]]; 1521 dstIndices[dim] = indices[outputDims[dim]]; 1522 } 1523 1524 dstLinearIndex = dstIndices.front(); 1525 for (int i = 0; i < numInputs; ++i) 1526 srcLinearIndices[i] = srcIndices[i].front(); 1527 1528 for (int dim = 1; dim < outputType.getRank(); ++dim) { 1529 dstLinearIndex = dstLinearIndex * outputShape[dim] + dstIndices[dim]; 1530 for (int i = 0; i < numInputs; ++i) 1531 srcLinearIndices[i] = 1532 srcLinearIndices[i] * inputShapes[i][dim] + srcIndices[i][dim]; 1533 } 1534 }; 1535 1536 bool isFloat = elementType.isa<FloatType>(); 1537 if (isFloat) { 1538 SmallVector<DenseElementsAttr::iterator_range<APFloat>> inFpRanges; 1539 for (int i = 0; i < numInputs; ++i) 1540 inFpRanges.push_back(inputValues[i].getValues<APFloat>()); 1541 1542 computeFnInputs.apFloats.resize(numInputs, APFloat(0.f)); 1543 1544 // Transpose the input constant. Because we don't know its rank in 1545 // advance, we need to loop over the range [0, element count) and 1546 // delinearize the index. 1547 for (int linearIndex = 0; linearIndex < numElements; ++linearIndex) { 1548 computeRemappedLinearIndex(linearIndex); 1549 1550 // Collect constant elements for all inputs at this loop iteration. 1551 for (int i = 0; i < numInputs; ++i) 1552 computeFnInputs.apFloats[i] = inFpRanges[i][srcLinearIndices[i]]; 1553 1554 // Invoke the computation to get the corresponding constant output 1555 // element. 1556 fpOutputValues[dstLinearIndex] = *computeFn(computeFnInputs).apFloat; 1557 } 1558 } else { 1559 SmallVector<DenseElementsAttr::iterator_range<APInt>> inIntRanges; 1560 for (int i = 0; i < numInputs; ++i) 1561 inIntRanges.push_back(inputValues[i].getValues<APInt>()); 1562 1563 computeFnInputs.apInts.resize(numInputs); 1564 1565 // Transpose the input constant. Because we don't know its rank in 1566 // advance, we need to loop over the range [0, element count) and 1567 // delinearize the index. 1568 for (int linearIndex = 0; linearIndex < numElements; ++linearIndex) { 1569 computeRemappedLinearIndex(linearIndex); 1570 1571 // Collect constant elements for all inputs at this loop iteration. 1572 for (int i = 0; i < numInputs; ++i) 1573 computeFnInputs.apInts[i] = inIntRanges[i][srcLinearIndices[i]]; 1574 1575 // Invoke the computation to get the corresponding constant output 1576 // element. 1577 intOutputValues[dstLinearIndex] = *computeFn(computeFnInputs).apInt; 1578 } 1579 } 1580 1581 DenseElementsAttr outputAttr = 1582 isFloat ? DenseElementsAttr::get(outputType, fpOutputValues) 1583 : DenseElementsAttr::get(outputType, intOutputValues); 1584 1585 rewriter.replaceOpWithNewOp<ConstantOp>(genericOp, outputAttr); 1586 return success(); 1587 } 1588 1589 private: 1590 ControlElementwiseOpsFusionFn controlFn; 1591 }; 1592 1593 // Folds linalg.generic ops that are actually transposes on constant values. 1594 struct FoldConstantTranspose : public FoldConstantBase<FoldConstantTranspose> { 1595 using FoldConstantBase::FoldConstantBase; 1596 1597 bool matchIndexingMaps(GenericOp genericOp) const { 1598 // We should have one input and one output. 1599 return genericOp.getIndexingMaps().size() == 2; 1600 } 1601 1602 RegionComputationFn getRegionComputeFn(GenericOp genericOp) const { 1603 // Make sure the region only contains a yield op. 1604 Block &body = genericOp.region().front(); 1605 if (!llvm::hasSingleElement(body)) 1606 return nullptr; 1607 auto yieldOp = dyn_cast<linalg::YieldOp>(body.getTerminator()); 1608 if (!yieldOp) 1609 return nullptr; 1610 1611 // The yield op should return the block argument corresponds to the input. 1612 for (Value yieldVal : yieldOp.values()) { 1613 auto yieldArg = yieldVal.dyn_cast<BlockArgument>(); 1614 if (!yieldArg || yieldArg.getOwner() != &body) 1615 return nullptr; 1616 if (yieldArg.getArgNumber() != 0) 1617 return nullptr; 1618 } 1619 1620 // No computation; just return the orginal value. 1621 return [](const APIntOrFloatArray &inputs) { 1622 if (inputs.apFloats.empty()) 1623 return APIntOrFloat{inputs.apInts.front(), llvm::None}; 1624 return APIntOrFloat{llvm::None, inputs.apFloats.front()}; 1625 }; 1626 } 1627 1628 ControlElementwiseOpsFusionFn controlFn; 1629 }; 1630 1631 } // namespace 1632 1633 static Optional<SmallVector<Value>> 1634 fuseElementwiseOps(PatternRewriter &rewriter, OpOperand *consumerOpOperand, 1635 GenericOp producer, 1636 const ControlElementwiseOpsFusionFn &controlFn) { 1637 if (producer->getNumResults() != 1) 1638 return llvm::None; 1639 1640 return fuseElementwiseOpsImpl(producer, consumerOpOperand, controlFn, 1641 rewriter); 1642 } 1643 1644 bool mlir::linalg::skipUnitDimReshape(const OpResult &producer, 1645 OpOperand &consumer) { 1646 if (auto producerCollapseOp = 1647 dyn_cast<tensor::CollapseShapeOp>(producer.getOwner())) { 1648 return !isUnitDimExpansionOnly(producerCollapseOp); 1649 } 1650 if (auto consumerExpandOp = 1651 dyn_cast<tensor::ExpandShapeOp>(consumer.getOwner())) { 1652 return !isUnitDimExpansionOnly(consumerExpandOp); 1653 } 1654 return true; 1655 } 1656 1657 namespace { 1658 /// Patterns to fuse a generic op, with the producer of its operands. 1659 class FuseElementwiseOps : public OpRewritePattern<GenericOp> { 1660 public: 1661 FuseElementwiseOps(MLIRContext *context, ControlElementwiseOpsFusionFn &fun, 1662 PatternBenefit benefit = 1) 1663 : OpRewritePattern<GenericOp>(context, benefit), controlFn(fun) {} 1664 1665 LogicalResult matchAndRewrite(GenericOp genericOp, 1666 PatternRewriter &rewriter) const override { 1667 // Find the first operand that is defined by another generic op on tensors. 1668 for (OpOperand *opOperand : genericOp.getInputAndOutputOperands()) { 1669 auto producer = 1670 dyn_cast_or_null<GenericOp>(opOperand->get().getDefiningOp()); 1671 if (!producer || !producer.hasTensorSemantics()) 1672 continue; 1673 Optional<SmallVector<Value>> fusedOpResults = 1674 fuseElementwiseOps(rewriter, opOperand, producer, controlFn); 1675 if (fusedOpResults) { 1676 rewriter.replaceOp(genericOp, *fusedOpResults); 1677 return success(); 1678 } 1679 } 1680 return failure(); 1681 } 1682 1683 private: 1684 ControlElementwiseOpsFusionFn controlFn; 1685 }; 1686 1687 /// Pass that fuses generic ops on tensors. Used only for testing. 1688 struct LinalgElementwiseOpFusionPass 1689 : public LinalgElementwiseOpFusionBase<LinalgElementwiseOpFusionPass> { 1690 void runOnOperation() override { 1691 Operation *op = getOperation(); 1692 RewritePatternSet patterns(op->getContext()); 1693 ControlElementwiseOpsFusionFn allowFoldingFn = 1694 [](const OpResult &producer, const OpOperand &consumer) { 1695 return true; 1696 }; 1697 populateElementwiseOpsFusionPatterns( 1698 patterns, 1699 LinalgElementwiseFusionOptions().setControlFoldingReshapes( 1700 allowFoldingUnitDimReshapes ? allowFoldingFn : skipUnitDimReshape)); 1701 1702 // Use TopDownTraversal for compile time reasons 1703 GreedyRewriteConfig grc; 1704 grc.useTopDownTraversal = true; 1705 (void)applyPatternsAndFoldGreedily(op->getRegions(), std::move(patterns), 1706 grc); 1707 } 1708 }; 1709 1710 /// Pass to test folding of reshape ops with generic ops by linearization. 1711 struct FoldReshapeOpsByLinearizationPass 1712 : public LinalgFoldReshapeOpsByLinearizationBase< 1713 FoldReshapeOpsByLinearizationPass> { 1714 void runOnOperation() override { 1715 Operation *op = getOperation(); 1716 RewritePatternSet patterns(op->getContext()); 1717 populateFoldReshapeOpsByLinearizationPatterns(patterns); 1718 if (allowFoldingUnitDimReshapes) { 1719 populateFoldUnitDimsReshapeOpsByLinearizationPatterns(patterns); 1720 } 1721 (void)applyPatternsAndFoldGreedily(op->getRegions(), std::move(patterns)); 1722 } 1723 }; 1724 1725 /// Forces `outs` operands of linalg operations to use `linalg.init_tensor` if 1726 /// the value of the `outs` operand is not used within the op. This is only 1727 /// implemented for `linalg.generic` operations for now, but should hold for all 1728 /// linalg structured ops. 1729 struct RemoveOutsDependency : public OpRewritePattern<GenericOp> { 1730 using OpRewritePattern<GenericOp>::OpRewritePattern; 1731 1732 LogicalResult matchAndRewrite(GenericOp op, 1733 PatternRewriter &rewriter) const override { 1734 rewriter.startRootUpdate(op); 1735 bool modifiedOutput = false; 1736 Location loc = op.getLoc(); 1737 for (OpOperand *opOperand : op.getOutputOperands()) { 1738 if (!op.payloadUsesValueFromOperand(opOperand)) { 1739 Value operandVal = opOperand->get(); 1740 auto operandType = operandVal.getType().dyn_cast<RankedTensorType>(); 1741 if (!operandType) 1742 continue; 1743 1744 // If outs is already an `init_tensor` operation, nothing to do. 1745 auto definingOp = operandVal.getDefiningOp<InitTensorOp>(); 1746 if (definingOp) 1747 continue; 1748 modifiedOutput = true; 1749 SmallVector<Value> dynamicDims; 1750 for (const auto &dim : llvm::enumerate(operandType.getShape())) { 1751 if (dim.value() != ShapedType::kDynamicSize) 1752 continue; 1753 dynamicDims.push_back(rewriter.createOrFold<tensor::DimOp>( 1754 loc, operandVal, dim.index())); 1755 } 1756 Value initTensor = rewriter.create<InitTensorOp>( 1757 loc, dynamicDims, operandType.getShape(), 1758 operandType.getElementType()); 1759 op->setOperand(opOperand->getOperandNumber(), initTensor); 1760 } 1761 } 1762 if (!modifiedOutput) { 1763 rewriter.cancelRootUpdate(op); 1764 return failure(); 1765 } 1766 rewriter.finalizeRootUpdate(op); 1767 return success(); 1768 } 1769 }; 1770 1771 } // namespace 1772 1773 void mlir::linalg::populateFoldReshapeOpsByLinearizationPatterns( 1774 RewritePatternSet &patterns) { 1775 patterns 1776 .add<FoldProducerReshapeOpByLinearization<false, tensor::CollapseShapeOp>, 1777 FoldProducerReshapeOpByLinearization<false, tensor::ExpandShapeOp>, 1778 FoldConsumerReshapeOpByLinearization<false, tensor::CollapseShapeOp>, 1779 FoldConsumerReshapeOpByLinearization<false, tensor::ExpandShapeOp>>( 1780 patterns.getContext()); 1781 } 1782 1783 void mlir::linalg::populateFoldUnitDimsReshapeOpsByLinearizationPatterns( 1784 RewritePatternSet &patterns) { 1785 patterns 1786 .add<FoldProducerReshapeOpByLinearization<true, tensor::CollapseShapeOp>, 1787 FoldProducerReshapeOpByLinearization<true, tensor::ExpandShapeOp>, 1788 FoldConsumerReshapeOpByLinearization<true, tensor::CollapseShapeOp>, 1789 FoldConsumerReshapeOpByLinearization<true, tensor::ExpandShapeOp>>( 1790 patterns.getContext()); 1791 } 1792 1793 void mlir::linalg::populateFoldReshapeOpsByExpansionPatterns( 1794 RewritePatternSet &patterns, 1795 const ControlElementwiseOpsFusionFn &controlFoldingReshapes) { 1796 patterns.add<FoldReshapeWithGenericOpByExpansion>(patterns.getContext(), 1797 controlFoldingReshapes); 1798 patterns.add<FoldWithProducerReshapeOpByExpansion>(patterns.getContext(), 1799 controlFoldingReshapes); 1800 } 1801 1802 void mlir::linalg::populateElementwiseOpsFusionPatterns( 1803 RewritePatternSet &patterns, LinalgElementwiseFusionOptions options) { 1804 auto *context = patterns.getContext(); 1805 patterns.add<FuseElementwiseOps, FoldScalarOrSplatConstant, 1806 FoldConstantTranspose>(context, 1807 options.controlElementwiseOpsFusionFn); 1808 patterns.add<RemoveOutsDependency>(context); 1809 populateFoldReshapeOpsByExpansionPatterns(patterns, 1810 options.controlFoldingReshapesFn); 1811 AffineApplyOp::getCanonicalizationPatterns(patterns, context); 1812 GenericOp::getCanonicalizationPatterns(patterns, context); 1813 tensor::ExpandShapeOp::getCanonicalizationPatterns(patterns, context); 1814 tensor::CollapseShapeOp::getCanonicalizationPatterns(patterns, context); 1815 context->getLoadedDialect<LinalgDialect>()->getCanonicalizationPatterns( 1816 patterns); 1817 } 1818 1819 void mlir::linalg::populatePushReshapeOpsPatterns(RewritePatternSet &patterns) { 1820 auto *context = patterns.getContext(); 1821 patterns.add<PushExpandingReshape>(context); 1822 } 1823 1824 std::unique_ptr<Pass> mlir::createLinalgElementwiseOpFusionPass() { 1825 return std::make_unique<LinalgElementwiseOpFusionPass>(); 1826 } 1827 1828 std::unique_ptr<Pass> mlir::createFoldReshapeOpsByLinearizationPass() { 1829 return std::make_unique<FoldReshapeOpsByLinearizationPass>(); 1830 } 1831