1 //===- DropUnitDims.cpp - Pass to drop use of unit-extent for broadcasting ===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements patterns/pass to remove usage of unit-extent dimensions 10 // to specify broadcasting in favor of more canonical representation of the 11 // computation 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "PassDetail.h" 16 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 17 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h" 18 #include "mlir/Dialect/Linalg/Passes.h" 19 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 20 #include "mlir/Dialect/Linalg/Utils/Utils.h" 21 #include "mlir/IR/AffineExpr.h" 22 #include "mlir/IR/AffineMap.h" 23 #include "mlir/Transforms/FoldUtils.h" 24 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/Debug.h" 27 28 #define DEBUG_TYPE "linalg-drop-unit-dims" 29 30 using namespace mlir; 31 using namespace mlir::linalg; 32 33 /// Implements a pass that canonicalizes the uses of unit-extent dimensions for 34 /// broadcasting. For example, 35 /// 36 /// ```mlir 37 /// #accesses = [ 38 /// affine_map<(d0, d1) -> (0, d1)>, 39 /// affine_map<(d0, d1) -> (d0, 0)>, 40 /// affine_map<(d0, d1) -> (d0, d1)> 41 /// ] 42 /// 43 /// #trait = { 44 /// args_in = 2, 45 /// args_out = 1, 46 /// indexing_maps = #accesses, 47 /// iterator_types = ["parallel", "parallel"], 48 /// library_call = "some_external_fn" 49 /// } 50 /// 51 /// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) -> 52 /// tensor<5x5xf32> 53 /// { 54 /// %0 = linalg.tensor_reshape %arg0 [affine_map<(d0, d1) -> (d0, d1)>] : 55 /// tensor<5xf32> into tensor<1x5xf32> 56 /// %1 = linalg.tensor_reshape %arg1 [affine_map<(d0, d1) -> (d0, d1)>] : 57 /// tensor<5xf32> into tensor<5x1xf32> 58 /// %2 = linalg.generic #trait %0, %1 { 59 /// ^bb0(%arg2: f32, %arg3: f32): 60 /// %3 = addf %arg2, %arg3 : f32 61 /// linalg.yield %3 : f32 62 /// } : tensor<1x5xf32>, tensor<5x1xf32> -> tensor<5x5xf32> 63 /// return %2 : tensor<5x5xf32> 64 /// } 65 /// 66 /// would canonicalize to 67 /// 68 /// ```mlir 69 /// #accesses = [ 70 /// affine_map<(d0, d1) -> (d1)>, 71 /// affine_map<(d0, d1) -> (d0)>, 72 /// affine_map<(d0, d1) -> (d0, d1)> 73 /// ] 74 /// 75 /// #trait = { 76 /// args_in = 2, 77 /// args_out = 1, 78 /// indexing_maps = #accesses, 79 /// iterator_types = ["parallel", "parallel"], 80 /// library_call = "some_external_fn" 81 /// } 82 /// 83 /// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) -> 84 /// tensor<5x5xf32> 85 /// { 86 /// %0 = linalg.generic #trait %arg0, %arg1 { 87 /// ^bb0(%arg2: f32, %arg3: f32): 88 /// %3 = addf %arg2, %arg3 : f32 89 /// linalg.yield %3 : f32 90 /// } : tensor<5xf32>, tensor<5xf32> -> tensor<5x5xf32> 91 /// return %0 : tensor<5x5xf32> 92 /// } 93 94 /// Given dims of the iteration space of a structured op that are known to be 95 /// single trip count (`unitDims`), return the indexing maps to use in the 96 /// canonicalized op with these dims removed, given the original `indexingMaps`. 97 static ArrayAttr replaceUnitDims(DenseSet<unsigned> &unitDims, 98 ArrayRef<AffineMap> indexingMaps, 99 MLIRContext *context) { 100 if (indexingMaps.empty()) 101 return nullptr; 102 unsigned numIterationDims = indexingMaps.front().getNumDims(); 103 unsigned numSymbols = indexingMaps.front().getNumSymbols(); 104 105 // Compute the replacement for each dim expr. 106 SmallVector<AffineExpr, 4> dimReplacements; 107 dimReplacements.reserve(numIterationDims); 108 unsigned numKeptDims = 0; 109 for (unsigned dim : llvm::seq<unsigned>(0, numIterationDims)) { 110 if (unitDims.count(dim)) 111 dimReplacements.push_back(getAffineConstantExpr(0, context)); 112 else 113 dimReplacements.push_back(getAffineDimExpr(numKeptDims++, context)); 114 } 115 116 // Symbols remain the same. 117 SmallVector<AffineExpr, 4> symReplacements; 118 symReplacements.reserve(numSymbols); 119 for (unsigned symbol : llvm::seq<unsigned>(0, numSymbols)) 120 symReplacements.push_back(getAffineSymbolExpr(symbol, context)); 121 122 SmallVector<AffineMap, 4> newIndexingMaps; 123 newIndexingMaps.reserve(indexingMaps.size()); 124 for (AffineMap operandMap : indexingMaps) { 125 // Expected indexing maps to have no symbols. 126 if (operandMap.getNumSymbols()) 127 return nullptr; 128 newIndexingMaps.push_back(simplifyAffineMap( 129 operandMap.replaceDimsAndSymbols(dimReplacements, symReplacements, 130 numIterationDims - unitDims.size(), 131 numSymbols))); 132 } 133 134 // Check that the new index maps are invertible. If not, something went 135 // wrong, so abort. 136 if (!inversePermutation(concatAffineMaps(newIndexingMaps))) 137 return nullptr; 138 return ArrayAttr::get(context, 139 llvm::to_vector<4>(llvm::map_range( 140 newIndexingMaps, [](AffineMap map) -> Attribute { 141 return AffineMapAttr::get(map); 142 }))); 143 } 144 145 /// Update the index accesses of linalg operations having index semantics. 146 static void replaceUnitDimIndexOps(GenericOp genericOp, 147 const DenseSet<unsigned> &unitDims, 148 PatternRewriter &rewriter) { 149 assert(genericOp->getNumRegions() == 1 && 150 genericOp->getRegion(0).getBlocks().size() == 1 && 151 "expected generic operation to have one block."); 152 Block &block = genericOp->getRegion(0).front(); 153 154 for (IndexOp indexOp : llvm::make_early_inc_range(block.getOps<IndexOp>())) { 155 OpBuilder::InsertionGuard guard(rewriter); 156 rewriter.setInsertionPoint(indexOp); 157 if (unitDims.count(indexOp.dim()) != 0) { 158 rewriter.replaceOpWithNewOp<ConstantIndexOp>(indexOp, 0); 159 } else { 160 // Update the dimension of the index operation if needed. 161 unsigned droppedDims = llvm::count_if( 162 unitDims, [&](unsigned dim) { return dim < indexOp.dim(); }); 163 if (droppedDims != 0) 164 rewriter.replaceOpWithNewOp<IndexOp>(indexOp, 165 indexOp.dim() - droppedDims); 166 } 167 } 168 } 169 170 namespace { 171 /// Pattern to fold unit-trip count loops in GenericOps. 172 struct FoldUnitDimLoops : public OpRewritePattern<GenericOp> { 173 using OpRewritePattern<GenericOp>::OpRewritePattern; 174 LogicalResult matchAndRewrite(GenericOp genericOp, 175 PatternRewriter &rewriter) const override { 176 SmallVector<AffineMap, 4> indexingMaps = genericOp.getIndexingMaps(); 177 if (indexingMaps.empty()) 178 return failure(); 179 180 // Check if any of the iteration dimensions are unit-trip count. They will 181 // end up being unit-trip count if they are used to index into a unit-dim 182 // tensor/memref. 183 AffineMap invertedMap = inversePermutation(concatAffineMaps(indexingMaps)); 184 if (!invertedMap) 185 return failure(); 186 SmallVector<int64_t, 4> dims; 187 for (ShapedType shapedType : genericOp.getShapedOperandTypes()) 188 dims.append(shapedType.getShape().begin(), shapedType.getShape().end()); 189 190 // Find all the reduction iterators. Those need some special consideration 191 // (see below). 192 auto getLoopDimsOfType = 193 [&](StringRef iteratorTypeName) -> SmallVector<unsigned, 4> { 194 SmallVector<AffineExpr> dimExprs; 195 getDimsOfType(genericOp, iteratorTypeName, dimExprs); 196 return llvm::to_vector<4>(llvm::map_range(dimExprs, [](AffineExpr expr) { 197 return expr.cast<AffineDimExpr>().getPosition(); 198 })); 199 }; 200 auto reductionDims = getLoopDimsOfType(getReductionIteratorTypeName()); 201 202 DenseSet<unsigned> unitDims; 203 SmallVector<unsigned, 4> unitDimsReductionLoops; 204 ArrayAttr iteratorTypes = genericOp.iterator_types(); 205 for (auto expr : enumerate(invertedMap.getResults())) { 206 if (AffineDimExpr dimExpr = expr.value().dyn_cast<AffineDimExpr>()) 207 if (dims[dimExpr.getPosition()] == 1) { 208 if (isParallelIterator(iteratorTypes[expr.index()])) 209 unitDims.insert(expr.index()); 210 else if (isReductionIterator(iteratorTypes[expr.index()])) 211 unitDimsReductionLoops.push_back(expr.index()); 212 } 213 } 214 215 // Reduction loops can be dropped if there is at least one other reduction 216 // loop that is not dropped. This accounts for the initial value read in the 217 // reduction loop. 218 if (!unitDimsReductionLoops.empty() && reductionDims.size() > 1) { 219 if (unitDimsReductionLoops.size() == reductionDims.size()) 220 unitDims.insert(reductionDims.begin(), std::prev(reductionDims.end())); 221 else 222 unitDims.insert(unitDimsReductionLoops.begin(), 223 unitDimsReductionLoops.end()); 224 } 225 226 if (unitDims.empty()) 227 return failure(); 228 229 // Compute the modified indexing maps. 230 MLIRContext *context = rewriter.getContext(); 231 ArrayAttr newIndexingMapAttr = 232 replaceUnitDims(unitDims, indexingMaps, context); 233 if (!newIndexingMapAttr) 234 return genericOp.emitError("unable to compute modified indexing_maps"); 235 236 // Compute the iterator types of the modified op by dropping the one-trip 237 // count loops. 238 SmallVector<Attribute, 4> newIteratorTypes; 239 for (auto attr : llvm::enumerate(iteratorTypes)) { 240 if (!unitDims.count(attr.index())) 241 newIteratorTypes.push_back(attr.value()); 242 } 243 244 rewriter.startRootUpdate(genericOp); 245 genericOp.indexing_mapsAttr(newIndexingMapAttr); 246 genericOp.iterator_typesAttr(ArrayAttr::get(context, newIteratorTypes)); 247 replaceUnitDimIndexOps(genericOp, unitDims, rewriter); 248 rewriter.finalizeRootUpdate(genericOp); 249 return success(); 250 } 251 }; 252 253 struct UnitExtentReplacementInfo { 254 RankedTensorType type; 255 AffineMap indexMap; 256 ArrayAttr reassociation; 257 }; 258 } // namespace 259 260 /// Utility function for replacing operands/results to a linalg generic 261 /// operation on tensors with unit-extent dimensions. These can be replaced with 262 /// an operand/result with the unit-extent dimension removed. This is only done 263 /// if the indexing map used to access that didimensionmension has a 264 /// AffineConstantExpr of value 0. Given the `type` of an result/operand of a 265 /// Linalg op, and its `indexMap` the utility function returns: 266 /// - the new type with dimensions of size 1 removed. 267 /// - modified index map that can be used to access the replaced result/operand 268 /// - the reassociation that converts from the original tensor type to the 269 /// modified tensor type. 270 static UnitExtentReplacementInfo replaceUnitExtents(AffineMap indexMap, 271 RankedTensorType type, 272 MLIRContext *context) { 273 ArrayRef<int64_t> shape = type.getShape(); 274 ArrayRef<AffineExpr> exprs = indexMap.getResults(); 275 SmallVector<AffineExpr, 2> reassociations; 276 SmallVector<Attribute, 4> reassociationMaps; 277 SmallVector<AffineExpr, 4> newIndexExprs; 278 SmallVector<int64_t, 4> newShape; 279 280 int64_t origRank = type.getRank(); 281 AffineExpr zeroExpr = getAffineConstantExpr(0, context); 282 auto isUnitExtent = [&](int64_t dim) -> bool { 283 return shape[dim] == 1 && exprs[dim] == zeroExpr; 284 }; 285 286 unsigned dim = 0; 287 // Fold dimensions that are unit-extent at the beginning of the tensor. 288 while (dim < origRank && isUnitExtent(dim)) 289 reassociations.push_back(getAffineDimExpr(dim++, context)); 290 while (dim < origRank) { 291 reassociations.push_back(getAffineDimExpr(dim, context)); 292 newIndexExprs.push_back(exprs[dim]); 293 newShape.push_back(shape[dim]); 294 // Fold all following dimensions that are unit-extent. 295 while (dim + 1 < origRank && isUnitExtent(dim + 1)) { 296 ++dim; 297 reassociations.push_back(getAffineDimExpr(dim, context)); 298 } 299 reassociationMaps.push_back(AffineMapAttr::get(AffineMap::get( 300 origRank, /*symbolCount = */ 0, reassociations, context))); 301 reassociations.clear(); 302 ++dim; 303 } 304 UnitExtentReplacementInfo info = { 305 RankedTensorType::get(newShape, type.getElementType()), 306 AffineMap::get(indexMap.getNumDims(), indexMap.getNumSymbols(), 307 newIndexExprs, context), 308 ArrayAttr::get(context, reassociationMaps)}; 309 return info; 310 } 311 312 namespace { 313 314 SmallVector<ReassociationExprs, 2> 315 convertAffineMapArrayToExprs(ArrayAttr affineMapArrayAttr) { 316 SmallVector<ReassociationExprs, 2> reassociationExprs; 317 for (auto attr : affineMapArrayAttr) 318 reassociationExprs.push_back( 319 llvm::to_vector<4>(attr.cast<AffineMapAttr>().getValue().getResults())); 320 return reassociationExprs; 321 } 322 323 /// Pattern to replace tensors operands/results that are unit extents. 324 struct ReplaceUnitExtentTensors : public OpRewritePattern<GenericOp> { 325 using OpRewritePattern<GenericOp>::OpRewritePattern; 326 LogicalResult matchAndRewrite(GenericOp genericOp, 327 PatternRewriter &rewriter) const override { 328 if (!genericOp.hasTensorSemantics()) 329 return failure(); 330 331 MLIRContext *context = rewriter.getContext(); 332 Location loc = genericOp.getLoc(); 333 334 SmallVector<AffineMap, 4> newIndexingMaps; 335 SmallVector<ArrayAttr, 4> reassociationMaps; 336 SmallVector<ShapedType, 4> newInputOutputTypes; 337 bool doCanonicalization = false; 338 for (auto it : llvm::zip(genericOp.getIndexingMaps(), 339 genericOp.getShapedOperandTypes())) { 340 auto replacementInfo = replaceUnitExtents( 341 std::get<0>(it), std::get<1>(it).template cast<RankedTensorType>(), 342 context); 343 reassociationMaps.push_back(replacementInfo.reassociation); 344 newIndexingMaps.push_back(replacementInfo.indexMap); 345 newInputOutputTypes.push_back(replacementInfo.type); 346 doCanonicalization |= replacementInfo.type != std::get<1>(it); 347 } 348 349 // If the indexing maps of the result operation are not invertible (i.e. not 350 // legal), abort. 351 if (!doCanonicalization || 352 !inversePermutation(concatAffineMaps(newIndexingMaps))) 353 return failure(); 354 355 // If any operand type change, insert a reshape to convert from the original 356 // type to the new type. 357 // TODO: get rid of flattenedIdx which assumes operand order and contiguity. 358 unsigned flattenedIdx = 0; 359 auto insertReshapes = [&](ValueRange values) { 360 SmallVector<Value, 4> res; 361 res.reserve(values.size()); 362 for (auto operand : llvm::enumerate(values)) { 363 if (operand.value().getType() == newInputOutputTypes[flattenedIdx]) 364 res.push_back(operand.value()); 365 else 366 res.push_back(rewriter.create<linalg::TensorReshapeOp>( 367 loc, newInputOutputTypes[flattenedIdx], operand.value(), 368 convertAffineMapArrayToExprs(reassociationMaps[flattenedIdx]))); 369 ++flattenedIdx; 370 } 371 return res; 372 }; 373 374 SmallVector<Value, 4> newInputs = insertReshapes(genericOp.inputs()); 375 SmallVector<Value, 4> newOutputs = insertReshapes(genericOp.outputs()); 376 377 // If any result type changes, insert a reshape to convert from the original 378 // type to the new type. 379 SmallVector<Type, 4> resultTypes; 380 resultTypes.reserve(genericOp.getNumResults()); 381 for (unsigned i : llvm::seq<unsigned>(0, genericOp.getNumResults())) 382 resultTypes.push_back(newInputOutputTypes[i + genericOp.getNumInputs()]); 383 GenericOp replacementOp = rewriter.create<GenericOp>( 384 loc, resultTypes, newInputs, newOutputs, newIndexingMaps, 385 llvm::to_vector<4>( 386 genericOp.iterator_types().template getAsValueRange<StringAttr>())); 387 rewriter.inlineRegionBefore(genericOp.region(), replacementOp.region(), 388 replacementOp.region().begin()); 389 390 // If any result tensor has a modified shape, then add reshape to recover 391 // the original shape. 392 SmallVector<Value, 4> resultReplacements; 393 for (auto result : llvm::enumerate(replacementOp.getResults())) { 394 unsigned index = result.index() + replacementOp.getNumInputs(); 395 RankedTensorType origResultType = genericOp.getResult(result.index()) 396 .getType() 397 .template cast<RankedTensorType>(); 398 if (origResultType != result.value().getType()) 399 resultReplacements.push_back(rewriter.create<linalg::TensorReshapeOp>( 400 loc, origResultType, result.value(), 401 convertAffineMapArrayToExprs(reassociationMaps[index]))); 402 else 403 resultReplacements.push_back(result.value()); 404 } 405 rewriter.replaceOp(genericOp, resultReplacements); 406 return success(); 407 } 408 }; 409 } // namespace 410 411 /// Get the reassociation maps to fold the result of a subtensor (or source of a 412 /// subtensor_insert) operation with given offsets, and sizes to its 413 /// rank-reduced version. This is only done for the cases where the size is 1 414 /// and offset is 0. Strictly speaking the offset 0 is not required in general, 415 /// but non-zero offsets are not handled by SPIR-V backend at this point (and 416 /// potentially cannot be handled). 417 static Optional<SmallVector<ReassociationIndices>> 418 getReassociationMapForFoldingUnitDims(ArrayRef<OpFoldResult> mixedSizes) { 419 SmallVector<ReassociationIndices> reassociation; 420 ReassociationIndices curr; 421 for (auto it : llvm::enumerate(mixedSizes)) { 422 auto dim = it.index(); 423 auto size = it.value(); 424 curr.push_back(dim); 425 auto attr = size.dyn_cast<Attribute>(); 426 if (attr && attr.cast<IntegerAttr>().getInt() == 1) 427 continue; 428 reassociation.emplace_back(ReassociationIndices{}); 429 std::swap(reassociation.back(), curr); 430 } 431 // When the reassociations are not empty, then fold the remaining 432 // unit-dimensions into the last dimension. If the reassociations so far is 433 // empty, then leave it emtpy. This will fold everything to a rank-0 tensor. 434 if (!curr.empty() && !reassociation.empty()) 435 reassociation.back().append(curr.begin(), curr.end()); 436 return reassociation; 437 } 438 439 namespace { 440 /// Convert `subtensor` operations to rank-reduced versions. 441 struct UseRankReducedSubTensorOp : public OpRewritePattern<SubTensorOp> { 442 using OpRewritePattern<SubTensorOp>::OpRewritePattern; 443 444 LogicalResult matchAndRewrite(SubTensorOp subTensorOp, 445 PatternRewriter &rewriter) const override { 446 RankedTensorType resultType = subTensorOp.getType(); 447 SmallVector<OpFoldResult> offsets = subTensorOp.getMixedOffsets(); 448 SmallVector<OpFoldResult> sizes = subTensorOp.getMixedSizes(); 449 SmallVector<OpFoldResult> strides = subTensorOp.getMixedStrides(); 450 auto reassociation = getReassociationMapForFoldingUnitDims(sizes); 451 if (!reassociation || 452 reassociation->size() == static_cast<size_t>(resultType.getRank())) 453 return failure(); 454 auto rankReducedType = 455 SubTensorOp::inferRankReducedResultType(reassociation->size(), 456 subTensorOp.getSourceType(), 457 offsets, sizes, strides) 458 .cast<RankedTensorType>(); 459 460 Location loc = subTensorOp.getLoc(); 461 Value newSubTensor = rewriter.create<SubTensorOp>( 462 loc, rankReducedType, subTensorOp.source(), offsets, sizes, strides); 463 rewriter.replaceOpWithNewOp<TensorReshapeOp>(subTensorOp, resultType, 464 newSubTensor, *reassociation); 465 return success(); 466 } 467 }; 468 469 /// Convert `subtensor_insert` operations to rank-reduced versions. 470 struct UseRankReducedSubTensorInsertOp 471 : public OpRewritePattern<SubTensorInsertOp> { 472 using OpRewritePattern<SubTensorInsertOp>::OpRewritePattern; 473 474 LogicalResult matchAndRewrite(SubTensorInsertOp insertOp, 475 PatternRewriter &rewriter) const override { 476 RankedTensorType sourceType = insertOp.getSourceType(); 477 SmallVector<OpFoldResult> offsets = insertOp.getMixedOffsets(); 478 SmallVector<OpFoldResult> sizes = insertOp.getMixedSizes(); 479 SmallVector<OpFoldResult> strides = insertOp.getMixedStrides(); 480 auto reassociation = getReassociationMapForFoldingUnitDims(sizes); 481 if (!reassociation || 482 reassociation->size() == static_cast<size_t>(sourceType.getRank())) 483 return failure(); 484 Location loc = insertOp.getLoc(); 485 auto reshapedSource = rewriter.create<TensorReshapeOp>( 486 loc, insertOp.source(), *reassociation); 487 rewriter.replaceOpWithNewOp<SubTensorInsertOp>( 488 insertOp, reshapedSource, insertOp.dest(), insertOp.getMixedOffsets(), 489 insertOp.getMixedSizes(), insertOp.getMixedStrides()); 490 return success(); 491 } 492 }; 493 } // namespace 494 495 /// Patterns that are used to canonicalize the use of unit-extent dims for 496 /// broadcasting. 497 void mlir::linalg::populateFoldUnitExtentDimsPatterns( 498 RewritePatternSet &patterns) { 499 auto *context = patterns.getContext(); 500 patterns.add<FoldUnitDimLoops, ReplaceUnitExtentTensors, 501 UseRankReducedSubTensorOp, UseRankReducedSubTensorInsertOp>( 502 context); 503 TensorReshapeOp::getCanonicalizationPatterns(patterns, context); 504 } 505 506 namespace { 507 /// Pass that removes unit-extent dims within generic ops. 508 struct LinalgFoldUnitExtentDimsPass 509 : public LinalgFoldUnitExtentDimsBase<LinalgFoldUnitExtentDimsPass> { 510 void runOnFunction() override { 511 FuncOp funcOp = getFunction(); 512 MLIRContext *context = funcOp.getContext(); 513 RewritePatternSet patterns(context); 514 if (foldOneTripLoopsOnly) 515 patterns.add<FoldUnitDimLoops>(context); 516 else 517 populateFoldUnitExtentDimsPatterns(patterns); 518 (void)applyPatternsAndFoldGreedily(funcOp.getBody(), std::move(patterns)); 519 } 520 }; 521 } // namespace 522 523 std::unique_ptr<OperationPass<FuncOp>> 524 mlir::createLinalgFoldUnitExtentDimsPass() { 525 return std::make_unique<LinalgFoldUnitExtentDimsPass>(); 526 } 527