1 //===- DropUnitDims.cpp - Pass to drop use of unit-extent for broadcasting ===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements patterns/pass to remove usage of unit-extent dimensions 10 // to specify broadcasting in favor of more canonical representation of the 11 // computation 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "PassDetail.h" 16 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 17 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h" 18 #include "mlir/Dialect/Linalg/Passes.h" 19 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 20 #include "mlir/Dialect/Linalg/Utils/Utils.h" 21 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h" 22 #include "mlir/IR/AffineExpr.h" 23 #include "mlir/IR/AffineMap.h" 24 #include "mlir/Transforms/FoldUtils.h" 25 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/Debug.h" 28 29 #define DEBUG_TYPE "linalg-drop-unit-dims" 30 31 using namespace mlir; 32 using namespace mlir::edsc; 33 using namespace mlir::edsc::intrinsics; 34 using namespace mlir::linalg; 35 36 /// Implements a pass that canonicalizes the uses of unit-extent dimensions for 37 /// broadcasting. For example, 38 /// 39 /// ```mlir 40 /// #accesses = [ 41 /// affine_map<(d0, d1) -> (0, d1)>, 42 /// affine_map<(d0, d1) -> (d0, 0)>, 43 /// affine_map<(d0, d1) -> (d0, d1)> 44 /// ] 45 /// 46 /// #trait = { 47 /// args_in = 2, 48 /// args_out = 1, 49 /// indexing_maps = #accesses, 50 /// iterator_types = ["parallel", "parallel"], 51 /// library_call = "some_external_fn" 52 /// } 53 /// 54 /// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) -> 55 /// tensor<5x5xf32> 56 /// { 57 /// %0 = linalg.tensor_reshape %arg0 [affine_map<(d0, d1) -> (d0, d1)>] : 58 /// tensor<5xf32> into tensor<1x5xf32> 59 /// %1 = linalg.tensor_reshape %arg1 [affine_map<(d0, d1) -> (d0, d1)>] : 60 /// tensor<5xf32> into tensor<5x1xf32> 61 /// %2 = linalg.generic #trait %0, %1 { 62 /// ^bb0(%arg2: f32, %arg3: f32): 63 /// %3 = addf %arg2, %arg3 : f32 64 /// linalg.yield %3 : f32 65 /// } : tensor<1x5xf32>, tensor<5x1xf32> -> tensor<5x5xf32> 66 /// return %2 : tensor<5x5xf32> 67 /// } 68 /// 69 /// would canonicalize to 70 /// 71 /// ```mlir 72 /// #accesses = [ 73 /// affine_map<(d0, d1) -> (d1)>, 74 /// affine_map<(d0, d1) -> (d0)>, 75 /// affine_map<(d0, d1) -> (d0, d1)> 76 /// ] 77 /// 78 /// #trait = { 79 /// args_in = 2, 80 /// args_out = 1, 81 /// indexing_maps = #accesses, 82 /// iterator_types = ["parallel", "parallel"], 83 /// library_call = "some_external_fn" 84 /// } 85 /// 86 /// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) -> 87 /// tensor<5x5xf32> 88 /// { 89 /// %0 = linalg.generic #trait %arg0, %arg1 { 90 /// ^bb0(%arg2: f32, %arg3: f32): 91 /// %3 = addf %arg2, %arg3 : f32 92 /// linalg.yield %3 : f32 93 /// } : tensor<5xf32>, tensor<5xf32> -> tensor<5x5xf32> 94 /// return %0 : tensor<5x5xf32> 95 /// } 96 97 /// Given dims of the iteration space of a structured op that are known to be 98 /// single trip count (`unitDims`), return the indexing maps to use in the 99 /// canonicalized op with these dims removed, given the original `indexingMaps`. 100 static ArrayAttr replaceUnitDims(DenseSet<unsigned> &unitDims, 101 ArrayRef<AffineMap> indexingMaps, 102 MLIRContext *context) { 103 if (indexingMaps.empty()) 104 return nullptr; 105 unsigned numIterationDims = indexingMaps.front().getNumDims(); 106 unsigned numSymbols = indexingMaps.front().getNumSymbols(); 107 108 // Compute the replacement for each dim expr. 109 SmallVector<AffineExpr, 4> dimReplacements; 110 dimReplacements.reserve(numIterationDims); 111 unsigned numKeptDims = 0; 112 for (unsigned dim : llvm::seq<unsigned>(0, numIterationDims)) { 113 if (unitDims.count(dim)) 114 dimReplacements.push_back(getAffineConstantExpr(0, context)); 115 else 116 dimReplacements.push_back(getAffineDimExpr(numKeptDims++, context)); 117 } 118 119 // Symbols remain the same. 120 SmallVector<AffineExpr, 4> symReplacements; 121 symReplacements.reserve(numSymbols); 122 for (unsigned symbol : llvm::seq<unsigned>(0, numSymbols)) 123 symReplacements.push_back(getAffineSymbolExpr(symbol, context)); 124 125 SmallVector<AffineMap, 4> newIndexingMaps; 126 newIndexingMaps.reserve(indexingMaps.size()); 127 for (AffineMap operandMap : indexingMaps) { 128 // Expected indexing maps to have no symbols. 129 if (operandMap.getNumSymbols()) 130 return nullptr; 131 newIndexingMaps.push_back(simplifyAffineMap( 132 operandMap.replaceDimsAndSymbols(dimReplacements, symReplacements, 133 numIterationDims - unitDims.size(), 134 numSymbols))); 135 } 136 137 // Check that the new index maps are invertible. If not, something went 138 // wrong, so abort. 139 if (!inversePermutation(concatAffineMaps(newIndexingMaps))) 140 return nullptr; 141 return ArrayAttr::get(context, 142 llvm::to_vector<4>(llvm::map_range( 143 newIndexingMaps, [](AffineMap map) -> Attribute { 144 return AffineMapAttr::get(map); 145 }))); 146 } 147 148 /// Update the index accesses of linalg operations having index semantics. 149 template <typename GenericOpTy> 150 static void replaceUnitDimIndexOps(GenericOpTy op, 151 const DenseSet<unsigned> &unitDims, 152 PatternRewriter &rewriter) { 153 assert(op->getNumRegions() == 1 && op->getRegion(0).getBlocks().size() == 1 && 154 "expected generic operation to have one block."); 155 Block &block = op->getRegion(0).front(); 156 157 for (IndexOp indexOp : llvm::make_early_inc_range(block.getOps<IndexOp>())) { 158 OpBuilder::InsertionGuard guard(rewriter); 159 rewriter.setInsertionPoint(indexOp); 160 if (unitDims.count(indexOp.dim()) != 0) { 161 rewriter.replaceOpWithNewOp<ConstantIndexOp>(indexOp, 0); 162 } else { 163 // Update the dimension of the index operation if needed. 164 unsigned droppedDims = llvm::count_if( 165 unitDims, [&](unsigned dim) { return dim < indexOp.dim(); }); 166 if (droppedDims != 0) 167 rewriter.replaceOpWithNewOp<IndexOp>(indexOp, 168 indexOp.dim() - droppedDims); 169 } 170 } 171 } 172 173 /// Modify the region of indexed generic op to drop arguments corresponding to 174 /// loops that are unit trip count. 175 template <typename OpTy> 176 static LogicalResult 177 replaceBlockArgForUnitDimLoops(OpTy op, const DenseSet<unsigned> &unitDims, 178 PatternRewriter &rewriterp) { 179 return success(); 180 } 181 182 template <> 183 LogicalResult replaceBlockArgForUnitDimLoops<IndexedGenericOp>( 184 IndexedGenericOp op, const DenseSet<unsigned> &unitDims, 185 PatternRewriter &rewriter) { 186 OpBuilder::InsertionGuard guard(rewriter); 187 Block *entryBlock = &op->getRegion(0).front(); 188 rewriter.setInsertionPointToStart(entryBlock); 189 Value zero = rewriter.create<ConstantIndexOp>(op.getLoc(), 0); 190 for (unsigned unitDimLoop : unitDims) { 191 entryBlock->getArgument(unitDimLoop).replaceAllUsesWith(zero); 192 } 193 SmallVector<unsigned, 8> unitDimsToErase(unitDims.begin(), unitDims.end()); 194 entryBlock->eraseArguments(unitDimsToErase); 195 return success(); 196 } 197 198 namespace { 199 /// Pattern to fold unit-trip count loops in GenericOps. 200 template <typename GenericOpTy> 201 struct FoldUnitDimLoops : public OpRewritePattern<GenericOpTy> { 202 using OpRewritePattern<GenericOpTy>::OpRewritePattern; 203 LogicalResult matchAndRewrite(GenericOpTy op, 204 PatternRewriter &rewriter) const override { 205 SmallVector<AffineMap, 4> indexingMaps = op.getIndexingMaps(); 206 if (indexingMaps.empty()) 207 return failure(); 208 209 // Check if any of the iteration dimensions are unit-trip count. They will 210 // end up being unit-trip count if they are used to index into a unit-dim 211 // tensor/memref. 212 AffineMap invertedMap = inversePermutation(concatAffineMaps(indexingMaps)); 213 if (!invertedMap) 214 return failure(); 215 SmallVector<int64_t, 4> dims; 216 for (ShapedType shapedType : op.getShapedOperandTypes()) 217 dims.append(shapedType.getShape().begin(), shapedType.getShape().end()); 218 219 // Find all the reduction iterators. Those need some special consideration 220 // (see below). 221 auto getLoopDimsOfType = 222 [&](StringRef iteratorTypeName) -> SmallVector<unsigned, 4> { 223 SmallVector<AffineExpr> dimExprs; 224 getDimsOfType(op, iteratorTypeName, dimExprs); 225 return llvm::to_vector<4>(llvm::map_range(dimExprs, [](AffineExpr expr) { 226 return expr.cast<AffineDimExpr>().getPosition(); 227 })); 228 }; 229 auto reductionDims = getLoopDimsOfType(getReductionIteratorTypeName()); 230 231 DenseSet<unsigned> unitDims; 232 SmallVector<unsigned, 4> unitDimsReductionLoops; 233 ArrayAttr iteratorTypes = op.iterator_types(); 234 for (auto expr : enumerate(invertedMap.getResults())) { 235 if (AffineDimExpr dimExpr = expr.value().dyn_cast<AffineDimExpr>()) 236 if (dims[dimExpr.getPosition()] == 1) { 237 if (isParallelIterator(iteratorTypes[expr.index()])) 238 unitDims.insert(expr.index()); 239 else if (isReductionIterator(iteratorTypes[expr.index()])) 240 unitDimsReductionLoops.push_back(expr.index()); 241 } 242 } 243 244 // Reduction loops can be dropped if there is at least one other reduction 245 // loop that is not dropped. This accounts for the initial value read in the 246 // reduction loop. 247 if (!unitDimsReductionLoops.empty() && reductionDims.size() > 1) { 248 if (unitDimsReductionLoops.size() == reductionDims.size()) 249 unitDims.insert(reductionDims.begin(), std::prev(reductionDims.end())); 250 else 251 unitDims.insert(unitDimsReductionLoops.begin(), 252 unitDimsReductionLoops.end()); 253 } 254 255 if (unitDims.empty()) 256 return failure(); 257 258 // Compute the modified indexing maps. 259 MLIRContext *context = rewriter.getContext(); 260 ArrayAttr newIndexingMapAttr = 261 replaceUnitDims(unitDims, indexingMaps, context); 262 if (!newIndexingMapAttr) 263 return op.emitError("unable to compute modified indexing_maps"); 264 265 // Compute the iterator types of the modified op by dropping the one-trip 266 // count loops. 267 SmallVector<Attribute, 4> newIteratorTypes; 268 for (auto attr : llvm::enumerate(iteratorTypes)) { 269 if (!unitDims.count(attr.index())) 270 newIteratorTypes.push_back(attr.value()); 271 } 272 273 rewriter.startRootUpdate(op); 274 op.indexing_mapsAttr(newIndexingMapAttr); 275 op.iterator_typesAttr(ArrayAttr::get(context, newIteratorTypes)); 276 (void)replaceBlockArgForUnitDimLoops(op, unitDims, rewriter); 277 replaceUnitDimIndexOps(op, unitDims, rewriter); 278 rewriter.finalizeRootUpdate(op); 279 return success(); 280 } 281 }; 282 283 struct UnitExtentReplacementInfo { 284 RankedTensorType type; 285 AffineMap indexMap; 286 ArrayAttr reassociation; 287 }; 288 } // namespace 289 290 /// Utility function for replacing operands/results to a linalg generic 291 /// operation on tensors with unit-extent dimensions. These can be replaced with 292 /// an operand/result with the unit-extent dimension removed. This is only done 293 /// if the indexing map used to access that didimensionmension has a 294 /// AffineConstantExpr of value 0. Given the `type` of an result/operand of a 295 /// Linalg op, and its `indexMap` the utility function returns: 296 /// - the new type with dimensions of size 1 removed. 297 /// - modified index map that can be used to access the replaced result/operand 298 /// - the reassociation that converts from the original tensor type to the 299 /// modified tensor type. 300 static UnitExtentReplacementInfo replaceUnitExtents(AffineMap indexMap, 301 RankedTensorType type, 302 MLIRContext *context) { 303 ArrayRef<int64_t> shape = type.getShape(); 304 ArrayRef<AffineExpr> exprs = indexMap.getResults(); 305 SmallVector<AffineExpr, 2> reassociations; 306 SmallVector<Attribute, 4> reassociationMaps; 307 SmallVector<AffineExpr, 4> newIndexExprs; 308 SmallVector<int64_t, 4> newShape; 309 310 int64_t origRank = type.getRank(); 311 AffineExpr zeroExpr = getAffineConstantExpr(0, context); 312 auto isUnitExtent = [&](int64_t dim) -> bool { 313 return shape[dim] == 1 && exprs[dim] == zeroExpr; 314 }; 315 316 unsigned dim = 0; 317 // Fold dimensions that are unit-extent at the beginning of the tensor. 318 while (dim < origRank && isUnitExtent(dim)) 319 reassociations.push_back(getAffineDimExpr(dim++, context)); 320 while (dim < origRank) { 321 reassociations.push_back(getAffineDimExpr(dim, context)); 322 newIndexExprs.push_back(exprs[dim]); 323 newShape.push_back(shape[dim]); 324 // Fold all following dimensions that are unit-extent. 325 while (dim + 1 < origRank && isUnitExtent(dim + 1)) { 326 ++dim; 327 reassociations.push_back(getAffineDimExpr(dim, context)); 328 } 329 reassociationMaps.push_back(AffineMapAttr::get(AffineMap::get( 330 origRank, /*numSymbols = */ 0, reassociations, context))); 331 reassociations.clear(); 332 ++dim; 333 } 334 UnitExtentReplacementInfo info = { 335 RankedTensorType::get(newShape, type.getElementType()), 336 AffineMap::get(indexMap.getNumDims(), indexMap.getNumSymbols(), 337 newIndexExprs, context), 338 ArrayAttr::get(context, reassociationMaps)}; 339 return info; 340 } 341 342 namespace { 343 344 /// Pattern to replace tensors operands/results that are unit extents. 345 template <typename GenericOpTy> 346 struct ReplaceUnitExtentTensors : public OpRewritePattern<GenericOpTy> { 347 using OpRewritePattern<GenericOpTy>::OpRewritePattern; 348 LogicalResult matchAndRewrite(GenericOpTy op, 349 PatternRewriter &rewriter) const override { 350 if (!op.hasTensorSemantics()) 351 return failure(); 352 353 MLIRContext *context = rewriter.getContext(); 354 Location loc = op.getLoc(); 355 356 SmallVector<AffineMap, 4> newIndexingMaps; 357 SmallVector<ArrayAttr, 4> reassociationMaps; 358 SmallVector<ShapedType, 4> newInputOutputTypes; 359 bool doCanonicalization = false; 360 for (auto it : 361 llvm::zip(op.getIndexingMaps(), op.getShapedOperandTypes())) { 362 auto replacementInfo = replaceUnitExtents( 363 std::get<0>(it), std::get<1>(it).template cast<RankedTensorType>(), 364 context); 365 reassociationMaps.push_back(replacementInfo.reassociation); 366 newIndexingMaps.push_back(replacementInfo.indexMap); 367 newInputOutputTypes.push_back(replacementInfo.type); 368 doCanonicalization |= replacementInfo.type != std::get<1>(it); 369 } 370 371 // If the indexing maps of the result operation are not invertible (i.e. not 372 // legal), abort. 373 if (!doCanonicalization || 374 !inversePermutation(concatAffineMaps(newIndexingMaps))) 375 return failure(); 376 377 // If any operand type change, insert a reshape to convert from the original 378 // type to the new type. 379 // TODO: get rid of flattenedIdx which assumes operand order and contiguity. 380 unsigned flattenedIdx = 0; 381 auto insertReshapes = [&](ValueRange values) { 382 SmallVector<Value, 4> res; 383 res.reserve(values.size()); 384 for (auto operand : llvm::enumerate(values)) { 385 if (operand.value().getType() == newInputOutputTypes[flattenedIdx]) 386 res.push_back(operand.value()); 387 else 388 res.push_back(rewriter.create<linalg::TensorReshapeOp>( 389 loc, newInputOutputTypes[flattenedIdx], operand.value(), 390 reassociationMaps[flattenedIdx])); 391 ++flattenedIdx; 392 } 393 return res; 394 }; 395 396 SmallVector<Value, 4> newInputs = insertReshapes(op.inputs()); 397 SmallVector<Value, 4> newOutputs = insertReshapes(op.outputs()); 398 399 // If any result type changes, insert a reshape to convert from the original 400 // type to the new type. 401 SmallVector<Type, 4> resultTypes; 402 resultTypes.reserve(op.getNumResults()); 403 for (unsigned i : llvm::seq<unsigned>(0, op.getNumResults())) 404 resultTypes.push_back(newInputOutputTypes[i + op.getNumInputs()]); 405 GenericOpTy replacementOp = rewriter.create<GenericOpTy>( 406 loc, resultTypes, newInputs, newOutputs, newIndexingMaps, 407 llvm::to_vector<4>( 408 op.iterator_types().template getAsValueRange<StringAttr>())); 409 rewriter.inlineRegionBefore(op.region(), replacementOp.region(), 410 replacementOp.region().begin()); 411 412 // If any result tensor has a modified shape, then add reshape to recover 413 // the original shape. 414 SmallVector<Value, 4> resultReplacements; 415 for (auto result : llvm::enumerate(replacementOp.getResults())) { 416 unsigned index = result.index() + replacementOp.getNumInputs(); 417 RankedTensorType origResultType = op.getResult(result.index()) 418 .getType() 419 .template cast<RankedTensorType>(); 420 if (origResultType != result.value().getType()) 421 resultReplacements.push_back(rewriter.create<linalg::TensorReshapeOp>( 422 loc, origResultType, result.value(), reassociationMaps[index])); 423 else 424 resultReplacements.push_back(result.value()); 425 } 426 rewriter.replaceOp(op, resultReplacements); 427 return success(); 428 } 429 }; 430 431 /// Pattern to fold pair of reshape ops where the intermediate has unit-dims for 432 /// example: 433 /// 434 /// %0 = linalg.tensor_reshape %arg0 435 /// [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>] 436 /// : tensor<2048xf32> into tensor<1x4x1x512xf32> 437 /// %1 = linalg.tensor_reshape %0 438 /// [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)>, 439 /// affine_map<(d0, d1, d2, d3) -> (d3)>] 440 /// : tensor<1x4x1x512xf32> into tensor<4x512xf32> 441 /// 442 /// can be replaced with 443 /// 444 /// %0 = linalg.tensor_reshape %arg0 [affine_map<(d0, d1) -> (d0, d1)>] 445 /// : tensor<2048xf32> into tensor<4x512xf32> 446 /// 447 /// Similarly, 448 /// 449 /// %0 = linalg.tensor_reshape %arg0 450 /// [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)>, 451 /// affine_map<(d0, d1, d2, d3) -> (d3)>] 452 /// : tensor<4x512xf32> into tensor<1x4x1x512xf32> 453 /// %1 = linalg.tensor_reshape %0 454 /// [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>] 455 /// : tensor<1x4x1x512xf32> into tensor<2048xf32> 456 /// 457 /// can be replaced with 458 /// 459 /// %0 = linalg.tensor_reshape %arg0 [affine_map<(d0, d1) -> (d0, d1)>] 460 /// : tensor<4x512xf32> into tensor<2048xf32> 461 struct FoldReshapeOpWithUnitExtent : OpRewritePattern<TensorReshapeOp> { 462 using OpRewritePattern<TensorReshapeOp>::OpRewritePattern; 463 464 LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp, 465 PatternRewriter &rewriter) const override { 466 // Check that the source operand is created from a reshape as well. 467 TensorReshapeOp parentReshapeOp = 468 reshapeOp.src().getDefiningOp<TensorReshapeOp>(); 469 if (!parentReshapeOp) 470 return failure(); 471 472 RankedTensorType srcType = reshapeOp.getSrcType(), 473 dstType = reshapeOp.getResultType(), 474 parentSrcType = parentReshapeOp.getSrcType(); 475 if (!srcType.hasStaticShape() || !dstType.hasStaticShape() || 476 !parentSrcType.hasStaticShape() || 477 srcType.getRank() < dstType.getRank() || 478 parentSrcType.getRank() == dstType.getRank()) 479 return failure(); 480 481 // Check if the result tensor_reshape is folding or expanding after folding 482 // the reshapeOp and parentReshapeOp are combined. If the final 483 // tensor_reshape is folding, the parentReshapeOp is introducing unit-dims, 484 // and the reshapeOp does an actual reshape. If the final tensor_reshape op 485 // is expanding, the reshapeOp is introducing unit-dims, and the 486 // parentReshapeOp does an actual reshape. 487 bool isFoldingPattern = parentSrcType.getRank() > dstType.getRank(); 488 ArrayRef<int64_t> expandedShape = 489 isFoldingPattern ? parentSrcType.getShape() : dstType.getShape(); 490 ArrayRef<int64_t> foldedShape = 491 isFoldingPattern ? dstType.getShape() : parentSrcType.getShape(); 492 493 unsigned expandedDim = 0, foldedDim = 0; 494 SmallVector<SmallVector<AffineExpr, 4>, 4> reassociationExprs( 495 foldedShape.size()); 496 while (expandedDim < expandedShape.size() && 497 foldedDim < foldedShape.size()) { 498 int64_t dstSize = foldedShape[foldedDim]; 499 int64_t srcSize = expandedShape[expandedDim]; 500 while (srcSize < dstSize && expandedDim < expandedShape.size()) { 501 reassociationExprs[foldedDim].push_back( 502 rewriter.getAffineDimExpr(expandedDim++)); 503 srcSize *= expandedShape[expandedDim]; 504 } 505 if (srcSize == dstSize) { 506 reassociationExprs[foldedDim].push_back( 507 rewriter.getAffineDimExpr(expandedDim++)); 508 // If the next dim in foldedShape is not 1, treat subsequent dims in 509 // expandedShape which are 1 to be collapsed. 510 if (foldedDim == foldedShape.size() - 1 || 511 foldedShape[foldedDim + 1] != 1) { 512 while (expandedDim < expandedShape.size() && 513 expandedShape[expandedDim] == 1) { 514 reassociationExprs[foldedDim].push_back( 515 rewriter.getAffineDimExpr(expandedDim++)); 516 } 517 } 518 } else { 519 return failure(); 520 } 521 522 foldedDim++; 523 // If inner most dims are folded there shouldn't be any leading 1 dims. 524 // otherwise these dims are not mapped and will lead into an illegal 525 // reshape. 526 if (expandedDim == expandedShape.size()) { 527 if (foldedDim < foldedShape.size() && foldedShape[foldedDim] == 1) { 528 return failure(); 529 } 530 } 531 } 532 if (expandedDim != expandedShape.size()) 533 return failure(); 534 535 SmallVector<AffineMap, 4> reassociationMaps = 536 llvm::to_vector<4>(llvm::map_range( 537 reassociationExprs, [&](ArrayRef<AffineExpr> exprs) -> AffineMap { 538 return AffineMap::get(expandedShape.size(), 0, exprs, 539 rewriter.getContext()); 540 })); 541 rewriter.replaceOpWithNewOp<TensorReshapeOp>( 542 reshapeOp, dstType, parentReshapeOp.src(), 543 rewriter.getAffineMapArrayAttr(reassociationMaps)); 544 return success(); 545 } 546 }; 547 548 /// Pattern to fold subtensors that are just taking a slice of unit-dimension 549 /// tensor. For example 550 /// 551 /// %1 = subtensor %0[0, %o1, 0] [1, %s1, 1] [1, 1, 1] 552 /// : tensor<1x?x1xf32> to tensor<1x?x1xf32> 553 /// 554 /// can be replaced with 555 /// 556 /// %0 = linalg.tensor_reshape %0 [affine_map<(d0, d1, d2) -> (d0, d1, d2)>] 557 /// : tensor<1x?x1xf32> into tensor<?xf32> 558 /// %1 = subtensor %0[%o1] [%s1] [1] : tensor<?xf32> to tensor<?xf32> 559 /// %2 = linalg.tensor_reshape %1 [affine_map<(d0, d1, d2) -> (d0, d1, d2)>] 560 /// : tensor<?xf32> into tensor<1x?x1xf32> 561 /// 562 /// The additional tensor_reshapes will hopefully get canonicalized away with 563 /// other reshapes that drop unit dimensions. Three condiitions to fold a 564 /// dimension 565 /// - The offset must be 0 566 /// - The size must be 1 567 /// - The dimension of the source type must be 1. 568 struct FoldUnitDimSubTensorOp : public OpRewritePattern<SubTensorOp> { 569 using OpRewritePattern<SubTensorOp>::OpRewritePattern; 570 571 LogicalResult matchAndRewrite(SubTensorOp subTensorOp, 572 PatternRewriter &rewriter) const override { 573 SmallVector<OpFoldResult> mixedOffsets = subTensorOp.getMixedOffsets(); 574 SmallVector<OpFoldResult> mixedSizes = subTensorOp.getMixedSizes(); 575 SmallVector<OpFoldResult> mixedStrides = subTensorOp.getMixedStrides(); 576 auto hasValue = [](OpFoldResult valueOrAttr, int64_t val) { 577 auto attr = valueOrAttr.dyn_cast<Attribute>(); 578 return attr && attr.cast<IntegerAttr>().getInt() == val; 579 }; 580 581 if (llvm::any_of(mixedStrides, [&](OpFoldResult valueOrAttr) { 582 return !hasValue(valueOrAttr, 1); 583 })) 584 return failure(); 585 586 // Find the expanded unit dimensions. 587 SmallVector<ReassociationIndices> reassociation; 588 SmallVector<OpFoldResult> newOffsets, newSizes; 589 ArrayRef<int64_t> sourceShape = subTensorOp.getSourceType().getShape(); 590 ReassociationIndices curr; 591 for (int64_t dim : llvm::seq<int64_t>(0, mixedOffsets.size())) { 592 curr.push_back(dim); 593 if (sourceShape[dim] == 1 && hasValue(mixedOffsets[dim], 0) && 594 hasValue(mixedSizes[dim], 1)) { 595 continue; 596 } 597 newOffsets.push_back(mixedOffsets[dim]); 598 newSizes.push_back(mixedSizes[dim]); 599 reassociation.emplace_back(ReassociationIndices{}); 600 std::swap(reassociation.back(), curr); 601 } 602 if (newOffsets.size() == mixedOffsets.size()) 603 return failure(); 604 reassociation.back().append(curr.begin(), curr.end()); 605 SmallVector<OpFoldResult> newStrides(newOffsets.size(), 606 rewriter.getI64IntegerAttr(1)); 607 Location loc = subTensorOp->getLoc(); 608 auto srcReshape = rewriter.create<TensorReshapeOp>( 609 loc, subTensorOp.source(), reassociation); 610 auto newSubTensorOp = rewriter.create<SubTensorOp>( 611 loc, srcReshape, newOffsets, newSizes, newStrides); 612 rewriter.replaceOpWithNewOp<TensorReshapeOp>( 613 subTensorOp, subTensorOp.getType(), newSubTensorOp, reassociation); 614 return success(); 615 } 616 }; 617 618 } // namespace 619 620 /// Patterns that are used to canonicalize the use of unit-extent dims for 621 /// broadcasting. 622 void mlir::linalg::populateFoldUnitExtentDimsPatterns( 623 RewritePatternSet &patterns) { 624 auto *context = patterns.getContext(); 625 patterns.add<FoldUnitDimLoops<GenericOp>, FoldUnitDimLoops<IndexedGenericOp>, 626 FoldUnitDimSubTensorOp, ReplaceUnitExtentTensors<GenericOp>, 627 ReplaceUnitExtentTensors<IndexedGenericOp>>(context); 628 TensorReshapeOp::getCanonicalizationPatterns(patterns, context); 629 patterns.add<FoldReshapeOpWithUnitExtent>(context); 630 } 631 632 namespace { 633 /// Pass that removes unit-extent dims within generic ops. 634 struct LinalgFoldUnitExtentDimsPass 635 : public LinalgFoldUnitExtentDimsBase<LinalgFoldUnitExtentDimsPass> { 636 void runOnFunction() override { 637 FuncOp funcOp = getFunction(); 638 MLIRContext *context = funcOp.getContext(); 639 RewritePatternSet patterns(context); 640 if (foldOneTripLoopsOnly) 641 patterns 642 .add<FoldUnitDimLoops<GenericOp>, FoldUnitDimLoops<IndexedGenericOp>>( 643 context); 644 else 645 populateFoldUnitExtentDimsPatterns(patterns); 646 (void)applyPatternsAndFoldGreedily(funcOp.getBody(), std::move(patterns)); 647 } 648 }; 649 } // namespace 650 651 std::unique_ptr<OperationPass<FuncOp>> 652 mlir::createLinalgFoldUnitExtentDimsPass() { 653 return std::make_unique<LinalgFoldUnitExtentDimsPass>(); 654 } 655