1 //===- DropUnitDims.cpp - Pass to drop use of unit-extent for broadcasting ===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements patterns/pass to remove usage of unit-extent dimensions 10 // to specify broadcasting in favor of more canonical representation of the 11 // computation 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "PassDetail.h" 16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 17 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 18 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h" 19 #include "mlir/Dialect/Linalg/Passes.h" 20 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 21 #include "mlir/Dialect/Linalg/Utils/Utils.h" 22 #include "mlir/Dialect/Tensor/IR/Tensor.h" 23 #include "mlir/IR/AffineExpr.h" 24 #include "mlir/IR/AffineMap.h" 25 #include "mlir/IR/BuiltinTypes.h" 26 #include "mlir/Transforms/FoldUtils.h" 27 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/Debug.h" 30 31 #define DEBUG_TYPE "linalg-drop-unit-dims" 32 33 using namespace mlir; 34 using namespace mlir::linalg; 35 36 /// Implements a pass that canonicalizes the uses of unit-extent dimensions for 37 /// broadcasting. For example, 38 /// 39 /// ```mlir 40 /// #accesses = [ 41 /// affine_map<(d0, d1) -> (0, d1)>, 42 /// affine_map<(d0, d1) -> (d0, 0)>, 43 /// affine_map<(d0, d1) -> (d0, d1)> 44 /// ] 45 /// 46 /// #trait = { 47 /// args_in = 2, 48 /// args_out = 1, 49 /// indexing_maps = #accesses, 50 /// iterator_types = ["parallel", "parallel"], 51 /// library_call = "some_external_fn" 52 /// } 53 /// 54 /// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) -> 55 /// tensor<5x5xf32> 56 /// { 57 /// %0 = linalg.tensor_reshape %arg0 [affine_map<(d0, d1) -> (d0, d1)>] : 58 /// tensor<5xf32> into tensor<1x5xf32> 59 /// %1 = linalg.tensor_reshape %arg1 [affine_map<(d0, d1) -> (d0, d1)>] : 60 /// tensor<5xf32> into tensor<5x1xf32> 61 /// %2 = linalg.generic #trait %0, %1 { 62 /// ^bb0(%arg2: f32, %arg3: f32): 63 /// %3 = arith.addf %arg2, %arg3 : f32 64 /// linalg.yield %3 : f32 65 /// } : tensor<1x5xf32>, tensor<5x1xf32> -> tensor<5x5xf32> 66 /// return %2 : tensor<5x5xf32> 67 /// } 68 /// 69 /// would canonicalize to 70 /// 71 /// ```mlir 72 /// #accesses = [ 73 /// affine_map<(d0, d1) -> (d1)>, 74 /// affine_map<(d0, d1) -> (d0)>, 75 /// affine_map<(d0, d1) -> (d0, d1)> 76 /// ] 77 /// 78 /// #trait = { 79 /// args_in = 2, 80 /// args_out = 1, 81 /// indexing_maps = #accesses, 82 /// iterator_types = ["parallel", "parallel"], 83 /// library_call = "some_external_fn" 84 /// } 85 /// 86 /// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) -> 87 /// tensor<5x5xf32> 88 /// { 89 /// %0 = linalg.generic #trait %arg0, %arg1 { 90 /// ^bb0(%arg2: f32, %arg3: f32): 91 /// %3 = arith.addf %arg2, %arg3 : f32 92 /// linalg.yield %3 : f32 93 /// } : tensor<5xf32>, tensor<5xf32> -> tensor<5x5xf32> 94 /// return %0 : tensor<5x5xf32> 95 /// } 96 97 /// Given dims of the iteration space of a structured op that are known to be 98 /// single trip count (`unitDims`), return the indexing maps to use in the 99 /// canonicalized op with these dims removed, given the original `indexingMaps`. 100 static ArrayAttr replaceUnitDims(DenseSet<unsigned> &unitDims, 101 ArrayRef<AffineMap> indexingMaps, 102 MLIRContext *context) { 103 if (indexingMaps.empty()) 104 return nullptr; 105 unsigned numIterationDims = indexingMaps.front().getNumDims(); 106 unsigned numSymbols = indexingMaps.front().getNumSymbols(); 107 108 // Compute the replacement for each dim expr. 109 SmallVector<AffineExpr, 4> dimReplacements; 110 dimReplacements.reserve(numIterationDims); 111 unsigned numKeptDims = 0; 112 for (unsigned dim : llvm::seq<unsigned>(0, numIterationDims)) { 113 if (unitDims.count(dim)) 114 dimReplacements.push_back(getAffineConstantExpr(0, context)); 115 else 116 dimReplacements.push_back(getAffineDimExpr(numKeptDims++, context)); 117 } 118 119 // Symbols remain the same. 120 SmallVector<AffineExpr, 4> symReplacements; 121 symReplacements.reserve(numSymbols); 122 for (unsigned symbol : llvm::seq<unsigned>(0, numSymbols)) 123 symReplacements.push_back(getAffineSymbolExpr(symbol, context)); 124 125 SmallVector<AffineMap, 4> newIndexingMaps; 126 newIndexingMaps.reserve(indexingMaps.size()); 127 for (AffineMap operandMap : indexingMaps) { 128 // Expected indexing maps to have no symbols. 129 if (operandMap.getNumSymbols()) 130 return nullptr; 131 newIndexingMaps.push_back(simplifyAffineMap( 132 operandMap.replaceDimsAndSymbols(dimReplacements, symReplacements, 133 numIterationDims - unitDims.size(), 134 numSymbols))); 135 } 136 137 // Check that the new index maps are invertible. If not, something went 138 // wrong, so abort. 139 if (!inversePermutation(concatAffineMaps(newIndexingMaps))) 140 return nullptr; 141 return ArrayAttr::get(context, 142 llvm::to_vector<4>(llvm::map_range( 143 newIndexingMaps, [](AffineMap map) -> Attribute { 144 return AffineMapAttr::get(map); 145 }))); 146 } 147 148 /// Update the index accesses of linalg operations having index semantics. 149 static void replaceUnitDimIndexOps(GenericOp genericOp, 150 const DenseSet<unsigned> &unitDims, 151 PatternRewriter &rewriter) { 152 for (IndexOp indexOp : 153 llvm::make_early_inc_range(genericOp.getBody()->getOps<IndexOp>())) { 154 OpBuilder::InsertionGuard guard(rewriter); 155 rewriter.setInsertionPoint(indexOp); 156 if (unitDims.count(indexOp.dim()) != 0) { 157 rewriter.replaceOpWithNewOp<arith::ConstantIndexOp>(indexOp, 0); 158 } else { 159 // Update the dimension of the index operation if needed. 160 unsigned droppedDims = llvm::count_if( 161 unitDims, [&](unsigned dim) { return dim < indexOp.dim(); }); 162 if (droppedDims != 0) 163 rewriter.replaceOpWithNewOp<IndexOp>(indexOp, 164 indexOp.dim() - droppedDims); 165 } 166 } 167 } 168 169 namespace { 170 /// Pattern to fold unit-trip count loops in GenericOps. 171 struct FoldUnitDimLoops : public OpRewritePattern<GenericOp> { 172 using OpRewritePattern<GenericOp>::OpRewritePattern; 173 LogicalResult matchAndRewrite(GenericOp genericOp, 174 PatternRewriter &rewriter) const override { 175 SmallVector<AffineMap, 4> indexingMaps = genericOp.getIndexingMaps(); 176 if (indexingMaps.empty()) 177 return failure(); 178 179 // Check if any of the iteration dimensions are unit-trip count. They will 180 // end up being unit-trip count if they are used to index into a unit-dim 181 // tensor/memref. 182 AffineMap invertedMap = inversePermutation(concatAffineMaps(indexingMaps)); 183 if (!invertedMap) 184 return failure(); 185 SmallVector<int64_t> dims = genericOp.getStaticShape(); 186 187 DenseSet<unsigned> unitDims; 188 SmallVector<unsigned, 4> unitDimsReductionLoops; 189 ArrayAttr iteratorTypes = genericOp.iterator_types(); 190 for (auto expr : enumerate(invertedMap.getResults())) { 191 if (AffineDimExpr dimExpr = expr.value().dyn_cast<AffineDimExpr>()) 192 if (dims[dimExpr.getPosition()] == 1) 193 unitDims.insert(expr.index()); 194 } 195 196 if (unitDims.empty()) 197 return failure(); 198 199 // Compute the modified indexing maps. 200 MLIRContext *context = rewriter.getContext(); 201 ArrayAttr newIndexingMapAttr = 202 replaceUnitDims(unitDims, indexingMaps, context); 203 if (!newIndexingMapAttr) 204 return genericOp.emitError("unable to compute modified indexing_maps"); 205 206 // Compute the iterator types of the modified op by dropping the one-trip 207 // count loops. 208 SmallVector<Attribute, 4> newIteratorTypes; 209 for (auto attr : llvm::enumerate(iteratorTypes)) { 210 if (!unitDims.count(attr.index())) 211 newIteratorTypes.push_back(attr.value()); 212 } 213 214 rewriter.startRootUpdate(genericOp); 215 genericOp.indexing_mapsAttr(newIndexingMapAttr); 216 genericOp.iterator_typesAttr(ArrayAttr::get(context, newIteratorTypes)); 217 replaceUnitDimIndexOps(genericOp, unitDims, rewriter); 218 rewriter.finalizeRootUpdate(genericOp); 219 return success(); 220 } 221 }; 222 223 struct UnitExtentReplacementInfo { 224 Type type; 225 AffineMap indexMap; 226 ArrayAttr reassociation; 227 }; 228 } // namespace 229 230 /// Utility function for replacing operands/results to a linalg generic 231 /// operation with unit-extent dimensions. These can be replaced with 232 /// an operand/result with the unit-extent dimension removed. This is only done 233 /// if the indexing map used to access that didimensionmension has a 234 /// AffineConstantExpr of value 0. Given the `type` of an result/operand of a 235 /// Linalg op, and its `indexMap` the utility function returns: 236 /// - the new type with dimensions of size 1 removed. 237 /// - modified index map that can be used to access the replaced result/operand 238 /// - the reassociation that converts from the original tensor type to the 239 /// modified tensor type. 240 static llvm::Optional<UnitExtentReplacementInfo> 241 replaceUnitExtents(GenericOp genericOp, OpOperand *opOperand, 242 MLIRContext *context) { 243 AffineMap indexingMap = genericOp.getTiedIndexingMap(opOperand); 244 ArrayRef<int64_t> shape = genericOp.getShape(opOperand); 245 ArrayRef<AffineExpr> exprs = indexingMap.getResults(); 246 SmallVector<AffineExpr> reassociations; 247 SmallVector<Attribute> reassociationMaps; 248 SmallVector<AffineExpr> newIndexExprs; 249 SmallVector<int64_t> newShape; 250 251 int64_t origRank = genericOp.getRank(opOperand); 252 AffineExpr zeroExpr = getAffineConstantExpr(0, context); 253 auto isUnitExtent = [&](int64_t dim) -> bool { 254 return shape[dim] == 1 && exprs[dim] == zeroExpr; 255 }; 256 257 // Early return for memrefs with affine maps to represent that we will always 258 // leave them unchanged. 259 Type actualType = opOperand->get().getType(); 260 if (auto memref = actualType.dyn_cast<MemRefType>()) { 261 if (!memref.getLayout().isIdentity()) 262 return llvm::None; 263 } 264 265 int64_t dim = 0; 266 // Fold dimensions that are unit-extent at the beginning of the tensor. 267 while (dim < origRank && isUnitExtent(dim)) 268 reassociations.push_back(getAffineDimExpr(dim++, context)); 269 while (dim < origRank) { 270 reassociations.push_back(getAffineDimExpr(dim, context)); 271 newIndexExprs.push_back(exprs[dim]); 272 newShape.push_back(shape[dim]); 273 // Fold all following dimensions that are unit-extent. 274 while (dim + 1 < origRank && isUnitExtent(dim + 1)) { 275 ++dim; 276 reassociations.push_back(getAffineDimExpr(dim, context)); 277 } 278 reassociationMaps.push_back(AffineMapAttr::get(AffineMap::get( 279 origRank, /*symbolCount = */ 0, reassociations, context))); 280 reassociations.clear(); 281 ++dim; 282 } 283 284 // Compute the tensor or scalar replacement type. 285 Type elementType = getElementTypeOrSelf(opOperand->get()); 286 Type replacementType; 287 if (elementType == opOperand->get().getType()) { 288 replacementType = elementType; 289 } else if (actualType.isa<RankedTensorType>()) { 290 replacementType = RankedTensorType::get(newShape, elementType); 291 } else if (actualType.isa<MemRefType>()) { 292 replacementType = MemRefType::get(newShape, elementType); 293 } 294 assert(replacementType && "unsupported shaped type"); 295 UnitExtentReplacementInfo info = {replacementType, 296 AffineMap::get(indexingMap.getNumDims(), 297 indexingMap.getNumSymbols(), 298 newIndexExprs, context), 299 ArrayAttr::get(context, reassociationMaps)}; 300 return info; 301 } 302 303 namespace { 304 305 SmallVector<ReassociationExprs, 2> 306 convertAffineMapArrayToExprs(ArrayAttr affineMapArrayAttr) { 307 SmallVector<ReassociationExprs, 2> reassociationExprs; 308 for (auto attr : affineMapArrayAttr) 309 reassociationExprs.push_back( 310 llvm::to_vector<4>(attr.cast<AffineMapAttr>().getValue().getResults())); 311 return reassociationExprs; 312 } 313 314 /// Pattern to replace tensor/buffer operands/results that are unit extents. 315 struct ReplaceUnitExtents : public OpRewritePattern<GenericOp> { 316 using OpRewritePattern<GenericOp>::OpRewritePattern; 317 318 // Return the original value if the type is unchanged, or reshape it. Return a 319 // nullptr if this is an unsupported type. 320 Value maybeExpand(Value result, Type origResultType, 321 ArrayAttr reassociationMap, Location loc, 322 PatternRewriter &rewriter) const { 323 if (origResultType == result.getType()) 324 return result; 325 if (origResultType.isa<RankedTensorType>()) { 326 return rewriter.create<linalg::TensorExpandShapeOp>( 327 loc, origResultType, result, 328 convertAffineMapArrayToExprs(reassociationMap)); 329 } 330 if (origResultType.isa<MemRefType>()) { 331 return rewriter.create<memref::ExpandShapeOp>( 332 loc, origResultType, result, 333 convertAffineMapArrayToExprs(reassociationMap)); 334 } 335 return nullptr; 336 }; 337 338 // Return the original value if the type is unchanged, or reshape it. Return a 339 // nullptr if this is an unsupported type. 340 Value maybeCollapse(Value operand, Type newInputOutputType, 341 ArrayAttr reassociationMap, Location loc, 342 PatternRewriter &rewriter) const { 343 auto operandType = operand.getType(); 344 if (operandType == newInputOutputType) 345 return operand; 346 if (operandType.isa<MemRefType>()) { 347 return rewriter.create<memref::CollapseShapeOp>( 348 loc, newInputOutputType, operand, 349 convertAffineMapArrayToExprs(reassociationMap)); 350 } 351 if (operandType.isa<RankedTensorType>()) { 352 return rewriter.create<linalg::TensorCollapseShapeOp>( 353 loc, newInputOutputType, operand, 354 convertAffineMapArrayToExprs(reassociationMap)); 355 } 356 return nullptr; 357 }; 358 359 LogicalResult matchAndRewrite(GenericOp genericOp, 360 PatternRewriter &rewriter) const override { 361 // Skip the pattern if the op has any tensor with special encoding. 362 if (llvm::any_of(genericOp->getOperandTypes(), [](Type type) { 363 auto tensorType = type.dyn_cast<RankedTensorType>(); 364 return tensorType && tensorType.getEncoding() != nullptr; 365 })) 366 return failure(); 367 MLIRContext *context = rewriter.getContext(); 368 Location loc = genericOp.getLoc(); 369 370 SmallVector<AffineMap> newIndexingMaps; 371 SmallVector<ArrayAttr> reassociationMaps; 372 SmallVector<Type> newInputOutputTypes; 373 bool doCanonicalization = false; 374 for (OpOperand *opOperand : genericOp.getInputAndOutputOperands()) { 375 auto replacementInfo = replaceUnitExtents(genericOp, opOperand, context); 376 if (replacementInfo) { 377 reassociationMaps.push_back(replacementInfo->reassociation); 378 newIndexingMaps.push_back(replacementInfo->indexMap); 379 newInputOutputTypes.push_back(replacementInfo->type); 380 doCanonicalization |= 381 replacementInfo->type != opOperand->get().getType(); 382 } else { 383 // If replaceUnitExtents cannot handle this case, maintain the same 384 // type, indexing map, and create a set of mappings representing an 385 // identity matrix. 386 newInputOutputTypes.push_back(opOperand->get().getType()); 387 newIndexingMaps.push_back(genericOp.getTiedIndexingMap(opOperand)); 388 int64_t origRank = genericOp.getRank(opOperand); 389 auto maps = llvm::to_vector<8>(llvm::map_range( 390 llvm::seq<int64_t>(0, origRank), [&](int64_t dim) -> Attribute { 391 return AffineMapAttr::get( 392 AffineMap::get(origRank, /*symbolCount = */ 0, 393 getAffineDimExpr(dim, context), context)); 394 })); 395 reassociationMaps.push_back(ArrayAttr::get(context, maps)); 396 } 397 } 398 399 // If the indexing maps of the result operation are not invertible (i.e. not 400 // legal), abort. 401 if (!doCanonicalization || 402 !inversePermutation(concatAffineMaps(newIndexingMaps))) 403 return failure(); 404 405 // If any operand type change, insert a reshape to convert from the original 406 // type to the new type. 407 // TODO: get rid of flattenedIdx which assumes operand order and contiguity. 408 unsigned flattenedIdx = 0; 409 auto insertReshapes = [&](ValueRange values) { 410 SmallVector<Value, 4> res; 411 res.reserve(values.size()); 412 for (auto operand : values) { 413 auto reshapedValue = 414 maybeCollapse(operand, newInputOutputTypes[flattenedIdx], 415 reassociationMaps[flattenedIdx], loc, rewriter); 416 assert(reshapedValue && 417 "expected ranked MemRef or Tensor operand type"); 418 res.push_back(reshapedValue); 419 ++flattenedIdx; 420 } 421 return res; 422 }; 423 424 SmallVector<Value, 4> newInputs = insertReshapes(genericOp.inputs()); 425 SmallVector<Value, 4> newOutputs = insertReshapes(genericOp.outputs()); 426 427 // If any result type changes, insert a reshape to convert from the original 428 // type to the new type. 429 SmallVector<Type, 4> resultTypes; 430 resultTypes.reserve(genericOp.getNumResults()); 431 for (unsigned i : llvm::seq<unsigned>(0, genericOp.getNumResults())) 432 resultTypes.push_back(newInputOutputTypes[i + genericOp.getNumInputs()]); 433 GenericOp replacementOp = rewriter.create<GenericOp>( 434 loc, resultTypes, newInputs, newOutputs, newIndexingMaps, 435 llvm::to_vector<4>( 436 genericOp.iterator_types().template getAsValueRange<StringAttr>())); 437 rewriter.inlineRegionBefore(genericOp.region(), replacementOp.region(), 438 replacementOp.region().begin()); 439 440 // If any result tensor has a modified shape, then add reshape to recover 441 // the original shape. 442 SmallVector<Value, 4> resultReplacements; 443 for (auto result : llvm::enumerate(replacementOp.getResults())) { 444 unsigned index = result.index() + replacementOp.getNumInputs(); 445 auto origResultType = genericOp.getResult(result.index()).getType(); 446 447 auto newResult = maybeExpand(result.value(), origResultType, 448 reassociationMaps[index], loc, rewriter); 449 assert(newResult && 450 "unexpected output type other than ranked MemRef or Tensor"); 451 resultReplacements.push_back(newResult); 452 } 453 rewriter.replaceOp(genericOp, resultReplacements); 454 return success(); 455 } 456 }; 457 } // namespace 458 459 /// Get the reassociation maps to fold the result of a extract_slice (or source 460 /// of a insert_slice) operation with given offsets, and sizes to its 461 /// rank-reduced version. This is only done for the cases where the size is 1 462 /// and offset is 0. Strictly speaking the offset 0 is not required in general, 463 /// but non-zero offsets are not handled by SPIR-V backend at this point (and 464 /// potentially cannot be handled). 465 static Optional<SmallVector<ReassociationIndices>> 466 getReassociationMapForFoldingUnitDims(ArrayRef<OpFoldResult> mixedSizes) { 467 SmallVector<ReassociationIndices> reassociation; 468 ReassociationIndices curr; 469 for (auto it : llvm::enumerate(mixedSizes)) { 470 auto dim = it.index(); 471 auto size = it.value(); 472 curr.push_back(dim); 473 auto attr = size.dyn_cast<Attribute>(); 474 if (attr && attr.cast<IntegerAttr>().getInt() == 1) 475 continue; 476 reassociation.emplace_back(ReassociationIndices{}); 477 std::swap(reassociation.back(), curr); 478 } 479 // When the reassociations are not empty, then fold the remaining 480 // unit-dimensions into the last dimension. If the reassociations so far is 481 // empty, then leave it emtpy. This will fold everything to a rank-0 tensor. 482 if (!curr.empty() && !reassociation.empty()) 483 reassociation.back().append(curr.begin(), curr.end()); 484 return reassociation; 485 } 486 487 namespace { 488 /// Convert `extract_slice` operations to rank-reduced versions. 489 struct UseRankReducedExtractSliceOp 490 : public OpRewritePattern<tensor::ExtractSliceOp> { 491 using OpRewritePattern<tensor::ExtractSliceOp>::OpRewritePattern; 492 493 LogicalResult matchAndRewrite(tensor::ExtractSliceOp sliceOp, 494 PatternRewriter &rewriter) const override { 495 RankedTensorType resultType = sliceOp.getType(); 496 SmallVector<OpFoldResult> offsets = sliceOp.getMixedOffsets(); 497 SmallVector<OpFoldResult> sizes = sliceOp.getMixedSizes(); 498 SmallVector<OpFoldResult> strides = sliceOp.getMixedStrides(); 499 auto reassociation = getReassociationMapForFoldingUnitDims(sizes); 500 if (!reassociation || 501 reassociation->size() == static_cast<size_t>(resultType.getRank())) 502 return failure(); 503 auto rankReducedType = tensor::ExtractSliceOp::inferRankReducedResultType( 504 reassociation->size(), sliceOp.getSourceType(), 505 offsets, sizes, strides) 506 .cast<RankedTensorType>(); 507 508 Location loc = sliceOp.getLoc(); 509 Value newSlice = rewriter.create<tensor::ExtractSliceOp>( 510 loc, rankReducedType, sliceOp.source(), offsets, sizes, strides); 511 rewriter.replaceOpWithNewOp<TensorExpandShapeOp>(sliceOp, resultType, 512 newSlice, *reassociation); 513 return success(); 514 } 515 }; 516 517 /// Convert `insert_slice` operations to rank-reduced versions. 518 struct UseRankReducedInsertSliceOp 519 : public OpRewritePattern<tensor::InsertSliceOp> { 520 using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern; 521 522 LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp, 523 PatternRewriter &rewriter) const override { 524 RankedTensorType sourceType = insertOp.getSourceType(); 525 SmallVector<OpFoldResult> offsets = insertOp.getMixedOffsets(); 526 SmallVector<OpFoldResult> sizes = insertOp.getMixedSizes(); 527 SmallVector<OpFoldResult> strides = insertOp.getMixedStrides(); 528 auto reassociation = getReassociationMapForFoldingUnitDims(sizes); 529 if (!reassociation || 530 reassociation->size() == static_cast<size_t>(sourceType.getRank())) 531 return failure(); 532 Location loc = insertOp.getLoc(); 533 auto reshapedSource = rewriter.create<TensorCollapseShapeOp>( 534 loc, insertOp.source(), *reassociation); 535 rewriter.replaceOpWithNewOp<tensor::InsertSliceOp>( 536 insertOp, reshapedSource, insertOp.dest(), insertOp.getMixedOffsets(), 537 insertOp.getMixedSizes(), insertOp.getMixedStrides()); 538 return success(); 539 } 540 }; 541 } // namespace 542 543 /// Patterns that are used to canonicalize the use of unit-extent dims for 544 /// broadcasting. 545 void mlir::linalg::populateFoldUnitExtentDimsPatterns( 546 RewritePatternSet &patterns) { 547 auto *context = patterns.getContext(); 548 patterns.add<FoldUnitDimLoops, ReplaceUnitExtents, 549 UseRankReducedExtractSliceOp, UseRankReducedInsertSliceOp>( 550 context); 551 TensorCollapseShapeOp::getCanonicalizationPatterns(patterns, context); 552 TensorExpandShapeOp::getCanonicalizationPatterns(patterns, context); 553 } 554 555 namespace { 556 /// Pass that removes unit-extent dims within generic ops. 557 struct LinalgFoldUnitExtentDimsPass 558 : public LinalgFoldUnitExtentDimsBase<LinalgFoldUnitExtentDimsPass> { 559 void runOnFunction() override { 560 FuncOp funcOp = getFunction(); 561 MLIRContext *context = funcOp.getContext(); 562 RewritePatternSet patterns(context); 563 if (foldOneTripLoopsOnly) 564 patterns.add<FoldUnitDimLoops>(context); 565 else 566 populateFoldUnitExtentDimsPatterns(patterns); 567 (void)applyPatternsAndFoldGreedily(funcOp.getBody(), std::move(patterns)); 568 } 569 }; 570 } // namespace 571 572 std::unique_ptr<OperationPass<FuncOp>> 573 mlir::createLinalgFoldUnitExtentDimsPass() { 574 return std::make_unique<LinalgFoldUnitExtentDimsPass>(); 575 } 576