1 //===- DropUnitDims.cpp - Pass to drop use of unit-extent for broadcasting ===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements patterns/pass to remove usage of unit-extent dimensions
10 // to specify broadcasting in favor of more canonical representation of the
11 // computation
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "PassDetail.h"
16 #include "mlir/Dialect/Linalg/IR/LinalgOps.h"
17 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
18 #include "mlir/Dialect/Linalg/Passes.h"
19 #include "mlir/Dialect/Linalg/Utils/Utils.h"
20 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
21 #include "mlir/IR/AffineExpr.h"
22 #include "mlir/IR/AffineMap.h"
23 #include "mlir/IR/PatternMatch.h"
24 #include "mlir/Support/LLVM.h"
25 #include "mlir/Transforms/FoldUtils.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/Debug.h"
28 
29 #define DEBUG_TYPE "linalg-drop-unit-dims"
30 
31 using namespace mlir;
32 using namespace mlir::edsc;
33 using namespace mlir::edsc::intrinsics;
34 using namespace mlir::linalg;
35 
36 /// Implements a pass that canonicalizes the uses of unit-extent dimensions for
37 /// broadcasting. For example,
38 ///
39 /// ```mlir
40 /// #accesses = [
41 ///   affine_map<(d0, d1) -> (0, d1)>,
42 ///   affine_map<(d0, d1) -> (d0, 0)>,
43 ///   affine_map<(d0, d1) -> (d0, d1)>
44 /// ]
45 ///
46 /// #trait = {
47 ///   args_in = 2,
48 ///   args_out = 1,
49 ///   indexing_maps = #accesses,
50 ///   iterator_types = ["parallel", "parallel"],
51 ///   library_call = "some_external_fn"
52 /// }
53 ///
54 /// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) ->
55 /// tensor<5x5xf32>
56 /// {
57 ///   %0 = linalg.tensor_reshape %arg0 [affine_map<(d0, d1) -> (d0, d1)>] :
58 ///        tensor<5xf32> into tensor<1x5xf32>
59 ///   %1 = linalg.tensor_reshape %arg1 [affine_map<(d0, d1) -> (d0, d1)>] :
60 ///        tensor<5xf32> into tensor<5x1xf32>
61 ///   %2 = linalg.generic #trait %0, %1 {
62 ///        ^bb0(%arg2: f32, %arg3: f32):
63 ///          %3 = addf %arg2, %arg3 : f32
64 ///          linalg.yield %3 : f32
65 ///        } : tensor<1x5xf32>, tensor<5x1xf32> -> tensor<5x5xf32>
66 ///   return %2 : tensor<5x5xf32>
67 /// }
68 ///
69 /// would canonicalize to
70 ///
71 /// ```mlir
72 /// #accesses = [
73 ///   affine_map<(d0, d1) -> (d1)>,
74 ///   affine_map<(d0, d1) -> (d0)>,
75 ///   affine_map<(d0, d1) -> (d0, d1)>
76 /// ]
77 ///
78 /// #trait = {
79 ///   args_in = 2,
80 ///   args_out = 1,
81 ///   indexing_maps = #accesses,
82 ///   iterator_types = ["parallel", "parallel"],
83 ///   library_call = "some_external_fn"
84 /// }
85 ///
86 /// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) ->
87 /// tensor<5x5xf32>
88 /// {
89 ///   %0 = linalg.generic #trait %arg0, %arg1 {
90 ///        ^bb0(%arg2: f32, %arg3: f32):
91 ///          %3 = addf %arg2, %arg3 : f32
92 ///          linalg.yield %3 : f32
93 ///        } : tensor<5xf32>, tensor<5xf32> -> tensor<5x5xf32>
94 ///   return %0 : tensor<5x5xf32>
95 /// }
96 
97 /// Given dims of the iteration space of a structured op that are known to be
98 /// single trip count (`unitDims`), return the indexing maps to use in the
99 /// canonicalized op with these dims removed, given the original `indexingMaps`.
100 static ArrayAttr replaceUnitDims(DenseSet<unsigned> &unitDims,
101                                  ArrayRef<AffineMap> indexingMaps,
102                                  MLIRContext *context) {
103   if (indexingMaps.empty())
104     return nullptr;
105   unsigned numIterationDims = indexingMaps.front().getNumDims();
106   unsigned numSymbols = indexingMaps.front().getNumSymbols();
107 
108   // Compute the replacement for each dim expr.
109   SmallVector<AffineExpr, 4> dimReplacements;
110   dimReplacements.reserve(numIterationDims);
111   unsigned numKeptDims = 0;
112   for (unsigned dim : llvm::seq<unsigned>(0, numIterationDims)) {
113     if (unitDims.count(dim))
114       dimReplacements.push_back(getAffineConstantExpr(0, context));
115     else
116       dimReplacements.push_back(getAffineDimExpr(numKeptDims++, context));
117   }
118 
119   // Symbols remain the same.
120   SmallVector<AffineExpr, 4> symReplacements;
121   symReplacements.reserve(numSymbols);
122   for (unsigned symbol : llvm::seq<unsigned>(0, numSymbols))
123     symReplacements.push_back(getAffineSymbolExpr(symbol, context));
124 
125   SmallVector<AffineMap, 4> newIndexingMaps;
126   newIndexingMaps.reserve(indexingMaps.size());
127   for (AffineMap operandMap : indexingMaps) {
128     // Expected indexing maps to have no symbols.
129     if (operandMap.getNumSymbols())
130       return nullptr;
131     newIndexingMaps.push_back(simplifyAffineMap(
132         operandMap.replaceDimsAndSymbols(dimReplacements, symReplacements,
133                                          numIterationDims - unitDims.size(),
134                                          numSymbols)));
135   }
136 
137   // Check that the new index maps are invertible. If not, something went
138   // wrong, so abort.
139   if (!inversePermutation(concatAffineMaps(newIndexingMaps)))
140     return nullptr;
141   return ArrayAttr::get(
142       llvm::to_vector<4>(llvm::map_range(
143           newIndexingMaps,
144           [](AffineMap map) -> Attribute { return AffineMapAttr::get(map); })),
145       context);
146 }
147 
148 namespace {
149 /// Pattern to fold unit-trip count loops in GenericOps.
150 // TODO: Generalize this to indexed-generic as well by modifying the region args
151 // as well.
152 struct FoldUnitDimLoops : public OpRewritePattern<GenericOp> {
153   using OpRewritePattern<GenericOp>::OpRewritePattern;
154   LogicalResult matchAndRewrite(GenericOp genericOp,
155                                 PatternRewriter &rewriter) const override {
156     SmallVector<AffineMap, 4> indexingMaps = genericOp.getIndexingMaps();
157     if (indexingMaps.empty())
158       return failure();
159 
160     // Check if any of the iteration dimensions are unit-trip count. They will
161     // end up being unit-trip count if they are used to index into a unit-dim
162     // tensor/memref.
163     AffineMap invertedMap = inversePermutation(concatAffineMaps(indexingMaps));
164     if (!invertedMap)
165       return failure();
166     SmallVector<int64_t, 4> dims;
167     for (ShapedType shapedType : genericOp.getInputOutputShapedTypes())
168       dims.append(shapedType.getShape().begin(), shapedType.getShape().end());
169     DenseSet<unsigned> unitDims;
170     ArrayAttr iteratorTypes = genericOp.iterator_types();
171     for (auto expr : enumerate(invertedMap.getResults())) {
172       if (AffineDimExpr dimExpr = expr.value().dyn_cast<AffineDimExpr>())
173         if (dims[dimExpr.getPosition()] == 1 &&
174             iteratorTypes[expr.index()].dyn_cast<StringAttr>().getValue() ==
175                 getParallelIteratorTypeName())
176           unitDims.insert(expr.index());
177     }
178     if (unitDims.empty())
179       return failure();
180 
181     // Compute the modified indexing maps.
182     MLIRContext *context = rewriter.getContext();
183     ArrayAttr newIndexingMapAttr =
184         replaceUnitDims(unitDims, indexingMaps, context);
185     if (!newIndexingMapAttr)
186       return genericOp.emitError("unable to compute modified indexing_maps");
187 
188     // Compute the iterator types of the modified op by dropping the one-trip
189     // count loops.
190     SmallVector<Attribute, 4> newIteratorTypes;
191     for (auto attr : llvm::enumerate(iteratorTypes)) {
192       if (!unitDims.count(attr.index()))
193         newIteratorTypes.push_back(attr.value());
194     }
195 
196     rewriter.startRootUpdate(genericOp);
197     genericOp.indexing_mapsAttr(newIndexingMapAttr);
198     genericOp.iterator_typesAttr(ArrayAttr::get(newIteratorTypes, context));
199     rewriter.finalizeRootUpdate(genericOp);
200     return success();
201   }
202 };
203 
204 struct UnitExtentReplacementInfo {
205   RankedTensorType type;
206   AffineMap indexMap;
207   ArrayAttr reassociation;
208 };
209 } // namespace
210 
211 /// Utility function for replacing operands/results to a linalg generic
212 /// operation on tensors with unit-extent dimensions. These can be replaced with
213 /// an operand/result with the unit-extent dimension removed. This is only done
214 /// if the indexing map used to access that didimensionmension has a
215 /// AffineConstantExpr of value 0. Given the `type` of an result/operand of a
216 /// Linalg op, and its `indexMap` the utility function returns:
217 /// - the new type with dimensions of size 1 removed.
218 /// - modified index map that can be used to access the replaced result/operand
219 /// - the reassociation that converts from the original tensor type to the
220 ///   modified tensor type.
221 static UnitExtentReplacementInfo replaceUnitExtents(AffineMap indexMap,
222                                                     RankedTensorType type,
223                                                     MLIRContext *context) {
224   ArrayRef<int64_t> shape = type.getShape();
225   ArrayRef<AffineExpr> exprs = indexMap.getResults();
226   SmallVector<AffineExpr, 2> reassociations;
227   SmallVector<Attribute, 4> reassociationMaps;
228   SmallVector<AffineExpr, 4> newIndexExprs;
229   SmallVector<int64_t, 4> newShape;
230 
231   int64_t origRank = type.getRank();
232   AffineExpr zeroExpr = getAffineConstantExpr(0, context);
233   auto isUnitExtent = [&](int64_t dim) -> bool {
234     return shape[dim] == 1 && exprs[dim] == zeroExpr;
235   };
236 
237   unsigned dim = 0;
238   // Fold dimensions that are unit-extent at the beginning of the tensor.
239   while (dim < origRank && isUnitExtent(dim))
240     reassociations.push_back(getAffineDimExpr(dim++, context));
241   while (dim < origRank) {
242     reassociations.push_back(getAffineDimExpr(dim, context));
243     newIndexExprs.push_back(exprs[dim]);
244     newShape.push_back(shape[dim]);
245     // Fold all following dimensions that are unit-extent.
246     while (dim + 1 < origRank && isUnitExtent(dim + 1)) {
247       ++dim;
248       reassociations.push_back(getAffineDimExpr(dim, context));
249     }
250     reassociationMaps.push_back(AffineMapAttr::get(AffineMap::get(
251         origRank, /*numSymbols = */ 0, reassociations, context)));
252     reassociations.clear();
253     ++dim;
254   }
255   UnitExtentReplacementInfo info = {
256       RankedTensorType::get(newShape, type.getElementType()),
257       AffineMap::get(indexMap.getNumDims(), indexMap.getNumSymbols(),
258                      newIndexExprs, context),
259       ArrayAttr::get(reassociationMaps, context)};
260   return info;
261 }
262 
263 namespace {
264 /// Pattern to replace tensors operands/results that are unit extents.
265 struct ReplaceUnitExtentTensors : public OpRewritePattern<GenericOp> {
266   using OpRewritePattern<GenericOp>::OpRewritePattern;
267   LogicalResult matchAndRewrite(GenericOp genericOp,
268                                 PatternRewriter &rewriter) const override {
269     if (!genericOp.hasTensorSemantics())
270       return failure();
271 
272     MLIRContext *context = rewriter.getContext();
273     Location loc = genericOp.getLoc();
274 
275     SmallVector<AffineMap, 4> newIndexingMaps;
276     SmallVector<ArrayAttr, 4> reassociationMaps;
277     SmallVector<ShapedType, 4> newInputOutputTypes;
278     bool doCanonicalization = false;
279     for (auto it : llvm::zip(genericOp.getIndexingMaps(),
280                              genericOp.getInputOutputShapedTypes())) {
281       auto replacementInfo = replaceUnitExtents(
282           std::get<0>(it), std::get<1>(it).cast<RankedTensorType>(), context);
283       reassociationMaps.push_back(replacementInfo.reassociation);
284       newIndexingMaps.push_back(replacementInfo.indexMap);
285       newInputOutputTypes.push_back(replacementInfo.type);
286       doCanonicalization =
287           doCanonicalization || replacementInfo.type != std::get<1>(it);
288     }
289 
290     // If the indexing maps of the result operation are not invertible (i.e. not
291     // legal), abort.
292     if (!doCanonicalization ||
293         !inversePermutation(concatAffineMaps(newIndexingMaps)))
294       return failure();
295 
296     // If any operand type change, insert a reshape to convert from the original
297     // type to the new type.
298     SmallVector<Value, 4> newOperands;
299     newOperands.reserve(genericOp.getNumOperands());
300     for (auto operand : llvm::enumerate(genericOp.getOperands())) {
301       if (operand.value().getType() == newInputOutputTypes[operand.index()]) {
302         newOperands.push_back(operand.value());
303       } else {
304         newOperands.push_back(rewriter.create<linalg::TensorReshapeOp>(
305             loc, newInputOutputTypes[operand.index()], operand.value(),
306             reassociationMaps[operand.index()]));
307       }
308     }
309 
310     // If any result type change, insert a reshape to convert from the original
311     // type to the new type.
312     SmallVector<Type, 4> resultTypes;
313     resultTypes.reserve(genericOp.getNumResults());
314     for (unsigned i : llvm::seq<unsigned>(0, genericOp.getNumResults()))
315       resultTypes.push_back(
316           newInputOutputTypes[i + genericOp.getNumOperands()]);
317     GenericOp replacementOp = rewriter.create<GenericOp>(
318         loc, resultTypes, newOperands, genericOp.args_in(),
319         genericOp.args_out(), rewriter.getAffineMapArrayAttr(newIndexingMaps),
320         genericOp.iterator_types(),
321         /*doc = */ nullptr,
322         /*library_call = */ nullptr,
323         /*symbol_source = */ nullptr);
324     rewriter.inlineRegionBefore(genericOp.region(), replacementOp.region(),
325                                 replacementOp.region().begin());
326 
327     // If any result tensor has a modified shape, then add reshape to recover
328     // the original shape.
329     SmallVector<Value, 4> resultReplacements;
330     for (auto result : llvm::enumerate(replacementOp.getResults())) {
331       unsigned index = result.index() + replacementOp.getNumOperands();
332       RankedTensorType origResultType = genericOp.getResult(result.index())
333                                             .getType()
334                                             .cast<RankedTensorType>();
335       if (origResultType != result.value().getType()) {
336         resultReplacements.push_back(rewriter.create<linalg::TensorReshapeOp>(
337             loc, origResultType, result.value(), reassociationMaps[index]));
338       } else {
339         resultReplacements.push_back(result.value());
340       }
341     }
342     rewriter.replaceOp(genericOp, resultReplacements);
343     return success();
344   }
345 };
346 } // namespace
347 
348 /// Patterns that are used to canonicalize the use of unit-extent dims for
349 /// broadcasting.
350 void mlir::populateLinalgFoldUnitExtentDimsPatterns(
351     MLIRContext *context, OwningRewritePatternList &patterns) {
352   patterns.insert<FoldUnitDimLoops, ReplaceUnitExtentTensors>(context);
353   TensorReshapeOp::getCanonicalizationPatterns(patterns, context);
354 }
355 
356 namespace {
357 /// Pass that removes unit-extent dims within generic ops.
358 struct LinalgFoldUnitExtentDimsPass
359     : public LinalgFoldUnitExtentDimsBase<LinalgFoldUnitExtentDimsPass> {
360   void runOnFunction() override {
361     OwningRewritePatternList patterns;
362     FuncOp funcOp = getFunction();
363     MLIRContext *context = funcOp.getContext();
364     if (foldOneTripLoopsOnly)
365       patterns.insert<FoldUnitDimLoops>(context);
366     else
367       populateLinalgFoldUnitExtentDimsPatterns(context, patterns);
368     applyPatternsAndFoldGreedily(funcOp.getBody(), patterns);
369   }
370 };
371 } // namespace
372 
373 std::unique_ptr<OperationPass<FuncOp>>
374 mlir::createLinalgFoldUnitExtentDimsPass() {
375   return std::make_unique<LinalgFoldUnitExtentDimsPass>();
376 }
377