1 //===- DropUnitDims.cpp - Pass to drop use of unit-extent for broadcasting ===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements patterns/pass to remove usage of unit-extent dimensions 10 // to specify broadcasting in favor of more canonical representation of the 11 // computation 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "PassDetail.h" 16 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 17 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h" 18 #include "mlir/Dialect/Linalg/Passes.h" 19 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 20 #include "mlir/Dialect/Linalg/Utils/Utils.h" 21 #include "mlir/Dialect/Tensor/IR/Tensor.h" 22 #include "mlir/IR/AffineExpr.h" 23 #include "mlir/IR/AffineMap.h" 24 #include "mlir/IR/BuiltinTypes.h" 25 #include "mlir/Transforms/FoldUtils.h" 26 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Debug.h" 29 30 #define DEBUG_TYPE "linalg-drop-unit-dims" 31 32 using namespace mlir; 33 using namespace mlir::linalg; 34 35 /// Implements a pass that canonicalizes the uses of unit-extent dimensions for 36 /// broadcasting. For example, 37 /// 38 /// ```mlir 39 /// #accesses = [ 40 /// affine_map<(d0, d1) -> (0, d1)>, 41 /// affine_map<(d0, d1) -> (d0, 0)>, 42 /// affine_map<(d0, d1) -> (d0, d1)> 43 /// ] 44 /// 45 /// #trait = { 46 /// args_in = 2, 47 /// args_out = 1, 48 /// indexing_maps = #accesses, 49 /// iterator_types = ["parallel", "parallel"], 50 /// library_call = "some_external_fn" 51 /// } 52 /// 53 /// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) -> 54 /// tensor<5x5xf32> 55 /// { 56 /// %0 = linalg.tensor_reshape %arg0 [affine_map<(d0, d1) -> (d0, d1)>] : 57 /// tensor<5xf32> into tensor<1x5xf32> 58 /// %1 = linalg.tensor_reshape %arg1 [affine_map<(d0, d1) -> (d0, d1)>] : 59 /// tensor<5xf32> into tensor<5x1xf32> 60 /// %2 = linalg.generic #trait %0, %1 { 61 /// ^bb0(%arg2: f32, %arg3: f32): 62 /// %3 = addf %arg2, %arg3 : f32 63 /// linalg.yield %3 : f32 64 /// } : tensor<1x5xf32>, tensor<5x1xf32> -> tensor<5x5xf32> 65 /// return %2 : tensor<5x5xf32> 66 /// } 67 /// 68 /// would canonicalize to 69 /// 70 /// ```mlir 71 /// #accesses = [ 72 /// affine_map<(d0, d1) -> (d1)>, 73 /// affine_map<(d0, d1) -> (d0)>, 74 /// affine_map<(d0, d1) -> (d0, d1)> 75 /// ] 76 /// 77 /// #trait = { 78 /// args_in = 2, 79 /// args_out = 1, 80 /// indexing_maps = #accesses, 81 /// iterator_types = ["parallel", "parallel"], 82 /// library_call = "some_external_fn" 83 /// } 84 /// 85 /// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) -> 86 /// tensor<5x5xf32> 87 /// { 88 /// %0 = linalg.generic #trait %arg0, %arg1 { 89 /// ^bb0(%arg2: f32, %arg3: f32): 90 /// %3 = addf %arg2, %arg3 : f32 91 /// linalg.yield %3 : f32 92 /// } : tensor<5xf32>, tensor<5xf32> -> tensor<5x5xf32> 93 /// return %0 : tensor<5x5xf32> 94 /// } 95 96 /// Given dims of the iteration space of a structured op that are known to be 97 /// single trip count (`unitDims`), return the indexing maps to use in the 98 /// canonicalized op with these dims removed, given the original `indexingMaps`. 99 static ArrayAttr replaceUnitDims(DenseSet<unsigned> &unitDims, 100 ArrayRef<AffineMap> indexingMaps, 101 MLIRContext *context) { 102 if (indexingMaps.empty()) 103 return nullptr; 104 unsigned numIterationDims = indexingMaps.front().getNumDims(); 105 unsigned numSymbols = indexingMaps.front().getNumSymbols(); 106 107 // Compute the replacement for each dim expr. 108 SmallVector<AffineExpr, 4> dimReplacements; 109 dimReplacements.reserve(numIterationDims); 110 unsigned numKeptDims = 0; 111 for (unsigned dim : llvm::seq<unsigned>(0, numIterationDims)) { 112 if (unitDims.count(dim)) 113 dimReplacements.push_back(getAffineConstantExpr(0, context)); 114 else 115 dimReplacements.push_back(getAffineDimExpr(numKeptDims++, context)); 116 } 117 118 // Symbols remain the same. 119 SmallVector<AffineExpr, 4> symReplacements; 120 symReplacements.reserve(numSymbols); 121 for (unsigned symbol : llvm::seq<unsigned>(0, numSymbols)) 122 symReplacements.push_back(getAffineSymbolExpr(symbol, context)); 123 124 SmallVector<AffineMap, 4> newIndexingMaps; 125 newIndexingMaps.reserve(indexingMaps.size()); 126 for (AffineMap operandMap : indexingMaps) { 127 // Expected indexing maps to have no symbols. 128 if (operandMap.getNumSymbols()) 129 return nullptr; 130 newIndexingMaps.push_back(simplifyAffineMap( 131 operandMap.replaceDimsAndSymbols(dimReplacements, symReplacements, 132 numIterationDims - unitDims.size(), 133 numSymbols))); 134 } 135 136 // Check that the new index maps are invertible. If not, something went 137 // wrong, so abort. 138 if (!inversePermutation(concatAffineMaps(newIndexingMaps))) 139 return nullptr; 140 return ArrayAttr::get(context, 141 llvm::to_vector<4>(llvm::map_range( 142 newIndexingMaps, [](AffineMap map) -> Attribute { 143 return AffineMapAttr::get(map); 144 }))); 145 } 146 147 /// Update the index accesses of linalg operations having index semantics. 148 static void replaceUnitDimIndexOps(GenericOp genericOp, 149 const DenseSet<unsigned> &unitDims, 150 PatternRewriter &rewriter) { 151 assert(genericOp->getNumRegions() == 1 && 152 genericOp->getRegion(0).getBlocks().size() == 1 && 153 "expected generic operation to have one block."); 154 Block &block = genericOp->getRegion(0).front(); 155 156 for (IndexOp indexOp : llvm::make_early_inc_range(block.getOps<IndexOp>())) { 157 OpBuilder::InsertionGuard guard(rewriter); 158 rewriter.setInsertionPoint(indexOp); 159 if (unitDims.count(indexOp.dim()) != 0) { 160 rewriter.replaceOpWithNewOp<ConstantIndexOp>(indexOp, 0); 161 } else { 162 // Update the dimension of the index operation if needed. 163 unsigned droppedDims = llvm::count_if( 164 unitDims, [&](unsigned dim) { return dim < indexOp.dim(); }); 165 if (droppedDims != 0) 166 rewriter.replaceOpWithNewOp<IndexOp>(indexOp, 167 indexOp.dim() - droppedDims); 168 } 169 } 170 } 171 172 namespace { 173 /// Pattern to fold unit-trip count loops in GenericOps. 174 struct FoldUnitDimLoops : public OpRewritePattern<GenericOp> { 175 using OpRewritePattern<GenericOp>::OpRewritePattern; 176 LogicalResult matchAndRewrite(GenericOp genericOp, 177 PatternRewriter &rewriter) const override { 178 SmallVector<AffineMap, 4> indexingMaps = genericOp.getIndexingMaps(); 179 if (indexingMaps.empty()) 180 return failure(); 181 182 // Check if any of the iteration dimensions are unit-trip count. They will 183 // end up being unit-trip count if they are used to index into a unit-dim 184 // tensor/memref. 185 AffineMap invertedMap = inversePermutation(concatAffineMaps(indexingMaps)); 186 if (!invertedMap) 187 return failure(); 188 SmallVector<int64_t> dims = genericOp.getStaticShape(); 189 190 DenseSet<unsigned> unitDims; 191 SmallVector<unsigned, 4> unitDimsReductionLoops; 192 ArrayAttr iteratorTypes = genericOp.iterator_types(); 193 for (auto expr : enumerate(invertedMap.getResults())) { 194 if (AffineDimExpr dimExpr = expr.value().dyn_cast<AffineDimExpr>()) 195 if (dims[dimExpr.getPosition()] == 1) 196 unitDims.insert(expr.index()); 197 } 198 199 if (unitDims.empty()) 200 return failure(); 201 202 // Compute the modified indexing maps. 203 MLIRContext *context = rewriter.getContext(); 204 ArrayAttr newIndexingMapAttr = 205 replaceUnitDims(unitDims, indexingMaps, context); 206 if (!newIndexingMapAttr) 207 return genericOp.emitError("unable to compute modified indexing_maps"); 208 209 // Compute the iterator types of the modified op by dropping the one-trip 210 // count loops. 211 SmallVector<Attribute, 4> newIteratorTypes; 212 for (auto attr : llvm::enumerate(iteratorTypes)) { 213 if (!unitDims.count(attr.index())) 214 newIteratorTypes.push_back(attr.value()); 215 } 216 217 rewriter.startRootUpdate(genericOp); 218 genericOp.indexing_mapsAttr(newIndexingMapAttr); 219 genericOp.iterator_typesAttr(ArrayAttr::get(context, newIteratorTypes)); 220 replaceUnitDimIndexOps(genericOp, unitDims, rewriter); 221 rewriter.finalizeRootUpdate(genericOp); 222 return success(); 223 } 224 }; 225 226 struct UnitExtentReplacementInfo { 227 Type type; 228 AffineMap indexMap; 229 ArrayAttr reassociation; 230 }; 231 } // namespace 232 233 /// Utility function for replacing operands/results to a linalg generic 234 /// operation with unit-extent dimensions. These can be replaced with 235 /// an operand/result with the unit-extent dimension removed. This is only done 236 /// if the indexing map used to access that didimensionmension has a 237 /// AffineConstantExpr of value 0. Given the `type` of an result/operand of a 238 /// Linalg op, and its `indexMap` the utility function returns: 239 /// - the new type with dimensions of size 1 removed. 240 /// - modified index map that can be used to access the replaced result/operand 241 /// - the reassociation that converts from the original tensor type to the 242 /// modified tensor type. 243 static llvm::Optional<UnitExtentReplacementInfo> 244 replaceUnitExtents(GenericOp genericOp, OpOperand *opOperand, 245 MLIRContext *context) { 246 AffineMap indexingMap = genericOp.getTiedIndexingMap(opOperand); 247 ArrayRef<int64_t> shape = genericOp.getShape(opOperand); 248 ArrayRef<AffineExpr> exprs = indexingMap.getResults(); 249 SmallVector<AffineExpr> reassociations; 250 SmallVector<Attribute> reassociationMaps; 251 SmallVector<AffineExpr> newIndexExprs; 252 SmallVector<int64_t> newShape; 253 254 int64_t origRank = genericOp.getRank(opOperand); 255 AffineExpr zeroExpr = getAffineConstantExpr(0, context); 256 auto isUnitExtent = [&](int64_t dim) -> bool { 257 return shape[dim] == 1 && exprs[dim] == zeroExpr; 258 }; 259 260 // Early return for memrefs with affine maps to represent that we will always 261 // leave them unchanged. 262 Type actualType = opOperand->get().getType(); 263 if (auto memref = actualType.dyn_cast<MemRefType>()) { 264 if (!memref.getAffineMaps().empty()) 265 return llvm::None; 266 } 267 268 int64_t dim = 0; 269 // Fold dimensions that are unit-extent at the beginning of the tensor. 270 while (dim < origRank && isUnitExtent(dim)) 271 reassociations.push_back(getAffineDimExpr(dim++, context)); 272 while (dim < origRank) { 273 reassociations.push_back(getAffineDimExpr(dim, context)); 274 newIndexExprs.push_back(exprs[dim]); 275 newShape.push_back(shape[dim]); 276 // Fold all following dimensions that are unit-extent. 277 while (dim + 1 < origRank && isUnitExtent(dim + 1)) { 278 ++dim; 279 reassociations.push_back(getAffineDimExpr(dim, context)); 280 } 281 reassociationMaps.push_back(AffineMapAttr::get(AffineMap::get( 282 origRank, /*symbolCount = */ 0, reassociations, context))); 283 reassociations.clear(); 284 ++dim; 285 } 286 287 // Compute the tensor or scalar replacement type. 288 Type elementType = getElementTypeOrSelf(opOperand->get()); 289 Type replacementType; 290 if (elementType == opOperand->get().getType()) { 291 replacementType = elementType; 292 } else if (actualType.isa<RankedTensorType>()) { 293 replacementType = RankedTensorType::get(newShape, elementType); 294 } else if (actualType.isa<MemRefType>()) { 295 replacementType = MemRefType::get(newShape, elementType); 296 } 297 assert(replacementType && "unsupported shaped type"); 298 UnitExtentReplacementInfo info = {replacementType, 299 AffineMap::get(indexingMap.getNumDims(), 300 indexingMap.getNumSymbols(), 301 newIndexExprs, context), 302 ArrayAttr::get(context, reassociationMaps)}; 303 return info; 304 } 305 306 namespace { 307 308 SmallVector<ReassociationExprs, 2> 309 convertAffineMapArrayToExprs(ArrayAttr affineMapArrayAttr) { 310 SmallVector<ReassociationExprs, 2> reassociationExprs; 311 for (auto attr : affineMapArrayAttr) 312 reassociationExprs.push_back( 313 llvm::to_vector<4>(attr.cast<AffineMapAttr>().getValue().getResults())); 314 return reassociationExprs; 315 } 316 317 /// Pattern to replace tensor/buffer operands/results that are unit extents. 318 struct ReplaceUnitExtents : public OpRewritePattern<GenericOp> { 319 using OpRewritePattern<GenericOp>::OpRewritePattern; 320 321 // Return the original value if the type is unchanged, or reshape it. Return a 322 // nullptr if this is an unsupported type. 323 Value maybeExpand(Value result, Type origResultType, 324 ArrayAttr reassociationMap, Location loc, 325 PatternRewriter &rewriter) const { 326 if (origResultType == result.getType()) 327 return result; 328 if (origResultType.isa<RankedTensorType>()) { 329 return rewriter.create<linalg::TensorExpandShapeOp>( 330 loc, origResultType, result, 331 convertAffineMapArrayToExprs(reassociationMap)); 332 } 333 if (origResultType.isa<MemRefType>()) { 334 return rewriter.create<memref::ExpandShapeOp>( 335 loc, origResultType, result, 336 convertAffineMapArrayToExprs(reassociationMap)); 337 } 338 return nullptr; 339 }; 340 341 // Return the original value if the type is unchanged, or reshape it. Return a 342 // nullptr if this is an unsupported type. 343 Value maybeCollapse(Value operand, Type newInputOutputType, 344 ArrayAttr reassociationMap, Location loc, 345 PatternRewriter &rewriter) const { 346 auto operandType = operand.getType(); 347 if (operandType == newInputOutputType) 348 return operand; 349 if (operandType.isa<MemRefType>()) { 350 return rewriter.create<memref::CollapseShapeOp>( 351 loc, newInputOutputType, operand, 352 convertAffineMapArrayToExprs(reassociationMap)); 353 } 354 if (operandType.isa<RankedTensorType>()) { 355 return rewriter.create<linalg::TensorCollapseShapeOp>( 356 loc, newInputOutputType, operand, 357 convertAffineMapArrayToExprs(reassociationMap)); 358 } 359 return nullptr; 360 }; 361 362 LogicalResult matchAndRewrite(GenericOp genericOp, 363 PatternRewriter &rewriter) const override { 364 // Skip the pattern if the op has any tensor with special encoding. 365 if (llvm::any_of(genericOp->getOperandTypes(), [](Type type) { 366 auto tensorType = type.dyn_cast<RankedTensorType>(); 367 return tensorType && tensorType.getEncoding() != nullptr; 368 })) 369 return failure(); 370 MLIRContext *context = rewriter.getContext(); 371 Location loc = genericOp.getLoc(); 372 373 SmallVector<AffineMap> newIndexingMaps; 374 SmallVector<ArrayAttr> reassociationMaps; 375 SmallVector<Type> newInputOutputTypes; 376 bool doCanonicalization = false; 377 for (OpOperand *opOperand : genericOp.getInputAndOutputOperands()) { 378 auto replacementInfo = replaceUnitExtents(genericOp, opOperand, context); 379 if (replacementInfo) { 380 reassociationMaps.push_back(replacementInfo->reassociation); 381 newIndexingMaps.push_back(replacementInfo->indexMap); 382 newInputOutputTypes.push_back(replacementInfo->type); 383 doCanonicalization |= 384 replacementInfo->type != opOperand->get().getType(); 385 } else { 386 // If replaceUnitExtents cannot handle this case, maintain the same 387 // type, indexing map, and create a set of mappings representing an 388 // identity matrix. 389 newInputOutputTypes.push_back(opOperand->get().getType()); 390 newIndexingMaps.push_back(genericOp.getTiedIndexingMap(opOperand)); 391 int64_t origRank = genericOp.getRank(opOperand); 392 auto maps = llvm::to_vector<8>(llvm::map_range( 393 llvm::seq<int64_t>(0, origRank), [&](int64_t dim) -> Attribute { 394 return AffineMapAttr::get( 395 AffineMap::get(origRank, /*symbolCount = */ 0, 396 getAffineDimExpr(dim, context), context)); 397 })); 398 reassociationMaps.push_back(ArrayAttr::get(context, maps)); 399 } 400 } 401 402 // If the indexing maps of the result operation are not invertible (i.e. not 403 // legal), abort. 404 if (!doCanonicalization || 405 !inversePermutation(concatAffineMaps(newIndexingMaps))) 406 return failure(); 407 408 // If any operand type change, insert a reshape to convert from the original 409 // type to the new type. 410 // TODO: get rid of flattenedIdx which assumes operand order and contiguity. 411 unsigned flattenedIdx = 0; 412 auto insertReshapes = [&](ValueRange values) { 413 SmallVector<Value, 4> res; 414 res.reserve(values.size()); 415 for (auto operand : values) { 416 auto reshapedValue = 417 maybeCollapse(operand, newInputOutputTypes[flattenedIdx], 418 reassociationMaps[flattenedIdx], loc, rewriter); 419 assert(reshapedValue && 420 "expected ranked MemRef or Tensor operand type"); 421 res.push_back(reshapedValue); 422 ++flattenedIdx; 423 } 424 return res; 425 }; 426 427 SmallVector<Value, 4> newInputs = insertReshapes(genericOp.inputs()); 428 SmallVector<Value, 4> newOutputs = insertReshapes(genericOp.outputs()); 429 430 // If any result type changes, insert a reshape to convert from the original 431 // type to the new type. 432 SmallVector<Type, 4> resultTypes; 433 resultTypes.reserve(genericOp.getNumResults()); 434 for (unsigned i : llvm::seq<unsigned>(0, genericOp.getNumResults())) 435 resultTypes.push_back(newInputOutputTypes[i + genericOp.getNumInputs()]); 436 GenericOp replacementOp = rewriter.create<GenericOp>( 437 loc, resultTypes, newInputs, newOutputs, newIndexingMaps, 438 llvm::to_vector<4>( 439 genericOp.iterator_types().template getAsValueRange<StringAttr>())); 440 rewriter.inlineRegionBefore(genericOp.region(), replacementOp.region(), 441 replacementOp.region().begin()); 442 443 // If any result tensor has a modified shape, then add reshape to recover 444 // the original shape. 445 SmallVector<Value, 4> resultReplacements; 446 for (auto result : llvm::enumerate(replacementOp.getResults())) { 447 unsigned index = result.index() + replacementOp.getNumInputs(); 448 auto origResultType = genericOp.getResult(result.index()).getType(); 449 450 auto newResult = maybeExpand(result.value(), origResultType, 451 reassociationMaps[index], loc, rewriter); 452 assert(newResult && 453 "unexpected output type other than ranked MemRef or Tensor"); 454 resultReplacements.push_back(newResult); 455 } 456 rewriter.replaceOp(genericOp, resultReplacements); 457 return success(); 458 } 459 }; 460 } // namespace 461 462 /// Get the reassociation maps to fold the result of a extract_slice (or source 463 /// of a insert_slice) operation with given offsets, and sizes to its 464 /// rank-reduced version. This is only done for the cases where the size is 1 465 /// and offset is 0. Strictly speaking the offset 0 is not required in general, 466 /// but non-zero offsets are not handled by SPIR-V backend at this point (and 467 /// potentially cannot be handled). 468 static Optional<SmallVector<ReassociationIndices>> 469 getReassociationMapForFoldingUnitDims(ArrayRef<OpFoldResult> mixedSizes) { 470 SmallVector<ReassociationIndices> reassociation; 471 ReassociationIndices curr; 472 for (auto it : llvm::enumerate(mixedSizes)) { 473 auto dim = it.index(); 474 auto size = it.value(); 475 curr.push_back(dim); 476 auto attr = size.dyn_cast<Attribute>(); 477 if (attr && attr.cast<IntegerAttr>().getInt() == 1) 478 continue; 479 reassociation.emplace_back(ReassociationIndices{}); 480 std::swap(reassociation.back(), curr); 481 } 482 // When the reassociations are not empty, then fold the remaining 483 // unit-dimensions into the last dimension. If the reassociations so far is 484 // empty, then leave it emtpy. This will fold everything to a rank-0 tensor. 485 if (!curr.empty() && !reassociation.empty()) 486 reassociation.back().append(curr.begin(), curr.end()); 487 return reassociation; 488 } 489 490 namespace { 491 /// Convert `extract_slice` operations to rank-reduced versions. 492 struct UseRankReducedExtractSliceOp 493 : public OpRewritePattern<tensor::ExtractSliceOp> { 494 using OpRewritePattern<tensor::ExtractSliceOp>::OpRewritePattern; 495 496 LogicalResult matchAndRewrite(tensor::ExtractSliceOp sliceOp, 497 PatternRewriter &rewriter) const override { 498 RankedTensorType resultType = sliceOp.getType(); 499 SmallVector<OpFoldResult> offsets = sliceOp.getMixedOffsets(); 500 SmallVector<OpFoldResult> sizes = sliceOp.getMixedSizes(); 501 SmallVector<OpFoldResult> strides = sliceOp.getMixedStrides(); 502 auto reassociation = getReassociationMapForFoldingUnitDims(sizes); 503 if (!reassociation || 504 reassociation->size() == static_cast<size_t>(resultType.getRank())) 505 return failure(); 506 auto rankReducedType = tensor::ExtractSliceOp::inferRankReducedResultType( 507 reassociation->size(), sliceOp.getSourceType(), 508 offsets, sizes, strides) 509 .cast<RankedTensorType>(); 510 511 Location loc = sliceOp.getLoc(); 512 Value newSlice = rewriter.create<tensor::ExtractSliceOp>( 513 loc, rankReducedType, sliceOp.source(), offsets, sizes, strides); 514 rewriter.replaceOpWithNewOp<TensorExpandShapeOp>(sliceOp, resultType, 515 newSlice, *reassociation); 516 return success(); 517 } 518 }; 519 520 /// Convert `insert_slice` operations to rank-reduced versions. 521 struct UseRankReducedInsertSliceOp 522 : public OpRewritePattern<tensor::InsertSliceOp> { 523 using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern; 524 525 LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp, 526 PatternRewriter &rewriter) const override { 527 RankedTensorType sourceType = insertOp.getSourceType(); 528 SmallVector<OpFoldResult> offsets = insertOp.getMixedOffsets(); 529 SmallVector<OpFoldResult> sizes = insertOp.getMixedSizes(); 530 SmallVector<OpFoldResult> strides = insertOp.getMixedStrides(); 531 auto reassociation = getReassociationMapForFoldingUnitDims(sizes); 532 if (!reassociation || 533 reassociation->size() == static_cast<size_t>(sourceType.getRank())) 534 return failure(); 535 Location loc = insertOp.getLoc(); 536 auto reshapedSource = rewriter.create<TensorCollapseShapeOp>( 537 loc, insertOp.source(), *reassociation); 538 rewriter.replaceOpWithNewOp<tensor::InsertSliceOp>( 539 insertOp, reshapedSource, insertOp.dest(), insertOp.getMixedOffsets(), 540 insertOp.getMixedSizes(), insertOp.getMixedStrides()); 541 return success(); 542 } 543 }; 544 } // namespace 545 546 /// Patterns that are used to canonicalize the use of unit-extent dims for 547 /// broadcasting. 548 void mlir::linalg::populateFoldUnitExtentDimsPatterns( 549 RewritePatternSet &patterns) { 550 auto *context = patterns.getContext(); 551 patterns.add<FoldUnitDimLoops, ReplaceUnitExtents, 552 UseRankReducedExtractSliceOp, UseRankReducedInsertSliceOp>( 553 context); 554 TensorCollapseShapeOp::getCanonicalizationPatterns(patterns, context); 555 TensorExpandShapeOp::getCanonicalizationPatterns(patterns, context); 556 } 557 558 namespace { 559 /// Pass that removes unit-extent dims within generic ops. 560 struct LinalgFoldUnitExtentDimsPass 561 : public LinalgFoldUnitExtentDimsBase<LinalgFoldUnitExtentDimsPass> { 562 void runOnFunction() override { 563 FuncOp funcOp = getFunction(); 564 MLIRContext *context = funcOp.getContext(); 565 RewritePatternSet patterns(context); 566 if (foldOneTripLoopsOnly) 567 patterns.add<FoldUnitDimLoops>(context); 568 else 569 populateFoldUnitExtentDimsPatterns(patterns); 570 (void)applyPatternsAndFoldGreedily(funcOp.getBody(), std::move(patterns)); 571 } 572 }; 573 } // namespace 574 575 std::unique_ptr<OperationPass<FuncOp>> 576 mlir::createLinalgFoldUnitExtentDimsPass() { 577 return std::make_unique<LinalgFoldUnitExtentDimsPass>(); 578 } 579