1 //===- DropUnitDims.cpp - Pass to drop use of unit-extent for broadcasting ===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements patterns/pass to remove usage of unit-extent dimensions 10 // to specify broadcasting in favor of more canonical representation of the 11 // computation 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "PassDetail.h" 16 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 17 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h" 18 #include "mlir/Dialect/Linalg/Passes.h" 19 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 20 #include "mlir/Dialect/Linalg/Utils/Utils.h" 21 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h" 22 #include "mlir/IR/AffineExpr.h" 23 #include "mlir/IR/AffineMap.h" 24 #include "mlir/Transforms/FoldUtils.h" 25 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/Debug.h" 28 29 #define DEBUG_TYPE "linalg-drop-unit-dims" 30 31 using namespace mlir; 32 using namespace mlir::edsc; 33 using namespace mlir::edsc::intrinsics; 34 using namespace mlir::linalg; 35 36 /// Implements a pass that canonicalizes the uses of unit-extent dimensions for 37 /// broadcasting. For example, 38 /// 39 /// ```mlir 40 /// #accesses = [ 41 /// affine_map<(d0, d1) -> (0, d1)>, 42 /// affine_map<(d0, d1) -> (d0, 0)>, 43 /// affine_map<(d0, d1) -> (d0, d1)> 44 /// ] 45 /// 46 /// #trait = { 47 /// args_in = 2, 48 /// args_out = 1, 49 /// indexing_maps = #accesses, 50 /// iterator_types = ["parallel", "parallel"], 51 /// library_call = "some_external_fn" 52 /// } 53 /// 54 /// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) -> 55 /// tensor<5x5xf32> 56 /// { 57 /// %0 = linalg.tensor_reshape %arg0 [affine_map<(d0, d1) -> (d0, d1)>] : 58 /// tensor<5xf32> into tensor<1x5xf32> 59 /// %1 = linalg.tensor_reshape %arg1 [affine_map<(d0, d1) -> (d0, d1)>] : 60 /// tensor<5xf32> into tensor<5x1xf32> 61 /// %2 = linalg.generic #trait %0, %1 { 62 /// ^bb0(%arg2: f32, %arg3: f32): 63 /// %3 = addf %arg2, %arg3 : f32 64 /// linalg.yield %3 : f32 65 /// } : tensor<1x5xf32>, tensor<5x1xf32> -> tensor<5x5xf32> 66 /// return %2 : tensor<5x5xf32> 67 /// } 68 /// 69 /// would canonicalize to 70 /// 71 /// ```mlir 72 /// #accesses = [ 73 /// affine_map<(d0, d1) -> (d1)>, 74 /// affine_map<(d0, d1) -> (d0)>, 75 /// affine_map<(d0, d1) -> (d0, d1)> 76 /// ] 77 /// 78 /// #trait = { 79 /// args_in = 2, 80 /// args_out = 1, 81 /// indexing_maps = #accesses, 82 /// iterator_types = ["parallel", "parallel"], 83 /// library_call = "some_external_fn" 84 /// } 85 /// 86 /// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) -> 87 /// tensor<5x5xf32> 88 /// { 89 /// %0 = linalg.generic #trait %arg0, %arg1 { 90 /// ^bb0(%arg2: f32, %arg3: f32): 91 /// %3 = addf %arg2, %arg3 : f32 92 /// linalg.yield %3 : f32 93 /// } : tensor<5xf32>, tensor<5xf32> -> tensor<5x5xf32> 94 /// return %0 : tensor<5x5xf32> 95 /// } 96 97 /// Given dims of the iteration space of a structured op that are known to be 98 /// single trip count (`unitDims`), return the indexing maps to use in the 99 /// canonicalized op with these dims removed, given the original `indexingMaps`. 100 static ArrayAttr replaceUnitDims(DenseSet<unsigned> &unitDims, 101 ArrayRef<AffineMap> indexingMaps, 102 MLIRContext *context) { 103 if (indexingMaps.empty()) 104 return nullptr; 105 unsigned numIterationDims = indexingMaps.front().getNumDims(); 106 unsigned numSymbols = indexingMaps.front().getNumSymbols(); 107 108 // Compute the replacement for each dim expr. 109 SmallVector<AffineExpr, 4> dimReplacements; 110 dimReplacements.reserve(numIterationDims); 111 unsigned numKeptDims = 0; 112 for (unsigned dim : llvm::seq<unsigned>(0, numIterationDims)) { 113 if (unitDims.count(dim)) 114 dimReplacements.push_back(getAffineConstantExpr(0, context)); 115 else 116 dimReplacements.push_back(getAffineDimExpr(numKeptDims++, context)); 117 } 118 119 // Symbols remain the same. 120 SmallVector<AffineExpr, 4> symReplacements; 121 symReplacements.reserve(numSymbols); 122 for (unsigned symbol : llvm::seq<unsigned>(0, numSymbols)) 123 symReplacements.push_back(getAffineSymbolExpr(symbol, context)); 124 125 SmallVector<AffineMap, 4> newIndexingMaps; 126 newIndexingMaps.reserve(indexingMaps.size()); 127 for (AffineMap operandMap : indexingMaps) { 128 // Expected indexing maps to have no symbols. 129 if (operandMap.getNumSymbols()) 130 return nullptr; 131 newIndexingMaps.push_back(simplifyAffineMap( 132 operandMap.replaceDimsAndSymbols(dimReplacements, symReplacements, 133 numIterationDims - unitDims.size(), 134 numSymbols))); 135 } 136 137 // Check that the new index maps are invertible. If not, something went 138 // wrong, so abort. 139 if (!inversePermutation(concatAffineMaps(newIndexingMaps))) 140 return nullptr; 141 return ArrayAttr::get(context, 142 llvm::to_vector<4>(llvm::map_range( 143 newIndexingMaps, [](AffineMap map) -> Attribute { 144 return AffineMapAttr::get(map); 145 }))); 146 } 147 148 /// Modify the region of indexed generic op to drop arguments corresponding to 149 /// loops that are unit trip count. 150 template <typename OpTy> 151 static LogicalResult 152 replaceBlockArgForUnitDimLoops(OpTy op, const DenseSet<unsigned> &unitDims, 153 PatternRewriter &rewriterp) { 154 return success(); 155 } 156 157 template <> 158 LogicalResult replaceBlockArgForUnitDimLoops<IndexedGenericOp>( 159 IndexedGenericOp op, const DenseSet<unsigned> &unitDims, 160 PatternRewriter &rewriter) { 161 OpBuilder::InsertionGuard guard(rewriter); 162 Block *entryBlock = &op->getRegion(0).front(); 163 rewriter.setInsertionPointToStart(entryBlock); 164 Value zero = rewriter.create<ConstantIndexOp>(op.getLoc(), 0); 165 for (unsigned unitDimLoop : unitDims) { 166 entryBlock->getArgument(unitDimLoop).replaceAllUsesWith(zero); 167 } 168 SmallVector<unsigned, 8> unitDimsToErase(unitDims.begin(), unitDims.end()); 169 entryBlock->eraseArguments(unitDimsToErase); 170 return success(); 171 } 172 173 namespace { 174 /// Pattern to fold unit-trip count loops in GenericOps. 175 template <typename GenericOpTy> 176 struct FoldUnitDimLoops : public OpRewritePattern<GenericOpTy> { 177 using OpRewritePattern<GenericOpTy>::OpRewritePattern; 178 LogicalResult matchAndRewrite(GenericOpTy op, 179 PatternRewriter &rewriter) const override { 180 SmallVector<AffineMap, 4> indexingMaps = op.getIndexingMaps(); 181 if (indexingMaps.empty()) 182 return failure(); 183 184 // Check if any of the iteration dimensions are unit-trip count. They will 185 // end up being unit-trip count if they are used to index into a unit-dim 186 // tensor/memref. 187 AffineMap invertedMap = inversePermutation(concatAffineMaps(indexingMaps)); 188 if (!invertedMap) 189 return failure(); 190 SmallVector<int64_t, 4> dims; 191 for (ShapedType shapedType : op.getShapedOperandTypes()) 192 dims.append(shapedType.getShape().begin(), shapedType.getShape().end()); 193 DenseSet<unsigned> unitDims; 194 ArrayAttr iteratorTypes = op.iterator_types(); 195 for (auto expr : enumerate(invertedMap.getResults())) { 196 if (AffineDimExpr dimExpr = expr.value().dyn_cast<AffineDimExpr>()) 197 if (dims[dimExpr.getPosition()] == 1 && 198 iteratorTypes[expr.index()].dyn_cast<StringAttr>().getValue() == 199 getParallelIteratorTypeName()) 200 unitDims.insert(expr.index()); 201 } 202 if (unitDims.empty()) 203 return failure(); 204 205 // Compute the modified indexing maps. 206 MLIRContext *context = rewriter.getContext(); 207 ArrayAttr newIndexingMapAttr = 208 replaceUnitDims(unitDims, indexingMaps, context); 209 if (!newIndexingMapAttr) 210 return op.emitError("unable to compute modified indexing_maps"); 211 212 // Compute the iterator types of the modified op by dropping the one-trip 213 // count loops. 214 SmallVector<Attribute, 4> newIteratorTypes; 215 for (auto attr : llvm::enumerate(iteratorTypes)) { 216 if (!unitDims.count(attr.index())) 217 newIteratorTypes.push_back(attr.value()); 218 } 219 220 rewriter.startRootUpdate(op); 221 op.indexing_mapsAttr(newIndexingMapAttr); 222 op.iterator_typesAttr(ArrayAttr::get(context, newIteratorTypes)); 223 (void)replaceBlockArgForUnitDimLoops(op, unitDims, rewriter); 224 rewriter.finalizeRootUpdate(op); 225 return success(); 226 } 227 }; 228 229 struct UnitExtentReplacementInfo { 230 RankedTensorType type; 231 AffineMap indexMap; 232 ArrayAttr reassociation; 233 }; 234 } // namespace 235 236 /// Utility function for replacing operands/results to a linalg generic 237 /// operation on tensors with unit-extent dimensions. These can be replaced with 238 /// an operand/result with the unit-extent dimension removed. This is only done 239 /// if the indexing map used to access that didimensionmension has a 240 /// AffineConstantExpr of value 0. Given the `type` of an result/operand of a 241 /// Linalg op, and its `indexMap` the utility function returns: 242 /// - the new type with dimensions of size 1 removed. 243 /// - modified index map that can be used to access the replaced result/operand 244 /// - the reassociation that converts from the original tensor type to the 245 /// modified tensor type. 246 static UnitExtentReplacementInfo replaceUnitExtents(AffineMap indexMap, 247 RankedTensorType type, 248 MLIRContext *context) { 249 ArrayRef<int64_t> shape = type.getShape(); 250 ArrayRef<AffineExpr> exprs = indexMap.getResults(); 251 SmallVector<AffineExpr, 2> reassociations; 252 SmallVector<Attribute, 4> reassociationMaps; 253 SmallVector<AffineExpr, 4> newIndexExprs; 254 SmallVector<int64_t, 4> newShape; 255 256 int64_t origRank = type.getRank(); 257 AffineExpr zeroExpr = getAffineConstantExpr(0, context); 258 auto isUnitExtent = [&](int64_t dim) -> bool { 259 return shape[dim] == 1 && exprs[dim] == zeroExpr; 260 }; 261 262 unsigned dim = 0; 263 // Fold dimensions that are unit-extent at the beginning of the tensor. 264 while (dim < origRank && isUnitExtent(dim)) 265 reassociations.push_back(getAffineDimExpr(dim++, context)); 266 while (dim < origRank) { 267 reassociations.push_back(getAffineDimExpr(dim, context)); 268 newIndexExprs.push_back(exprs[dim]); 269 newShape.push_back(shape[dim]); 270 // Fold all following dimensions that are unit-extent. 271 while (dim + 1 < origRank && isUnitExtent(dim + 1)) { 272 ++dim; 273 reassociations.push_back(getAffineDimExpr(dim, context)); 274 } 275 reassociationMaps.push_back(AffineMapAttr::get(AffineMap::get( 276 origRank, /*numSymbols = */ 0, reassociations, context))); 277 reassociations.clear(); 278 ++dim; 279 } 280 UnitExtentReplacementInfo info = { 281 RankedTensorType::get(newShape, type.getElementType()), 282 AffineMap::get(indexMap.getNumDims(), indexMap.getNumSymbols(), 283 newIndexExprs, context), 284 ArrayAttr::get(context, reassociationMaps)}; 285 return info; 286 } 287 288 namespace { 289 290 /// Pattern to replace tensors operands/results that are unit extents. 291 template <typename GenericOpTy> 292 struct ReplaceUnitExtentTensors : public OpRewritePattern<GenericOpTy> { 293 using OpRewritePattern<GenericOpTy>::OpRewritePattern; 294 LogicalResult matchAndRewrite(GenericOpTy op, 295 PatternRewriter &rewriter) const override { 296 // TODO: support reductions. 297 if (!op.hasTensorSemantics()) 298 return failure(); 299 300 MLIRContext *context = rewriter.getContext(); 301 Location loc = op.getLoc(); 302 303 SmallVector<AffineMap, 4> newIndexingMaps; 304 SmallVector<ArrayAttr, 4> reassociationMaps; 305 SmallVector<ShapedType, 4> newInputOutputTypes; 306 bool doCanonicalization = false; 307 for (auto it : 308 llvm::zip(op.getIndexingMaps(), op.getShapedOperandTypes())) { 309 auto replacementInfo = replaceUnitExtents( 310 std::get<0>(it), std::get<1>(it).template cast<RankedTensorType>(), 311 context); 312 reassociationMaps.push_back(replacementInfo.reassociation); 313 newIndexingMaps.push_back(replacementInfo.indexMap); 314 newInputOutputTypes.push_back(replacementInfo.type); 315 doCanonicalization |= replacementInfo.type != std::get<1>(it); 316 } 317 318 // If the indexing maps of the result operation are not invertible (i.e. not 319 // legal), abort. 320 if (!doCanonicalization || 321 !inversePermutation(concatAffineMaps(newIndexingMaps))) 322 return failure(); 323 324 // If any operand type change, insert a reshape to convert from the original 325 // type to the new type. 326 // TODO: get rid of flattenedIdx which assumes operand order and contiguity. 327 unsigned flattenedIdx = 0; 328 auto insertReshapes = [&](ValueRange values) { 329 SmallVector<Value, 4> res; 330 res.reserve(values.size()); 331 for (auto operand : llvm::enumerate(values)) { 332 if (operand.value().getType() == newInputOutputTypes[flattenedIdx]) 333 res.push_back(operand.value()); 334 else 335 res.push_back(rewriter.create<linalg::TensorReshapeOp>( 336 loc, newInputOutputTypes[flattenedIdx], operand.value(), 337 reassociationMaps[flattenedIdx])); 338 ++flattenedIdx; 339 } 340 return res; 341 }; 342 343 SmallVector<Value, 4> newInputs = insertReshapes(op.inputs()); 344 SmallVector<Value, 4> newOutputs = insertReshapes(op.outputs()); 345 346 // If any result type changes, insert a reshape to convert from the original 347 // type to the new type. 348 SmallVector<Type, 4> resultTypes; 349 resultTypes.reserve(op.getNumResults()); 350 for (unsigned i : llvm::seq<unsigned>(0, op.getNumResults())) 351 resultTypes.push_back(newInputOutputTypes[i + op.getNumInputs()]); 352 GenericOpTy replacementOp = rewriter.create<GenericOpTy>( 353 loc, resultTypes, newInputs, newOutputs, newIndexingMaps, 354 llvm::to_vector<4>( 355 op.iterator_types().template getAsValueRange<StringAttr>())); 356 rewriter.inlineRegionBefore(op.region(), replacementOp.region(), 357 replacementOp.region().begin()); 358 359 // If any result tensor has a modified shape, then add reshape to recover 360 // the original shape. 361 SmallVector<Value, 4> resultReplacements; 362 for (auto result : llvm::enumerate(replacementOp.getResults())) { 363 unsigned index = result.index() + replacementOp.getNumInputs(); 364 RankedTensorType origResultType = op.getResult(result.index()) 365 .getType() 366 .template cast<RankedTensorType>(); 367 if (origResultType != result.value().getType()) 368 resultReplacements.push_back(rewriter.create<linalg::TensorReshapeOp>( 369 loc, origResultType, result.value(), reassociationMaps[index])); 370 else 371 resultReplacements.push_back(result.value()); 372 } 373 rewriter.replaceOp(op, resultReplacements); 374 return success(); 375 } 376 }; 377 378 /// Pattern to fold pair of reshape ops where the intermediate has unit-dims for 379 /// example: 380 /// 381 /// %0 = linalg.tensor_reshape %arg0 382 /// [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>] 383 /// : tensor<2048xf32> into tensor<1x4x1x512xf32> 384 /// %1 = linalg.tensor_reshape %0 385 /// [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)>, 386 /// affine_map<(d0, d1, d2, d3) -> (d3)>] 387 /// : tensor<1x4x1x512xf32> into tensor<4x512xf32> 388 /// 389 /// can be replaced with 390 /// 391 /// %0 = linalg.tensor_reshape %arg0 [affine_map<(d0, d1) -> (d0, d1)>] 392 /// : tensor<2048xf32> into tensor<4x512xf32> 393 /// 394 /// Similarly, 395 /// 396 /// %0 = linalg.tensor_reshape %arg0 397 /// [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)>, 398 /// affine_map<(d0, d1, d2, d3) -> (d3)>] 399 /// : tensor<4x512xf32> into tensor<1x4x1x512xf32> 400 /// %1 = linalg.tensor_reshape %0 401 /// [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>] 402 /// : tensor<1x4x1x512xf32> into tensor<2048xf32> 403 /// 404 /// can be replaced with 405 /// 406 /// %0 = linalg.tensor_reshape %arg0 [affine_map<(d0, d1) -> (d0, d1)>] 407 /// : tensor<4x512xf32> into tensor<2048xf32> 408 struct FoldReshapeOpWithUnitExtent : OpRewritePattern<TensorReshapeOp> { 409 using OpRewritePattern<TensorReshapeOp>::OpRewritePattern; 410 411 LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp, 412 PatternRewriter &rewriter) const override { 413 // Check that the source operand is created from a reshape as well. 414 TensorReshapeOp parentReshapeOp = 415 reshapeOp.src().getDefiningOp<TensorReshapeOp>(); 416 if (!parentReshapeOp) 417 return failure(); 418 419 RankedTensorType srcType = reshapeOp.getSrcType(), 420 dstType = reshapeOp.getResultType(), 421 parentSrcType = parentReshapeOp.getSrcType(); 422 if (!srcType.hasStaticShape() || !dstType.hasStaticShape() || 423 !parentSrcType.hasStaticShape() || 424 srcType.getRank() < dstType.getRank() || 425 parentSrcType.getRank() == dstType.getRank()) 426 return failure(); 427 428 // Check if the result tensor_reshape is folding or expanding after folding 429 // the reshapeOp and parentReshapeOp are combined. If the final 430 // tensor_reshape is folding, the parentReshapeOp is introducing unit-dims, 431 // and the reshapeOp does an actual reshape. If the final tensor_reshape op 432 // is expanding, the reshapeOp is introducing unit-dims, and the 433 // parentReshapeOp does an actual reshape. 434 bool isFoldingPattern = parentSrcType.getRank() > dstType.getRank(); 435 ArrayRef<int64_t> expandedShape = 436 isFoldingPattern ? parentSrcType.getShape() : dstType.getShape(); 437 ArrayRef<int64_t> foldedShape = 438 isFoldingPattern ? dstType.getShape() : parentSrcType.getShape(); 439 440 unsigned expandedDim = 0, foldedDim = 0; 441 SmallVector<SmallVector<AffineExpr, 4>, 4> reassociationExprs( 442 foldedShape.size()); 443 while (expandedDim < expandedShape.size() && 444 foldedDim < foldedShape.size()) { 445 int64_t dstSize = foldedShape[foldedDim]; 446 int64_t srcSize = expandedShape[expandedDim]; 447 while (srcSize < dstSize && expandedDim < expandedShape.size()) { 448 reassociationExprs[foldedDim].push_back( 449 rewriter.getAffineDimExpr(expandedDim++)); 450 srcSize *= expandedShape[expandedDim]; 451 } 452 if (srcSize == dstSize) { 453 reassociationExprs[foldedDim].push_back( 454 rewriter.getAffineDimExpr(expandedDim++)); 455 // If the next dim in foldedShape is not 1, treat subsequent dims in 456 // expandedShape which are 1 to be collapsed. 457 if (foldedDim == foldedShape.size() - 1 || 458 foldedShape[foldedDim + 1] != 1) { 459 while (expandedDim < expandedShape.size() && 460 expandedShape[expandedDim] == 1) { 461 reassociationExprs[foldedDim].push_back( 462 rewriter.getAffineDimExpr(expandedDim++)); 463 } 464 } 465 } else { 466 return failure(); 467 } 468 foldedDim++; 469 } 470 if (expandedDim != expandedShape.size()) 471 return failure(); 472 473 SmallVector<AffineMap, 4> reassociationMaps = 474 llvm::to_vector<4>(llvm::map_range( 475 reassociationExprs, [&](ArrayRef<AffineExpr> exprs) -> AffineMap { 476 return AffineMap::get(expandedShape.size(), 0, exprs, 477 rewriter.getContext()); 478 })); 479 rewriter.replaceOpWithNewOp<TensorReshapeOp>( 480 reshapeOp, dstType, parentReshapeOp.src(), 481 rewriter.getAffineMapArrayAttr(reassociationMaps)); 482 return success(); 483 } 484 }; 485 486 /// Pattern to fold subtensors that are just taking a slice of unit-dimension 487 /// tensor. For example 488 /// 489 /// %1 = subtensor %0[0, %o1, 0] [1, %s1, 1] [1, 1, 1] 490 /// : tensor<1x?x1xf32> to tensor<1x?x1xf32> 491 /// 492 /// can be replaced with 493 /// 494 /// %0 = linalg.tensor_reshape %0 [affine_map<(d0, d1, d2) -> (d0, d1, d2)>] 495 /// : tensor<1x?x1xf32> into tensor<?xf32> 496 /// %1 = subtensor %0[%o1] [%s1] [1] : tensor<?xf32> to tensor<?xf32> 497 /// %2 = linalg.tensor_reshape %1 [affine_map<(d0, d1, d2) -> (d0, d1, d2)>] 498 /// : tensor<?xf32> into tensor<1x?x1xf32> 499 /// 500 /// The additional tensor_reshapes will hopefully get canonicalized away with 501 /// other reshapes that drop unit dimensions. Three condiitions to fold a 502 /// dimension 503 /// - The offset must be 0 504 /// - The size must be 1 505 /// - The dimension of the source type must be 1. 506 struct FoldUnitDimSubTensorOp : public OpRewritePattern<SubTensorOp> { 507 using OpRewritePattern<SubTensorOp>::OpRewritePattern; 508 509 LogicalResult matchAndRewrite(SubTensorOp subTensorOp, 510 PatternRewriter &rewriter) const override { 511 SmallVector<OpFoldResult> mixedOffsets = subTensorOp.getMixedOffsets(); 512 SmallVector<OpFoldResult> mixedSizes = subTensorOp.getMixedSizes(); 513 SmallVector<OpFoldResult> mixedStrides = subTensorOp.getMixedStrides(); 514 auto hasValue = [](OpFoldResult valueOrAttr, int64_t val) { 515 auto attr = valueOrAttr.dyn_cast<Attribute>(); 516 return attr && attr.cast<IntegerAttr>().getInt() == val; 517 }; 518 519 if (llvm::any_of(mixedStrides, [&](OpFoldResult valueOrAttr) { 520 return !hasValue(valueOrAttr, 1); 521 })) 522 return failure(); 523 524 // Find the expanded unit dimensions. 525 SmallVector<ReassociationIndices> reassociation; 526 SmallVector<OpFoldResult> newOffsets, newSizes; 527 ArrayRef<int64_t> sourceShape = subTensorOp.getSourceType().getShape(); 528 ReassociationIndices curr; 529 for (int64_t dim : llvm::seq<int64_t>(0, mixedOffsets.size())) { 530 curr.push_back(dim); 531 if (sourceShape[dim] == 1 && hasValue(mixedOffsets[dim], 0) && 532 hasValue(mixedSizes[dim], 1)) { 533 continue; 534 } 535 newOffsets.push_back(mixedOffsets[dim]); 536 newSizes.push_back(mixedSizes[dim]); 537 reassociation.emplace_back(ReassociationIndices{}); 538 std::swap(reassociation.back(), curr); 539 } 540 if (newOffsets.size() == mixedOffsets.size()) 541 return failure(); 542 reassociation.back().append(curr.begin(), curr.end()); 543 SmallVector<OpFoldResult> newStrides(newOffsets.size(), 544 rewriter.getI64IntegerAttr(1)); 545 Location loc = subTensorOp->getLoc(); 546 auto srcReshape = rewriter.create<TensorReshapeOp>( 547 loc, subTensorOp.source(), reassociation); 548 auto newSubTensorOp = rewriter.create<SubTensorOp>( 549 loc, srcReshape, newOffsets, newSizes, newStrides); 550 rewriter.replaceOpWithNewOp<TensorReshapeOp>( 551 subTensorOp, subTensorOp.getType(), newSubTensorOp, reassociation); 552 return success(); 553 } 554 }; 555 556 } // namespace 557 558 /// Patterns that are used to canonicalize the use of unit-extent dims for 559 /// broadcasting. 560 void mlir::linalg::populateFoldUnitExtentDimsPatterns( 561 RewritePatternSet &patterns) { 562 auto *context = patterns.getContext(); 563 patterns.add<FoldUnitDimLoops<GenericOp>, FoldUnitDimLoops<IndexedGenericOp>, 564 FoldUnitDimSubTensorOp, ReplaceUnitExtentTensors<GenericOp>, 565 ReplaceUnitExtentTensors<IndexedGenericOp>>(context); 566 TensorReshapeOp::getCanonicalizationPatterns(patterns, context); 567 patterns.add<FoldReshapeOpWithUnitExtent>(context); 568 populateFoldUnitDimsReshapeOpsByLinearizationPatterns(patterns); 569 } 570 571 namespace { 572 /// Pass that removes unit-extent dims within generic ops. 573 struct LinalgFoldUnitExtentDimsPass 574 : public LinalgFoldUnitExtentDimsBase<LinalgFoldUnitExtentDimsPass> { 575 void runOnFunction() override { 576 FuncOp funcOp = getFunction(); 577 MLIRContext *context = funcOp.getContext(); 578 RewritePatternSet patterns(context); 579 if (foldOneTripLoopsOnly) 580 patterns 581 .add<FoldUnitDimLoops<GenericOp>, FoldUnitDimLoops<IndexedGenericOp>>( 582 context); 583 else 584 populateFoldUnitExtentDimsPatterns(patterns); 585 (void)applyPatternsAndFoldGreedily(funcOp.getBody(), std::move(patterns)); 586 } 587 }; 588 } // namespace 589 590 std::unique_ptr<OperationPass<FuncOp>> 591 mlir::createLinalgFoldUnitExtentDimsPass() { 592 return std::make_unique<LinalgFoldUnitExtentDimsPass>(); 593 } 594