1 //===- DropUnitDims.cpp - Pass to drop use of unit-extent for broadcasting ===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements patterns/pass to remove usage of unit-extent dimensions
10 // to specify broadcasting in favor of more canonical representation of the
11 // computation
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "PassDetail.h"
16 #include "mlir/Dialect/Linalg/IR/LinalgOps.h"
17 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
18 #include "mlir/Dialect/Linalg/Passes.h"
19 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
20 #include "mlir/Dialect/Linalg/Utils/Utils.h"
21 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
22 #include "mlir/IR/AffineExpr.h"
23 #include "mlir/IR/AffineMap.h"
24 #include "mlir/Transforms/FoldUtils.h"
25 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/Debug.h"
28 
29 #define DEBUG_TYPE "linalg-drop-unit-dims"
30 
31 using namespace mlir;
32 using namespace mlir::edsc;
33 using namespace mlir::edsc::intrinsics;
34 using namespace mlir::linalg;
35 
36 /// Implements a pass that canonicalizes the uses of unit-extent dimensions for
37 /// broadcasting. For example,
38 ///
39 /// ```mlir
40 /// #accesses = [
41 ///   affine_map<(d0, d1) -> (0, d1)>,
42 ///   affine_map<(d0, d1) -> (d0, 0)>,
43 ///   affine_map<(d0, d1) -> (d0, d1)>
44 /// ]
45 ///
46 /// #trait = {
47 ///   args_in = 2,
48 ///   args_out = 1,
49 ///   indexing_maps = #accesses,
50 ///   iterator_types = ["parallel", "parallel"],
51 ///   library_call = "some_external_fn"
52 /// }
53 ///
54 /// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) ->
55 /// tensor<5x5xf32>
56 /// {
57 ///   %0 = linalg.tensor_reshape %arg0 [affine_map<(d0, d1) -> (d0, d1)>] :
58 ///        tensor<5xf32> into tensor<1x5xf32>
59 ///   %1 = linalg.tensor_reshape %arg1 [affine_map<(d0, d1) -> (d0, d1)>] :
60 ///        tensor<5xf32> into tensor<5x1xf32>
61 ///   %2 = linalg.generic #trait %0, %1 {
62 ///        ^bb0(%arg2: f32, %arg3: f32):
63 ///          %3 = addf %arg2, %arg3 : f32
64 ///          linalg.yield %3 : f32
65 ///        } : tensor<1x5xf32>, tensor<5x1xf32> -> tensor<5x5xf32>
66 ///   return %2 : tensor<5x5xf32>
67 /// }
68 ///
69 /// would canonicalize to
70 ///
71 /// ```mlir
72 /// #accesses = [
73 ///   affine_map<(d0, d1) -> (d1)>,
74 ///   affine_map<(d0, d1) -> (d0)>,
75 ///   affine_map<(d0, d1) -> (d0, d1)>
76 /// ]
77 ///
78 /// #trait = {
79 ///   args_in = 2,
80 ///   args_out = 1,
81 ///   indexing_maps = #accesses,
82 ///   iterator_types = ["parallel", "parallel"],
83 ///   library_call = "some_external_fn"
84 /// }
85 ///
86 /// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) ->
87 /// tensor<5x5xf32>
88 /// {
89 ///   %0 = linalg.generic #trait %arg0, %arg1 {
90 ///        ^bb0(%arg2: f32, %arg3: f32):
91 ///          %3 = addf %arg2, %arg3 : f32
92 ///          linalg.yield %3 : f32
93 ///        } : tensor<5xf32>, tensor<5xf32> -> tensor<5x5xf32>
94 ///   return %0 : tensor<5x5xf32>
95 /// }
96 
97 /// Given dims of the iteration space of a structured op that are known to be
98 /// single trip count (`unitDims`), return the indexing maps to use in the
99 /// canonicalized op with these dims removed, given the original `indexingMaps`.
100 static ArrayAttr replaceUnitDims(DenseSet<unsigned> &unitDims,
101                                  ArrayRef<AffineMap> indexingMaps,
102                                  MLIRContext *context) {
103   if (indexingMaps.empty())
104     return nullptr;
105   unsigned numIterationDims = indexingMaps.front().getNumDims();
106   unsigned numSymbols = indexingMaps.front().getNumSymbols();
107 
108   // Compute the replacement for each dim expr.
109   SmallVector<AffineExpr, 4> dimReplacements;
110   dimReplacements.reserve(numIterationDims);
111   unsigned numKeptDims = 0;
112   for (unsigned dim : llvm::seq<unsigned>(0, numIterationDims)) {
113     if (unitDims.count(dim))
114       dimReplacements.push_back(getAffineConstantExpr(0, context));
115     else
116       dimReplacements.push_back(getAffineDimExpr(numKeptDims++, context));
117   }
118 
119   // Symbols remain the same.
120   SmallVector<AffineExpr, 4> symReplacements;
121   symReplacements.reserve(numSymbols);
122   for (unsigned symbol : llvm::seq<unsigned>(0, numSymbols))
123     symReplacements.push_back(getAffineSymbolExpr(symbol, context));
124 
125   SmallVector<AffineMap, 4> newIndexingMaps;
126   newIndexingMaps.reserve(indexingMaps.size());
127   for (AffineMap operandMap : indexingMaps) {
128     // Expected indexing maps to have no symbols.
129     if (operandMap.getNumSymbols())
130       return nullptr;
131     newIndexingMaps.push_back(simplifyAffineMap(
132         operandMap.replaceDimsAndSymbols(dimReplacements, symReplacements,
133                                          numIterationDims - unitDims.size(),
134                                          numSymbols)));
135   }
136 
137   // Check that the new index maps are invertible. If not, something went
138   // wrong, so abort.
139   if (!inversePermutation(concatAffineMaps(newIndexingMaps)))
140     return nullptr;
141   return ArrayAttr::get(context,
142                         llvm::to_vector<4>(llvm::map_range(
143                             newIndexingMaps, [](AffineMap map) -> Attribute {
144                               return AffineMapAttr::get(map);
145                             })));
146 }
147 
148 /// Modify the region of indexed generic op to drop arguments corresponding to
149 /// loops that are unit trip count.
150 template <typename OpTy>
151 static LogicalResult
152 replaceBlockArgForUnitDimLoops(OpTy op, const DenseSet<unsigned> &unitDims,
153                                PatternRewriter &rewriterp) {
154   return success();
155 }
156 
157 template <>
158 LogicalResult replaceBlockArgForUnitDimLoops<IndexedGenericOp>(
159     IndexedGenericOp op, const DenseSet<unsigned> &unitDims,
160     PatternRewriter &rewriter) {
161   OpBuilder::InsertionGuard guard(rewriter);
162   Block *entryBlock = &op->getRegion(0).front();
163   rewriter.setInsertionPointToStart(entryBlock);
164   Value zero = rewriter.create<ConstantIndexOp>(op.getLoc(), 0);
165   for (unsigned unitDimLoop : unitDims) {
166     entryBlock->getArgument(unitDimLoop).replaceAllUsesWith(zero);
167   }
168   SmallVector<unsigned, 8> unitDimsToErase(unitDims.begin(), unitDims.end());
169   entryBlock->eraseArguments(unitDimsToErase);
170   return success();
171 }
172 
173 namespace {
174 /// Pattern to fold unit-trip count loops in GenericOps.
175 template <typename GenericOpTy>
176 struct FoldUnitDimLoops : public OpRewritePattern<GenericOpTy> {
177   using OpRewritePattern<GenericOpTy>::OpRewritePattern;
178   LogicalResult matchAndRewrite(GenericOpTy op,
179                                 PatternRewriter &rewriter) const override {
180     SmallVector<AffineMap, 4> indexingMaps = op.getIndexingMaps();
181     if (indexingMaps.empty())
182       return failure();
183 
184     // Check if any of the iteration dimensions are unit-trip count. They will
185     // end up being unit-trip count if they are used to index into a unit-dim
186     // tensor/memref.
187     AffineMap invertedMap = inversePermutation(concatAffineMaps(indexingMaps));
188     if (!invertedMap)
189       return failure();
190     SmallVector<int64_t, 4> dims;
191     for (ShapedType shapedType : op.getShapedOperandTypes())
192       dims.append(shapedType.getShape().begin(), shapedType.getShape().end());
193 
194     // Find all the reduction iterators. Those need some special consideration
195     // (see below).
196     auto getLoopDimsOfType =
197         [&](StringRef iteratorTypeName) -> SmallVector<unsigned, 4> {
198       SmallVector<AffineExpr> dimExprs;
199       getDimsOfType(op, iteratorTypeName, dimExprs);
200       return llvm::to_vector<4>(llvm::map_range(dimExprs, [](AffineExpr expr) {
201         return expr.cast<AffineDimExpr>().getPosition();
202       }));
203     };
204     auto reductionDims = getLoopDimsOfType(getReductionIteratorTypeName());
205 
206     DenseSet<unsigned> unitDims;
207     SmallVector<unsigned, 4> unitDimsReductionLoops;
208     ArrayAttr iteratorTypes = op.iterator_types();
209     for (auto expr : enumerate(invertedMap.getResults())) {
210       if (AffineDimExpr dimExpr = expr.value().dyn_cast<AffineDimExpr>())
211         if (dims[dimExpr.getPosition()] == 1) {
212           if (isParallelIterator(iteratorTypes[expr.index()]))
213             unitDims.insert(expr.index());
214           else if (isReductionIterator(iteratorTypes[expr.index()]))
215             unitDimsReductionLoops.push_back(expr.index());
216         }
217     }
218 
219     // Reduction loops can be dropped if there is at least one other reduction
220     // loop that is not dropped. This accounts for the initial value read in the
221     // reduction loop.
222     if (!unitDimsReductionLoops.empty() && reductionDims.size() > 1) {
223       if (unitDimsReductionLoops.size() == reductionDims.size())
224         unitDims.insert(reductionDims.begin(), std::prev(reductionDims.end()));
225       else
226         unitDims.insert(unitDimsReductionLoops.begin(),
227                         unitDimsReductionLoops.end());
228     }
229 
230     if (unitDims.empty())
231       return failure();
232 
233     // Compute the modified indexing maps.
234     MLIRContext *context = rewriter.getContext();
235     ArrayAttr newIndexingMapAttr =
236         replaceUnitDims(unitDims, indexingMaps, context);
237     if (!newIndexingMapAttr)
238       return op.emitError("unable to compute modified indexing_maps");
239 
240     // Compute the iterator types of the modified op by dropping the one-trip
241     // count loops.
242     SmallVector<Attribute, 4> newIteratorTypes;
243     for (auto attr : llvm::enumerate(iteratorTypes)) {
244       if (!unitDims.count(attr.index()))
245         newIteratorTypes.push_back(attr.value());
246     }
247 
248     rewriter.startRootUpdate(op);
249     op.indexing_mapsAttr(newIndexingMapAttr);
250     op.iterator_typesAttr(ArrayAttr::get(context, newIteratorTypes));
251     (void)replaceBlockArgForUnitDimLoops(op, unitDims, rewriter);
252     rewriter.finalizeRootUpdate(op);
253     return success();
254   }
255 };
256 
257 struct UnitExtentReplacementInfo {
258   RankedTensorType type;
259   AffineMap indexMap;
260   ArrayAttr reassociation;
261 };
262 } // namespace
263 
264 /// Utility function for replacing operands/results to a linalg generic
265 /// operation on tensors with unit-extent dimensions. These can be replaced with
266 /// an operand/result with the unit-extent dimension removed. This is only done
267 /// if the indexing map used to access that didimensionmension has a
268 /// AffineConstantExpr of value 0. Given the `type` of an result/operand of a
269 /// Linalg op, and its `indexMap` the utility function returns:
270 /// - the new type with dimensions of size 1 removed.
271 /// - modified index map that can be used to access the replaced result/operand
272 /// - the reassociation that converts from the original tensor type to the
273 ///   modified tensor type.
274 static UnitExtentReplacementInfo replaceUnitExtents(AffineMap indexMap,
275                                                     RankedTensorType type,
276                                                     MLIRContext *context) {
277   ArrayRef<int64_t> shape = type.getShape();
278   ArrayRef<AffineExpr> exprs = indexMap.getResults();
279   SmallVector<AffineExpr, 2> reassociations;
280   SmallVector<Attribute, 4> reassociationMaps;
281   SmallVector<AffineExpr, 4> newIndexExprs;
282   SmallVector<int64_t, 4> newShape;
283 
284   int64_t origRank = type.getRank();
285   AffineExpr zeroExpr = getAffineConstantExpr(0, context);
286   auto isUnitExtent = [&](int64_t dim) -> bool {
287     return shape[dim] == 1 && exprs[dim] == zeroExpr;
288   };
289 
290   unsigned dim = 0;
291   // Fold dimensions that are unit-extent at the beginning of the tensor.
292   while (dim < origRank && isUnitExtent(dim))
293     reassociations.push_back(getAffineDimExpr(dim++, context));
294   while (dim < origRank) {
295     reassociations.push_back(getAffineDimExpr(dim, context));
296     newIndexExprs.push_back(exprs[dim]);
297     newShape.push_back(shape[dim]);
298     // Fold all following dimensions that are unit-extent.
299     while (dim + 1 < origRank && isUnitExtent(dim + 1)) {
300       ++dim;
301       reassociations.push_back(getAffineDimExpr(dim, context));
302     }
303     reassociationMaps.push_back(AffineMapAttr::get(AffineMap::get(
304         origRank, /*numSymbols = */ 0, reassociations, context)));
305     reassociations.clear();
306     ++dim;
307   }
308   UnitExtentReplacementInfo info = {
309       RankedTensorType::get(newShape, type.getElementType()),
310       AffineMap::get(indexMap.getNumDims(), indexMap.getNumSymbols(),
311                      newIndexExprs, context),
312       ArrayAttr::get(context, reassociationMaps)};
313   return info;
314 }
315 
316 namespace {
317 
318 /// Pattern to replace tensors operands/results that are unit extents.
319 template <typename GenericOpTy>
320 struct ReplaceUnitExtentTensors : public OpRewritePattern<GenericOpTy> {
321   using OpRewritePattern<GenericOpTy>::OpRewritePattern;
322   LogicalResult matchAndRewrite(GenericOpTy op,
323                                 PatternRewriter &rewriter) const override {
324     if (!op.hasTensorSemantics())
325       return failure();
326 
327     MLIRContext *context = rewriter.getContext();
328     Location loc = op.getLoc();
329 
330     SmallVector<AffineMap, 4> newIndexingMaps;
331     SmallVector<ArrayAttr, 4> reassociationMaps;
332     SmallVector<ShapedType, 4> newInputOutputTypes;
333     bool doCanonicalization = false;
334     for (auto it :
335          llvm::zip(op.getIndexingMaps(), op.getShapedOperandTypes())) {
336       auto replacementInfo = replaceUnitExtents(
337           std::get<0>(it), std::get<1>(it).template cast<RankedTensorType>(),
338           context);
339       reassociationMaps.push_back(replacementInfo.reassociation);
340       newIndexingMaps.push_back(replacementInfo.indexMap);
341       newInputOutputTypes.push_back(replacementInfo.type);
342       doCanonicalization |= replacementInfo.type != std::get<1>(it);
343     }
344 
345     // If the indexing maps of the result operation are not invertible (i.e. not
346     // legal), abort.
347     if (!doCanonicalization ||
348         !inversePermutation(concatAffineMaps(newIndexingMaps)))
349       return failure();
350 
351     // If any operand type change, insert a reshape to convert from the original
352     // type to the new type.
353     // TODO: get rid of flattenedIdx which assumes operand order and contiguity.
354     unsigned flattenedIdx = 0;
355     auto insertReshapes = [&](ValueRange values) {
356       SmallVector<Value, 4> res;
357       res.reserve(values.size());
358       for (auto operand : llvm::enumerate(values)) {
359         if (operand.value().getType() == newInputOutputTypes[flattenedIdx])
360           res.push_back(operand.value());
361         else
362           res.push_back(rewriter.create<linalg::TensorReshapeOp>(
363               loc, newInputOutputTypes[flattenedIdx], operand.value(),
364               reassociationMaps[flattenedIdx]));
365         ++flattenedIdx;
366       }
367       return res;
368     };
369 
370     SmallVector<Value, 4> newInputs = insertReshapes(op.inputs());
371     SmallVector<Value, 4> newOutputs = insertReshapes(op.outputs());
372 
373     // If any result type changes, insert a reshape to convert from the original
374     // type to the new type.
375     SmallVector<Type, 4> resultTypes;
376     resultTypes.reserve(op.getNumResults());
377     for (unsigned i : llvm::seq<unsigned>(0, op.getNumResults()))
378       resultTypes.push_back(newInputOutputTypes[i + op.getNumInputs()]);
379     GenericOpTy replacementOp = rewriter.create<GenericOpTy>(
380         loc, resultTypes, newInputs, newOutputs, newIndexingMaps,
381         llvm::to_vector<4>(
382             op.iterator_types().template getAsValueRange<StringAttr>()));
383     rewriter.inlineRegionBefore(op.region(), replacementOp.region(),
384                                 replacementOp.region().begin());
385 
386     // If any result tensor has a modified shape, then add reshape to recover
387     // the original shape.
388     SmallVector<Value, 4> resultReplacements;
389     for (auto result : llvm::enumerate(replacementOp.getResults())) {
390       unsigned index = result.index() + replacementOp.getNumInputs();
391       RankedTensorType origResultType = op.getResult(result.index())
392                                             .getType()
393                                             .template cast<RankedTensorType>();
394       if (origResultType != result.value().getType())
395         resultReplacements.push_back(rewriter.create<linalg::TensorReshapeOp>(
396             loc, origResultType, result.value(), reassociationMaps[index]));
397       else
398         resultReplacements.push_back(result.value());
399     }
400     rewriter.replaceOp(op, resultReplacements);
401     return success();
402   }
403 };
404 
405 /// Pattern to fold pair of reshape ops where the intermediate has unit-dims for
406 /// example:
407 ///
408 ///  %0 = linalg.tensor_reshape %arg0
409 ///    [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>]
410 ///    : tensor<2048xf32> into tensor<1x4x1x512xf32>
411 ///  %1 = linalg.tensor_reshape %0
412 ///    [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)>,
413 ///     affine_map<(d0, d1, d2, d3) -> (d3)>]
414 ///    : tensor<1x4x1x512xf32> into tensor<4x512xf32>
415 ///
416 /// can be replaced with
417 ///
418 ///  %0 = linalg.tensor_reshape %arg0 [affine_map<(d0, d1) -> (d0, d1)>]
419 ///    : tensor<2048xf32> into tensor<4x512xf32>
420 ///
421 /// Similarly,
422 ///
423 ///  %0 = linalg.tensor_reshape %arg0
424 ///    [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)>,
425 ///     affine_map<(d0, d1, d2, d3) -> (d3)>]
426 ///    : tensor<4x512xf32> into tensor<1x4x1x512xf32>
427 ///  %1 = linalg.tensor_reshape %0
428 ///   [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>]
429 ///    : tensor<1x4x1x512xf32> into tensor<2048xf32>
430 ///
431 /// can be replaced with
432 ///
433 ///  %0 = linalg.tensor_reshape %arg0 [affine_map<(d0, d1) -> (d0, d1)>]
434 ///    : tensor<4x512xf32> into tensor<2048xf32>
435 struct FoldReshapeOpWithUnitExtent : OpRewritePattern<TensorReshapeOp> {
436   using OpRewritePattern<TensorReshapeOp>::OpRewritePattern;
437 
438   LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp,
439                                 PatternRewriter &rewriter) const override {
440     // Check that the source operand is created from a reshape as well.
441     TensorReshapeOp parentReshapeOp =
442         reshapeOp.src().getDefiningOp<TensorReshapeOp>();
443     if (!parentReshapeOp)
444       return failure();
445 
446     RankedTensorType srcType = reshapeOp.getSrcType(),
447                      dstType = reshapeOp.getResultType(),
448                      parentSrcType = parentReshapeOp.getSrcType();
449     if (!srcType.hasStaticShape() || !dstType.hasStaticShape() ||
450         !parentSrcType.hasStaticShape() ||
451         srcType.getRank() < dstType.getRank() ||
452         parentSrcType.getRank() == dstType.getRank())
453       return failure();
454 
455     // Check if the result tensor_reshape is folding or expanding after folding
456     // the reshapeOp and parentReshapeOp are combined.  If the final
457     // tensor_reshape is folding, the parentReshapeOp is introducing unit-dims,
458     // and the reshapeOp does an actual reshape.  If the final tensor_reshape op
459     // is expanding, the reshapeOp is introducing unit-dims, and the
460     // parentReshapeOp does an actual reshape.
461     bool isFoldingPattern = parentSrcType.getRank() > dstType.getRank();
462     ArrayRef<int64_t> expandedShape =
463         isFoldingPattern ? parentSrcType.getShape() : dstType.getShape();
464     ArrayRef<int64_t> foldedShape =
465         isFoldingPattern ? dstType.getShape() : parentSrcType.getShape();
466 
467     unsigned expandedDim = 0, foldedDim = 0;
468     SmallVector<SmallVector<AffineExpr, 4>, 4> reassociationExprs(
469         foldedShape.size());
470     while (expandedDim < expandedShape.size() &&
471            foldedDim < foldedShape.size()) {
472       int64_t dstSize = foldedShape[foldedDim];
473       int64_t srcSize = expandedShape[expandedDim];
474       while (srcSize < dstSize && expandedDim < expandedShape.size()) {
475         reassociationExprs[foldedDim].push_back(
476             rewriter.getAffineDimExpr(expandedDim++));
477         srcSize *= expandedShape[expandedDim];
478       }
479       if (srcSize == dstSize) {
480         reassociationExprs[foldedDim].push_back(
481             rewriter.getAffineDimExpr(expandedDim++));
482         // If the next dim in foldedShape is not 1, treat subsequent dims in
483         // expandedShape which are 1 to be collapsed.
484         if (foldedDim == foldedShape.size() - 1 ||
485             foldedShape[foldedDim + 1] != 1) {
486           while (expandedDim < expandedShape.size() &&
487                  expandedShape[expandedDim] == 1) {
488             reassociationExprs[foldedDim].push_back(
489                 rewriter.getAffineDimExpr(expandedDim++));
490           }
491         }
492       } else {
493         return failure();
494       }
495       foldedDim++;
496     }
497     if (expandedDim != expandedShape.size())
498       return failure();
499 
500     SmallVector<AffineMap, 4> reassociationMaps =
501         llvm::to_vector<4>(llvm::map_range(
502             reassociationExprs, [&](ArrayRef<AffineExpr> exprs) -> AffineMap {
503               return AffineMap::get(expandedShape.size(), 0, exprs,
504                                     rewriter.getContext());
505             }));
506     rewriter.replaceOpWithNewOp<TensorReshapeOp>(
507         reshapeOp, dstType, parentReshapeOp.src(),
508         rewriter.getAffineMapArrayAttr(reassociationMaps));
509     return success();
510   }
511 };
512 
513 /// Pattern to fold subtensors that are just taking a slice of unit-dimension
514 /// tensor. For example
515 ///
516 /// %1 = subtensor %0[0, %o1, 0] [1, %s1, 1] [1, 1, 1]
517 ///     : tensor<1x?x1xf32> to tensor<1x?x1xf32>
518 ///
519 /// can be replaced with
520 ///
521 /// %0 = linalg.tensor_reshape %0 [affine_map<(d0, d1, d2) -> (d0, d1, d2)>]
522 ///     : tensor<1x?x1xf32> into tensor<?xf32>
523 /// %1 = subtensor %0[%o1] [%s1] [1] : tensor<?xf32> to tensor<?xf32>
524 /// %2 = linalg.tensor_reshape %1 [affine_map<(d0, d1, d2) -> (d0, d1, d2)>]
525 ///     : tensor<?xf32> into tensor<1x?x1xf32>
526 ///
527 /// The additional tensor_reshapes will hopefully get canonicalized away with
528 /// other reshapes that drop unit dimensions. Three condiitions to fold a
529 /// dimension
530 /// - The offset must be 0
531 /// - The size must be 1
532 /// - The dimension of the source type must be 1.
533 struct FoldUnitDimSubTensorOp : public OpRewritePattern<SubTensorOp> {
534   using OpRewritePattern<SubTensorOp>::OpRewritePattern;
535 
536   LogicalResult matchAndRewrite(SubTensorOp subTensorOp,
537                                 PatternRewriter &rewriter) const override {
538     SmallVector<OpFoldResult> mixedOffsets = subTensorOp.getMixedOffsets();
539     SmallVector<OpFoldResult> mixedSizes = subTensorOp.getMixedSizes();
540     SmallVector<OpFoldResult> mixedStrides = subTensorOp.getMixedStrides();
541     auto hasValue = [](OpFoldResult valueOrAttr, int64_t val) {
542       auto attr = valueOrAttr.dyn_cast<Attribute>();
543       return attr && attr.cast<IntegerAttr>().getInt() == val;
544     };
545 
546     if (llvm::any_of(mixedStrides, [&](OpFoldResult valueOrAttr) {
547           return !hasValue(valueOrAttr, 1);
548         }))
549       return failure();
550 
551     // Find the expanded unit dimensions.
552     SmallVector<ReassociationIndices> reassociation;
553     SmallVector<OpFoldResult> newOffsets, newSizes;
554     ArrayRef<int64_t> sourceShape = subTensorOp.getSourceType().getShape();
555     ReassociationIndices curr;
556     for (int64_t dim : llvm::seq<int64_t>(0, mixedOffsets.size())) {
557       curr.push_back(dim);
558       if (sourceShape[dim] == 1 && hasValue(mixedOffsets[dim], 0) &&
559           hasValue(mixedSizes[dim], 1)) {
560         continue;
561       }
562       newOffsets.push_back(mixedOffsets[dim]);
563       newSizes.push_back(mixedSizes[dim]);
564       reassociation.emplace_back(ReassociationIndices{});
565       std::swap(reassociation.back(), curr);
566     }
567     if (newOffsets.size() == mixedOffsets.size())
568       return failure();
569     reassociation.back().append(curr.begin(), curr.end());
570     SmallVector<OpFoldResult> newStrides(newOffsets.size(),
571                                          rewriter.getI64IntegerAttr(1));
572     Location loc = subTensorOp->getLoc();
573     auto srcReshape = rewriter.create<TensorReshapeOp>(
574         loc, subTensorOp.source(), reassociation);
575     auto newSubTensorOp = rewriter.create<SubTensorOp>(
576         loc, srcReshape, newOffsets, newSizes, newStrides);
577     rewriter.replaceOpWithNewOp<TensorReshapeOp>(
578         subTensorOp, subTensorOp.getType(), newSubTensorOp, reassociation);
579     return success();
580   }
581 };
582 
583 } // namespace
584 
585 /// Patterns that are used to canonicalize the use of unit-extent dims for
586 /// broadcasting.
587 void mlir::linalg::populateFoldUnitExtentDimsPatterns(
588     RewritePatternSet &patterns) {
589   auto *context = patterns.getContext();
590   patterns.add<FoldUnitDimLoops<GenericOp>, FoldUnitDimLoops<IndexedGenericOp>,
591                FoldUnitDimSubTensorOp, ReplaceUnitExtentTensors<GenericOp>,
592                ReplaceUnitExtentTensors<IndexedGenericOp>>(context);
593   TensorReshapeOp::getCanonicalizationPatterns(patterns, context);
594   patterns.add<FoldReshapeOpWithUnitExtent>(context);
595 }
596 
597 namespace {
598 /// Pass that removes unit-extent dims within generic ops.
599 struct LinalgFoldUnitExtentDimsPass
600     : public LinalgFoldUnitExtentDimsBase<LinalgFoldUnitExtentDimsPass> {
601   void runOnFunction() override {
602     FuncOp funcOp = getFunction();
603     MLIRContext *context = funcOp.getContext();
604     RewritePatternSet patterns(context);
605     if (foldOneTripLoopsOnly)
606       patterns
607           .add<FoldUnitDimLoops<GenericOp>, FoldUnitDimLoops<IndexedGenericOp>>(
608               context);
609     else
610       populateFoldUnitExtentDimsPatterns(patterns);
611     (void)applyPatternsAndFoldGreedily(funcOp.getBody(), std::move(patterns));
612   }
613 };
614 } // namespace
615 
616 std::unique_ptr<OperationPass<FuncOp>>
617 mlir::createLinalgFoldUnitExtentDimsPass() {
618   return std::make_unique<LinalgFoldUnitExtentDimsPass>();
619 }
620